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Real and complex indices of vector fields on complete

intersection curves with isolated singularity

Oliver Klehn

Abstract

If (V, 0) is an isolated complete intersection singularity and X a holomorphic vector field
tangent to V , one can define an index of X, the so-called GSV index, which generalizes
the Poincaré–Hopf index. We prove that the GSV index coincides with the dimension of
a certain explicitly constructed vector space, if X is deformable in a certain sense and V
is a curve. We also give a sufficient algebraic criterion for X to be deformable in this way.
If one considers the real analytic case one can also define an index of X which is called
the real GSV index. Under the condition that X has the deformation property, we prove
a signature formula for the index generalizing the Eisenbud–Levine Theorem.

1. Introduction

1.1 Classical results
Assume that the continuous map germ g : (Rn, 0) → (Rn, 0) defines an isolated zero. Then the map
g/‖g‖ : Sn−1

δ → Sn−1 of spheres around the origin has a degree, the so-called Poincaré–Hopf index
indRn,0(g) of g. If g is analytic one has algebraic interpretations of this index, that we first want to
describe. If g : (Cn, 0) → (Cn, 0) is holomorphic, let Qg be the algebra obtained by factoring OCn,0

by the ideal generated by the components of g. One has the following theorem.

Theorem 1.1 [AGV85, GH78].

indCn,0(g) = dimCQg.

Here we have made the identification C
n ∼= R

2n of course. Now let ERn,0 be the ring of real
analytic function germs on (Rn, 0) and further g : (Rn, 0) → (Rn, 0) be finite and real analytic, in
the sense that Qg is finite dimensional as an R-vector space and where Qg is the algebra obtained
by factoring ERn,0 with the ideal generated by the components of g in this case. If one denotes by
Jg the determinant of the Jacobian of g, one has the following famous theorem:

Theorem 1.2 (Eisenbud–Levine Theorem). Let l : Qg → R be a linear form with l(Jg) > 0. Then

indRn,0(g) = signature〈 , 〉l.

Here 〈 , 〉l is the induced bilinear form defined by 〈h1, h2〉l := l(h1 · h2).

1.2 Generalization to complete intersections
Now let (V, 0) := ({f1 = · · · = fq = 0}, 0) ⊂ (Cn, 0) be an isolated singularity of a complete
intersection (ICIS) and X :=

∑n
i=1Xi ∂/∂zi be the germ of a holomorphic vector field on (Cn, 0)

tangent to V , say Xf = Cf with an isolated zero on V . In this situation one can also define an
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index indV,0(X), called the (complex) GSV index (see [ASV98, BG94, GSV91]); and it is the
Poincaré–Hopf index when V is smooth. The definition of the index is as follows:

Choose a sufficiently small sphere Sδ around the origin in C
n which intersects V transversally

and consider the link K = V ∩ Sδ of V . The vectors X,∇f1, . . . ,∇fq are linearly independent for
all points of K and we have a well defined map

(X,∇f1, . . . ,∇fq) : K → Wq+1(Cn),

where Wq+1(Cn) denotes the manifold of (q+1)-frames in C
n and we consider the complex gradients

of course. We have
H2n−2q−1(K) ∼= Z, H2n−2q−1(Wq+1(Cn)) ∼= Z,

and therefore the map has a degree. We let K be oriented as the boundary of the complex manifold
V \ {0} here. The index indV,0(X) of X is defined to be the degree of this map. (If V is a curve,
K can have more components; we will then sum over the degrees of the components.)

We now want to formulate our main theorems. We need a definition first.

Definition 1.3. We have that X is called a good vector field (with respect to V ), if there is a
holomorphic deformation Xt of X, so that for all t ∈ C

q sufficiently close to zero Xt is tangent to
the t-fibre Vt of f . Then Xt is called a good deformation of X.

We will prove a sufficient criterion for a vector field to be good, which states that X is good
whenever all coefficients of the matrix C are contained in the ideal generated by the maximal minors
of the Jacobian of f in OCn,0. It follows from the definition of the index that it equals the sum of
the indices of a good deformation on a smooth fibre.

After a linear generic change of coordinates one can assume that (f1, . . . , fq,X1, . . . Xn−q) is a
regular OCn,0-sequence (see [LSS95]), and we always assume the coordinates to be chosen in this
way in this paper. Let B0 := OCn,0/(f1, . . . , fq,X1, . . . ,Xn−q). Due to the chosen coordinates B0 is
finite dimensional as a complex vector space. We also set C0 := B0/annB0(DF ), where

DF := det
(

∂(f1, . . . , fq)
∂(zn−q+1, . . . , zn)

)
.

We prove (in § 4.3) an index formula for vector fields in the case q = n− 1:

Theorem 1.4. Let X be a good vector field and V a curve. Then

indV,0(X) = dimC C0.

Now let
(V R, 0) := ({fR1 = · · · = fRq = 0}, 0) ⊂ (Rn, 0),

defined by real analytic function germs. If f denotes the complexification of fR we assume that f
defines an ICIS of dimension n− q. Furthermore let the real analytic vector field XR be tangent to
(VR, 0) with an algebraic isolated zero on (V R, 0). One defines the real GSV index of XR similarly
to the complex index (see [ASV98]), and denotes this index by indV R,0(XR) if n− q is odd and by
ind2

V R,0(X
R) if n− q is even. For topological reasons one can only define a (mod 2)-index if n− q is

even. The definition of XR to be good is as in the complex case using real analytic deformations.
For the case q = n−1 we prove (in § 5.1) the following formula generalizing the Eisenbud–Levine

Theorem:

Theorem 1.5. Let V R be a curve, XR a good vector field and l : C R0 → R a linear form with
l(c1) > 0. Then

indV R,0(X
R) = signature〈 , 〉l.
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Here C R0 is defined as in the complex case using ERn,0 instead of OCn,0, c1 is the coefficient of t
in the formal power series expansion of det(� + tDXR)/det(� + tC), where DXR is the Jacobian
of XR, and 〈 , 〉l is the induced bilinear form defined as in the classical case. Finally, C is defined by
the tangency condition XRfR = CfR.

2. Residues of holomorphic vector fields

To prove our main theorems we need a few results on residues of holomorphic vector fields that we
want to collect in this section.

Let g : (Cn, 0) → (Cn, 0) be a holomorphic map germ with isolated zero. Then the residue
resg
Cn,0(h) of any h ∈ OCn,0 with respect to g is defined as

resg
Cn,0(h) :=

1
(2πi)n

∫
Γ

hdz1 ∧ · · · ∧ dzn
g1 · . . . · gn

,

where Γ is the real n-cycle Γ := {|gi| = εi, i = 1, . . . , n} for εi ∈ R>0 small enough with orientation
given by d(arg g1) ∧ · · · ∧ d(arg gn) � 0. Sometimes we denote this residue also by

resCn,0

[
h

g1 · · · gn

]
.

If we denote by Jg the Jacobian determinant of g, we have the following classical result:

Theorem 2.1 [AGV85, GH78].

i) The residue resg
Cn,0 : Qg → C defines a linear form.

ii) The induced bilinear form 〈 , 〉resg
Cn,0

is non-degenerate.

iii) The index indCn,0(g) = dimCQg = resg
Cn,0(Jg).

If we consider linear forms l : Q → F on commutative F-algebras for an arbitrary field in this
paper, the induced bilinear form 〈 , 〉l onQ is always the bilinear form defined by 〈h1, h2〉l := l(h1·h2).
The second statement in the theorem is usually called ‘local (Grothendieck) duality’ and it states
that Qg is a Gorenstein algebra. This means that the annihilator of the maximal ideal, the socle, of
Qg is one-dimensional and it is well known that it is generated by the class of Jg. One immediately
concludes that for any linear form l : Qg → C with l(Jg) �= 0 the induced pairing 〈 , 〉l is non-
degenerate.

As in the second part of the Introduction, let (V, 0) := ({f1 = · · · = fq = 0}, 0) ⊂ (Cn, 0) be
an isolated singularity of a complete intersection (ICIS) and X :=

∑n
i=1Xi ∂/∂zi be the germ of a

holomorphic vector field on (Cn, 0) tangent to V , say Xf = Cf with an isolated zero on V . Further let

Σ := {f1 = · · · = fq = 0, |X1| = ε1, . . . , |Xn−q| = εn−q}
be a small real (n− q)-cycle with orientation determined by

d(argX1) ∧ · · · ∧ d(argXn−q) � 0.

Then we define the relative residue of any h ∈ OCn,0 with respect to X to be

resX
V,0(h) :=

1
(2πi)n−q

∫
Σ

hdz1 ∧ · · · ∧ dzn−q

X1 · . . . ·Xn−q
.

The absolute residue of h with respect to X is defined as

resX
Cn,0(h) := resCn,0

[
h

X1 · · ·Xn−qf1 · · · fq

]
.
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Now let cn−q be the coefficient of tn−q in the formal power series expansion of

det(� + tDX)/det(� + tC),

where DX is the Jacobian of X. We have the following theorem proven in [LSS95].

Theorem 2.2 [LSS95].
indV,0(X) = resX

V,0(cn−q).

The author has proven in [Kle02] that one always has resXV,0(h) = resX
Cn,0(hDF ), where we have

set

DF := det
(

∂(f1, . . . , fq)
∂(zn−q+1, . . . , zn)

)
.

This means that we also have indV,0(X) = resX
Cn,0(cn−q DF ), which is one of the main tools in the

proof of our main theorems.

3. Vector fields tangent to smooth varieties

To prove our main theorems we first prove them for the smooth situation, which is done in this
section, and use good deformations to generalize to the singular case. We also look at the socle
of C0. We use the notation as introduced in the first and second sections.

3.1 The complex situation
Let 1 � i1 < · · · < iq � n be fixed and 1 � j1 < · · · < jn−q � n be the complement of i1, . . . , iq in
{1, . . . , n}. Furthermore we set

DI := det
(
∂(f1, . . . , fq)
∂(zi1 , . . . , ziq )

)
and let σI be the permutation defined by

σI :=
(

1 . . . n− q n− q + 1 . . . n
j1 . . . jn−q i1 . . . iq

)
,

where I is the multiindex I := (i1, . . . , iq). We also set

BI
0 :=

OCn,0

(f1, . . . , fq,Xj1 , . . . ,Xjn−q)

and if DI(0) �= 0

γI :=
sign σI

DI
det
(
∂(Xj1 , . . . ,Xjn−q , f1, . . . , fq)

∂(z1, . . . , zn)

)
.

Lemma 3.1. Let DI(0) �= 0. Then

indV,0(X) = dimCBI
0 .

Proof. By the implicit mapping theorem it is not hard to show that X|V corresponds to the vector
field

Y := Xj1 ◦ ψ
∂

∂y1
+ · · · +Xjn−q ◦ ψ

∂

∂yn−q

on (Cn−q, 0), where ψ : (Cn−q, 0) → (V, 0) is a biholomorphic map as in the implicit mapping
theorem. From

OCn−q ,0

(Xj1 ◦ ψ, . . . ,Xjn−q ◦ ψ)
∼= BI

0

the claim follows.
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Lemma 3.2. Let DI(0) �= 0. Then we have for any h ∈ OCn,0

resX
Cn,0(hDF ) = signσI resCn,0

[
hDI

Xj1 . . . Xjn−qf1 . . . fq

]
.

Proof. By the transformation formula for residues [GH78], we have to show that there is a matrix A
with

(X1, . . . ,Xn−q, f1, . . . , fq)tA(Xj1 , . . . ,Xjn−q , f1, . . . , fq)t

and detA = sign σIDF/DI. From Xf = Cf we get

Xi1
...
Xiq


 = Cf −

(
∂(f1, . . . , fq)
∂(zi1 , . . . , ziq)

)−1 ∂(f1, . . . , fq)
∂(zj1 , . . . , zjn−q)




Xj1
...

Xjn−q


 . (1)

Now let i1, . . . , ik ∈ {1, . . . , n − q} and ik+1, . . . , iq ∈ {n − q + 1, . . . , n}. Then it follows that
j1, . . . , jn−q−k ∈ {1, . . . , n − q} and jn−q−k+1, . . . , jn−q ∈ {n − q + 1, . . . , n}. For k = 0 the claim
follows immediately. With (1) we obtain a matrix B with

(Xj1 , . . . ,Xjn−q+k
,Xi1 , . . . ,Xik , f1, . . . , fq)t = B(Xj1, . . . ,Xjn−q , f1, . . . , fq)t.

If σ′ ∈ Sn−q is the permutation with

σ′ =
(

1 . . . n− q + k n− q + k + 1 . . . n− q
j1 . . . jn−q−k i1 . . . ik

)
,

we have detA = sign σ′ detB. Then detB is the determinant of the upper right (k× k) block of the
matrix

−
(
∂(f1, . . . , fq)
∂(zi1 , . . . , ziq)

)−1 ∂(f1, . . . , fq)
∂(zj1 , . . . , zjn−q)

.

If dl,m is the determinant of the matrix obtained by replacing the lth column of

∂(f1, . . . , fq)
∂(zi1 , . . . , ziq)

by the mth column of
∂(f1, . . . , fq)

∂(zj1 , . . . , zjn−q)
,

and if

D := (dl,m)m=n−q−k+1,...,n−q
l=1,...,k ,

we have to show that

detD = (DI)k−1 det
(

∂(f1, . . . , fq)
∂(zjn−q−k+1

, . . . , zjn−q , zik+1
, . . . , ziq)

)
.

This can be done by induction over k where k = 1 is obvious. The conclusion is straightforward and
we do not want to write it down here.

Lemma 3.3. If V is smooth, then

indV,0(X) = dimC C0.

Proof. Let DI(0) �= 0. By Lemma 3.1 we have

indV,0(X) = dimCBI
0 .
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If we map a class [h] ∈ C0 to the class [h]′ of h in BI
0 we obtain an isomorphism of C-algebras, since

by Lemma 3.2 and local duality the following holds:

[h] = 0 in C0 ⇐⇒ hDF ∈ OCn,0(f1, . . . , fq,X1, . . . ,Xn−q)

⇐⇒ resX
Cn,0(ghDF ) = 0 for all g ∈ OCn,0

⇐⇒ resCn,0

[
ghDI

Xj1 . . . Xjn−qf1 . . . fq

]
= 0 for all g ∈ OCn,0

⇐⇒ hDI ∈ OCn,0(Xj1 , . . . Xjn−q , f1, . . . , fq)

⇐⇒ [h]′ = 0 in BI
0

Lemma 3.4. Let DI(0) �= 0. Then in C0 the equation cn−q = γI holds.

Proof. By the transformation formula for residues and Lemma 3.1 we have

resX
Cn,0(DF γI) = indV,0(X)

and further for h ∈ mOCn,0

resX
Cn,0(DF γIh) = resCn,0


hdet

(
∂(Xj1 , . . . ,Xjn−q , f1, . . . , fq)

∂(z1, . . . , zn)

)

Xj1 . . . Xjn−qf1 . . . fq


 = 0

and therefore DF γI generates the one-dimensional socle of B0. By the remarks of the Introduction
we have

resX
Cn,0(DF cn−q) = indV,0(X),

and therefore DF cn−q �= 0 in B0. Since V is smooth there is a small deformation Xt of X tangent
to V , so that Xt has only simple zeros pi for sufficiently small t on V in a small neighbourhood of
the origin. We can also assume that for these zeros DI(pi) �= 0 holds. For h ∈ mOCn,0

we have

resX
Cn,0(DF cn−qh) = resCn,0

[
signσIDI cn−qh

Xj1 · · ·Xjn−qf1 · · · fq

]

= lim
t→0

∑
i

h(pi) indV,pi(Xt)

= 0.

This follows from the continuous principle for residues, from the fact that the algebras
OCn,pi

(Xt,j1 , . . . ,Xt,jn−q , f1 . . . , fq)

are one-dimensional and by the transformation formula that signσIDI cn−q(t) is a unit in these
algebras. Therefore cn−qDF generates the one-dimensional socle of B0 too and since we have

resXCn,0(DF cn−q) = resX
Cn,0(DF γI)

it follows that DF(cn−q − γI) = 0 in B0 and therefore cn−q = γI in C0.

3.2 The real analytic situation
Lemma 3.5. Let (V R, 0) be smooth and l : C R0 → R a linear form with l(cn−q) > 0. Then we have
indV R,0(XR) = signature〈 , 〉l.
Proof. Let DI(0) �= 0. With the implicit mapping theorem it is not hard to show that the vector
field XR|V R corresponds to

Y := XRj1 ◦ ψ
∂

∂y1
+ · · · +XRjn−q

◦ ψ ∂

∂yn−q
,
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where ψ : (Rn−q, 0) → (V R, 0) is a diffeomorphism with ψjk
(y) = yjk

for k = 1, . . . , n − q. By the
chain rule one has

∂(ψi1 , . . . , ψiq)
∂(y1, . . . , yn−q)

−
(
∂(fR1 , . . . , f

R
q )

∂(xi1 , . . . , xiq)
◦ ψ
)−1

∂(fR1 , . . . , f
R
q )

∂(xj1 , . . . , xjn−q)
◦ ψ.

Applying the chain rule again we get

∂(Y1, . . . , Yn−q)
∂(y1, . . . , yn−q)

∂(XRj1 , . . . ,X
R
jn−q

)

∂(xj1 , . . . , xjn−q)
◦ ψ

−
∂(XRj1 , . . . ,X

R
jn−q

)

∂(xi1 , . . . , xiq)
◦ ψ

(
∂(fR1 , . . . , f

R
q )

∂(xi1 , . . . , xiq)
◦ ψ
)−1

∂(fR1 , . . . , f
R
q )

∂(xj1 , . . . , xjn−q)
◦ ψ.

A well known lemma from linear algebra states

det
(
A B
C D

)
= detA · det(D − CA−1B),

where A and D are square and A is invertible. The application of this lemma shows that the
determinant of the Jacobian of Y is given by γI ◦ ψ. By the Eisenbud–Levine Theorem it follows
that for any linear form

ϕ :
ERn−q ,0

(Y1, . . . , Yn−q)
→ R

with ϕ(γI ◦ ψ) > 0 the statement indV R,0(X) = signature〈 , 〉ϕ holds. The isomorphism of algebras
given by ψ shows that we have for any linear form Φ: BIR

0 → R with Φ(γI) > 0 the formula
indV R,0(X) = signature〈 , 〉Φ and this is also true in C R0 , because the isomorphism of algebras in
Lemma 3.3 also gives an isomorphism of the corresponding real algebras. On the other hand one
has in C0 the equation cn−q = γI and this equation also holds in C R0 . Therefore the statement
follows.

4. An algebraic formula for the complex index

4.1 Good vector fields

First we want to prove a sufficient criterion for good vector fields.

Proposition 4.1 (Sufficient criterion for good vector fields). Let all coefficients of the matrix C be
contained in the ideal generated by the maximal minors of the Jacobian of f in OCn,0. Then X is a
good vector field.

Proof. We prove a bit more: there is a deformation Xt of X such that Xt(f − t) = C(f − t) holds.
For (i1, . . . , iq) ∈ {1, . . . , n}q and (j1, . . . , jq−1) ∈ {1, . . . , n}q−1 define

fi1,...,iq := det
(
∂(f1, . . . , fq)
∂(zi1 , . . . , ziq )

)
and fk

j1,...,jq−1
:= det

(
∂(f1, . . . , f̂k, . . . , fq)
∂(zj1 , . . . , zjq−1)

)
.

If C = (cl,m) let

cl,m =
∑

(i1,...,iq)∈{1,...,n}q

cl,mi1,...,iq
fi1,...,iq .

For k = 1, . . . , q − 1, we set

δi,j
j1,...,jq−1

:= δjk ,j
j1,...,jk−1,i,jk+1,...,jq−1

: δj
i,j1,...,jq−1
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and further

δl
i1,...,iq := −

q∑
m=1

∑
(i1,...,iq)∈{1,...,n}q

cl,mi1,...,iq
tm.

We define the deformation by

Xt,i := Xi +
q∑

j=1

∑
(j1,...,jq−1)∈{1,...,n}q−1

δi,j
j1,...,jq−1

(−1)j+1f j
j1,...,jq−1

.

Then we have
n∑

i=1

∂fl

∂zi
Xt,i

n∑
m=1

cl,mfm +
∑

(i1,...,iq)∈{1,...,n}q

δl
i1,...,iqfi1,...iq =

n∑
m=1

cl,m(fm − tm).

In the case of a hypersurface this means that, if c is contained in the ideal generated by the
partials of f , the vector field is good. If

c = α1
∂f

∂z1
+ · · · + αn

∂f

∂zn
,

the deformation is simply defined as Xt,i := Xi − tαi. We have

Xt(f − t) = cf −
n∑

i=1

tαi
∂f

∂zi
= c(f − t).

4.2 The socle of C0

Lemma 4.2. The residue resX
V,0(·) defines a linear form on C0 such that

resX
V,0(hg) = 0 for all h ∈ OCn,0 ⇒ g = 0 in C0

holds.

Proof. We have resX
V,0(h) = resX

Cn,0(hDF ) and this means that the residue resX
V,0(·) vanishes on

annB0(DF ). Furthermore resX
V,0(hg) = 0 for all h ∈ OCn,0 implies resX

Cn,0(hgDF ) = 0 for all h ∈
OCn,0. Now local duality gives

gDF ∈ OCn,0(X1, . . . ,Xn−q, f1, . . . , fq)

and therefore g ∈ annB0
(DF ).

Proposition 4.3. The socle of C0 is generated by the class of cn−q.

Proof. Lemma 4.2 states that resX
V,0(·) induces a non-degenerate bilinear form on C0, which means

that C0 has a one-dimensional socle if C0 is not trivial. On the other hand for any h ∈ mOCn,0
we

have
resX

V,0(hcn−q) = lim
t→0

∑
i

h(pi) indVt,pi(Xt) = 0,

which means that cn−q generates the socle.

4.3 Proof of Theorem 1.4
For a good vector field, indV,0(X) is the sum of Poincaré–Hopf indices of Xt on a smooth fibre Vt

of f , where one sums over all zeros of Xt which tend to zero. This follows directly from the definition
of the index.

If q = n − 1 we denote by mi the minor of the Jacobian matrix of f obtained by cancelling
the ith column. We have DF = m1 of course. Recall that we always assume the coordinates to be
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chosen so that (f1, . . . , fn−1,X1) is a regular OCn,0-sequence. For simplicity we also may assume
that mi(0) = 0 for i = 1, . . . , n.

Lemma 4.4. Let q = n− 1. Then the following hold:

i) (f1, . . . , fn−1,DF ) is a regular OCn,0-sequence.

ii) The dimension of C0 does not depend on the choice of coordinates, provided that the
OCn,0-sequence (f1, . . . , fn−1,X1) is regular in each system of coordinates.

iii) After linear changes of coordinates in Cn and Cn−1 one can assume that (f1, . . . , fn−2,DF,m2)
is a regular OCn,0-sequence.

Proof. i) All computations are done in the ring OV,0 = OCn,0/(f1, . . . , fn−1). We have to show that
DF is not a zero divisor in this ring. Applying Cramer’s rule to the equation Xf = Cf we obtain the
equations

(−1)imiX1 = −DFXi (2)

for i = 1, . . . , n. Now let gDF = 0 in OV,0. Multiplication with Xi, Equation (2) and using that
X1 is not a zero divisor in OV,0 give gmi = 0 for all i = 1, . . . , n. The ring obtained by divid-
ing OV,0 by all mi is artinian and therefore there must be complex numbers α1, . . . , αn so that
h := α1m1 + · · · + αnmn is not a zero divisor in OV,0. On the other hand we have gh = 0 in OV,0

and therefore g = 0 in OV,0.

ii) Let φ : (Cn, 0) → (Cn, 0), φ(y) = z, be biholomorphic and ψ := φ−1. We denote by Y the
vector field computed in y-coordinates and by DFy the minor computed in y-coordinates. Standard
computations give 


Y1 ◦ ψ

...
Yn ◦ ψ


 =

∂(ψ1, . . . , ψn)
∂(z1, . . . , zn)



X1
...
Xn




and

DFy ◦ ψ =
n∑

j=1

(−1)j+1(detDφ) ◦ ψ ∂ψ1

∂zj
mj .

Set B′
0 := OCn,0/(f1, . . . , fn−1, Y1◦ψ) and C ′

0 := B′
0/annB′

0
(DFy ◦ψ). We construct an epimorphism

ϕ : C0 → C ′
0. For any g ∈ OCn,0 we also denote by g the classes of g in these algebras and define

ϕ(g) := g. Again all computations are done in the ring OV,0. We want to show that ϕ is well defined.
Let gDF = αX1. Multiplying with mi, using Equation (2) and the fact that DF is not a zero divisor
in OV,0, we obtain gmi = (−1)i+1αXi for i = 1, . . . , n. Then for each i we get

gDFy ◦ ψ = (detDφ) ◦ ψ
n∑

i=1

(−1)i+1 ∂ψ1

∂zi
gmi

= (detDφ) ◦ ψ
n∑

i=1

αXi
∂ψ1

∂zi

= α(detDφ) ◦ ψ Y1 ◦ ψ.
This shows that ϕ is well defined. The surjectivity is obvious and the other direction analogous.
Therefore dimC C0 does not depend on the choice of coordinates in C

n. If one considers changes of
coordinates in the image space C

n−1, the invariance of dimC C0 is obvious.
iii) After a general linear change of coordinates in C

n−1, see [Loo84], one can assume that
(f1, . . . , fn−2) defines an ICIS and the 1-form dfn−1 has an isolated zero on this ICIS. Now Lemma 3.4
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in [Kle02] shows that, after a linear change of coordinates in C
n, (f1, . . . , fn−2,DF,m2) is a regular

OCn,0-sequence.

Proof of Theorem 1.4. Let q = n − 1 and consider good deformations Xt of X. For small neigh-
bourhoods U (respectively T ) of the origins in C

n (respectively C
n−1) consider Z ⊂ U × T defined

by
Z := {ft,1 = · · · = ft,n−1 = Xt,1 = 0},

where we have set ft,i := fi − ti. Let π : Z → T be the finite projection. We define

Bt,p :=
OCn,p

(ft,1, . . . , ft,n−1,Xt,1)
, Bt :=

⊕
p∈π−1(t)

Bt,p, B :=
⋃
t∈T

Bt.

B has the natural structure of a holomorphic vector bundle over T which is induced by the locally
free sheaf π∗OZ . Similarly we define

Ct,p :=
Bt,p

annBt,p(DF )
, Ct :=

⊕
p∈π−1(t)

Ct,p, C :=
⋃
t∈T

Ct.

We want to show that C has the natural structure of a holomorphic vector bundle of rank indV,0(X)
over T .

By Lemma 4.4, part ii, we may assume that the coordinates are chosen as in Lemma 4.4, part iii.
Via π we view OZ,0/(DF ) as a finitely generated OT,0-module and claim that

depthOT,0

OZ,0

(DF )
= n− 1.

For k = 1, . . . , n− 1 let

tkg = 0 in
OZ,0

(DF, t1, . . . , tk−1)
.

This means that there are representatives with

tkg = αXt,1 in
OC2n−1,0

(ft,1, . . . , ft,n−1, t1, . . . , tk−1,DF )
.

Applying Cramer’s rule to the tangency equation Xf = Cf we obtain

tkgm2 = 0 in
OC2n−1,0

(ft,1, . . . , ft,n−1, t1, . . . , tk−1,DF )
.

By Lemma 4.4, part i and the choice of coordinates, tk and m2 are not zero divisors in the last
algebra since (ft,1, . . . , ft,n−1, t1, . . . , tn−2,DF,m2) is a regular OC2n−1,0-sequence. This shows the
claim.

Now the Syzygy Theorem and the Auslander–Buchsbaum formula show that OZ,0/(DF ) is a
free OT,0-module. We have an exact sequence of OT,0-modules

0 → OZ,0

annOZ,0
(DF )

→ OZ,0 → OZ,0

(DF )
→ 0.

The Depth Lemma, see [JP00, 6.5.18], shows that

depthOT,0

OZ,0

annOZ,0
(DF )

= n− 1,

which by the Syzygy Theorem and the Auslander–Buchsbaum formula again means that the
OT,0-module OZ,0/annOZ,0

(DF ) is free. We have seen that the coherent OT -module

F := π∗OZ/annOZ
(DF )
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is free for T chosen small enough. By [Dou68] this is equivalent to the statement that the function
ν : T → N defined by

ν(t) := dimCFt ⊗OT,t
C

is constant. Now from the exact sequence

0 → Ft → (π∗OZ)t → (π∗OZ/(DF ))t → 0

we obtain by tensoring with C the last part of the long exact sequence of torsion

0 → Ft ⊗OT,t
C → Bt → Bt/(DF ) → 0,

where we have used that (π∗OZ/(DF ))t is a free OT,t-module, which is equivalent, see [Dou68], to
the statement that

TorOT,t

1 ((π∗OZ/(DF ))t,C) = 0.

Since we also have an exact sequence

0 → Ct → Bt → Bt/(DF ) → 0,

this means that ν(t) = dimC Ct for all t ∈ T . By Lemma 3.3, for regular t, ν(t) equals the sum of
Poincaré–Hopf indices of Xt on the t-fibre of f for t �= 0 which is equal to indV,0(X) and therefore
dimC C0 = indV,0(X). The map ·DF : B → B between vector bundles has constant rank and
provides C with the natural structure of a holomorphic vector bundle.

4.4 Examples and remarks
We want to give a few examples of good vector fields on curves. We can always take the exterior
product of the rows of the Jacobian matrix of f . In this way one obtains a vector field with isolated
zero on the singularity, where the matrix C is trivial and the index equals zero.

An example of a family of non-trivial good vector fields on a plane curve is the following:

Dk : f = x2y + yk−1, k � 4

and

X = (k − 2)xm+1 ∂

∂x
+ 2xmy

∂

∂y
, m � 3,

with c = 2(k − 1)xm. We have an exact sequence

0 −→ annB0
(DF ) −→ B0

·DF−−→ B0 −→ B0

(DF )
−→ 0

and therefore

dimC annB0(DF ) = dimC
B0

(DF )
.

It is easy to compute that dimCB0/(DF ) = 2(k − 1) and dimCB0 = (k − 1)(m + 1) holds and
therefore indV,0(X) = (k − 1)(m− 1).

An example of a family of good vector fields on a space curve is

f1 := x2 + y2 + z2, f2 := xy,

with

X := zl(x− y)
(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
, l � 1.

Here we have

C =
(

2zl(x− y) 0
0 2zl(x− y)

)
.
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In this case (f1, f2,X3) is a regular sequence and we have to permute the coordinates. This means
that the index is given by the dimension of the factor space obtained from factoring the algebra
OC3,0/(f1, f2,X3) by the annihilator of

det
(

2x 2y
y x

)
.

In this case we get a non-trivial index, which one may compute with computer algebra programs
such as Singular [GPS01]. Note that dimC C0 is always equal to dimCB0−dimCB0/(DF ). The last
two dimensions are easy to compute with computer algebra.

We now want to explain why Theorem 1.4 is false in the general case of a complete intersection.
Consider the case n = 3 and q = 1 and set fi := ∂f/∂zi for i = 1, 2, 3. We use the notation as in
the proof of Theorem 1.4, i.e. OZ,0 := O4,0/(f − t,Xt,1,Xt,2) and (f,X1,X2) is a regular sequence
in O3,0, and consider the coherent OT -module π∗OZ/(f3) where T is a small neighbourhood of 0
in C. After shrinking T we can assume that this sheaf is locally free over all t �= 0. Obviously t is
not a zero divisor in F0 and therefore we have a law of conservation of numbers as in the proof of
Theorem 1.4 and we get

indV,0(X) = dimCF0 ⊗OT,0
C.

We further have the exact sequence

0 → TorOT,0

1 (π∗OZ,0/(f3),C) → F0 ⊗OT,0
C → B0 → B0/(f3) → 0,

and this means that

indV,0(X) = dimC C0 + dimCTorOT,0

1 (π∗OZ,0/(f3),C).

We now show that dimCTorOT,0

1 (π∗OZ,0/(f3),C) > 0 if the hypersurface is not smooth, which
is equivalent to the statement that t is a zero divisor in OZ,0/(f3). Set O4,0 := C{z1, z2, z3, t}.
The functions (f − t, f1, f2, f3) define an isolated zero in (C4, 0) and therefore these define a regular
O4,0-sequence. We have

f1Xt,1 + f2Xt,2 = 0

in the ring O4,0/(f − t, f3). It follows that there are γ1, γ2 ∈ O4,0 such that Xt,1 = γ1f2 and
Xt,2 = γ2f1 in O4,0/(f − t, f3) holds. Inserting this in the tangency equation shows that there is
a γ ∈ O4,0 such that Xt,1 = γf2 and Xt,2 = −γf1 in O4,0/(f − t, f3) holds. On the other hand
OZ,0/(f3, t) is artinian and therefore (f − t, γ, f3, t) is a weak regular O4,0-sequence. This means
that we have an exact sequence

0 → O4,0

(f − t, f1, f2, f3)
·γ→ O4,0

(f − t, γf1, γf2, f3)
→ O4,0

(f − t, γ, f3)
→ 0

with
O4,0

(f − t, γf1, γf2, f3)
∼= OZ,0

(f3)
.

The sequence shows that depthOT,0
OZ,0/(f3) = 0. If γ(0) �= 0 this is obvious. If γ(0) = 0 we can

apply the Depth Lemma using

depthOT,0

O4,0

(f − t, f1, f2, f3)
= 0

and

depthOT,0

O4,0

(f − t, γ, f3)
= 1.
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5. A signature formula for the real index

Now let

(V R, 0) := ({fR1 = · · · = fRq = 0}, 0) ⊂ (Rn, 0)

be a geometric complete intersection of dimension n − q, denote by V and f the complexifications
and assume that f defines an ICIS. Furthermore let the real analytic vector field XR be tangent to
(VR, 0) with an algebraic isolated zero on (V R, 0). As before T is a small neighbourhood of the origin
in C

q and let TR be the corresponding subset in R
q. We also assume that XR is good in the real

analytic sense. We keep the notation of the previous section for all complexifications and for real t
we denote the real algebra corresponding to Ct,p by C Rt,p, if XR|V Rt (p) = 0 and p ∈ R

n holds.

5.1 Proof of Theorem 1.5
First we prove a law of conservation of numbers for the signature. Theorem 1.5 then follows as a
corollary. We also remark that the sufficient criterion for good vector fields also holds in the real
analytic case. The proof is word for word as in the complex case.

Proposition 5.1. Let q = n − 1, XR be a good vector field and l : C R0 → R a linear form with
l(c1) > 0, and for any regular value t ∈ TR of fR and any p with XRt |V Rt (p) = 0 let lt,p : C Rt,p → R be

a linear form with lt,p(ct,p,1) > 0. Then

signature〈 , 〉l =
∑

{XRt |
V Rt

(p)=0}
signature〈 , 〉lt,p ,

where the sum goes over the zeros tending to zero.

Proof. We consider the vector bundle C over T defined in the proof of Theorem 1.4 and denote by τ
the map given by complex conjugation. For any t ∈ TR we consider the set of invariant multigerms
h ∈ Ct. These are the multigerms with τ ◦ h = h ◦ τ . We denote this set by C Rt . We have

C Rt = (⊕kDk) ⊕ (⊕lEl) , (3)

where each component Dk corresponds to an algebra C Rt,pk
for a real zero pk of X|V and where each

component

El = (Ct,ql
⊕ Ct,ql

)R

corresponds to a pair of complex conjugated zeros and (Ct,ql
⊕ Ct,ql

)R is the subset of invariant
elements of (Ct,ql

⊕ Ct,ql
). It consists of elements of the form

h =
∑

aIz
I +

∑
aIz

I .

Here ql (respectively ql) are not real of course. If µ is the real dimension of C Rt then µ is given
by dimC C0. The set C R :=

⋃
t∈TR C Rt has, for T chosen small enough, the natural structure of a

real analytic vector bundle of rank µ over TR. We can continue l real analytically to a family lt
and obtain a real analytic family of non-degenerate bilinear forms 〈 , 〉lt . Equation (3) gives an
orthogonal decomposition. By dividing the algebra El by its maximal ideal one obtains C and
therefore El contributes nothing to the signature; see [EL77]. Therefore the signature of 〈 , 〉lt is the
sum of signatures of 〈 , 〉lt,p that are defined as the restrictions to the components Dk. On the other
hand we have lt,p(ct,p,1) > 0 and therefore the claim follows by continuity of signatures and by the
Eisenbud–Levine Theorem if we choose a fixed regular value t ∈ TR of f .

Proof of Theorem 1.5. For a good vector field the index counts the sum of indices of a good de-
formation of the vector field on a regular fibre in a neighbourhood of the origin by the properties
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of the real index given in Theorem 2.10 in [ASV98]. Now the claim follows from Lemma 3.5 and
Proposition 5.1.

We want to consider an example. Let fR(x, y) := x2 − y2 and XR := x2 ∂/∂x+xy ∂/∂y. A good
deformation is given by

XRt := (x2 − t)
∂

∂x
+ xy

∂

∂y

with ct = c = 2x. Set Ft := V Rt ∩Bδ where Bδ is a small ball around the origin in R. Then Ft consists
of two branches of a hyperbola and we have χ(Ft) = 2. If l is a linear form as in Theorem 1.5 we
obtain signature〈 , 〉l = 0. Let t = 1, Bδ := {x2 + y2 = 3} and F := F1. Then XR deforms to

X̃R := (x2 − 1)
∂

∂x
+ xy

∂

∂y
.

The boundary points of F are P1 = (
√

2, 1), P2 = (
√

2,−1), P3 = (−√
2,−1) and P4 = (−√

2, 1).
At the points P1 and P2 the vector field X̃R points outwards, but inwards at the points P3 and P4.
From the symmetry of the problem (only the directions of X̃R are not symmetric) we find that
the sum of the indices of X̃R vanishes on F and this is what Theorem 1.5 says. This can also be
computed explicitly: the zeros of X̃R on F are (−1, 0) and (1, 0). We can parametrize both branches
via ϕ±(s) := (±√

1 + s2, s) and write X̃R in the coordinate given by s. One immediately sees that
the index in (−1, 0) has the value −1, and the value 1 in (1, 0).

If we want to count the Euler characteristic of Ft we have to choose a good vector field whose
deformation points outwards at all boundary points. This means that we have to choose a good
vector field which points outwards at all boundary points of the intersection of the singular fibre
with a small closed ball around the origin.

5.2 Relations to results of Gómez-Mont and Mardesić
Gómez-Mont and Mardesić have proven similar signature formulas [GM99, GM97]. These formulas
hold for vector fields on isolated hypersurface singularities which have an isolated zero not only on
the variety but also in the ambient space. We want to compare these formulas with our formula for
vector fields on plane curves. Let X be a real analytic vector field in (Rn, 0) with an isolated zero and
(V, 0) : ({f = 0}, 0) ⊂ (Rn, 0) an odd-dimensional hypersurface with algebraic isolated singularity.
Further let X be tangent to V , i.e. Xf = cf . We omit the upper R to indicate that we are working
in the real analytic category. Define

A :=
ERn,0

(f1, . . . fn)
and B :=

ERn,0

(X1, . . . ,Xn)
.

Here the fi are the partials of f . Let Hf be the Hessian determinant of f . Then detDX and Hf

generate the socles of B (respectively A). Now we have well determined classes

Hrel
f :=

Hf

c
∈ A

annA(c)
, detDXrel :=

detDX
c

∈ B

annB(c)

defined in the obvious way, which generate the socles of these algebras. Let

l1 :
A

annA(c)
→ R, l2 :

B

annB(c)
→ R

be linear forms with l1(Hrel
f ) > 0 and l2(detDX rel) > 0. We have the following result.

Theorem 5.2 (Gómez-Mont and Mardesić).

indV,0(X) = signature〈 , 〉l2 − signature〈 , 〉l1 .
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To compare this result with our theorem we additionally assume n = 2, the E2,0 := R{x, y}-
sequence (f,X1) to be regular and the vector field to be good. We first give an explicit construction
of all vector fields fulfilling both conditions. Denote the good deformation by Xt. We also set
E3,0 := R{x, y, t} and EV,0 := E3,0/(f − t). The tangency condition gives

Xt,1f1 +Xt,2f2 = 0 in EV,0.

Since (f1, f2) is a regular EV,0-sequence, it follows immediately that there are γ̃, δ̃1, δ̃2 ∈ E3,0 such
that

Xt = (γ̃f2 + δ̃1(f − t))
∂

∂x
+ (−γ̃f1 + δ̃2(f − t))

∂

∂y
.

Setting t = 0 we obtain that there are δ1, δ2, γ ∈ E2,0 such that

X = (γf2 + δ1f)
∂

∂x
+ (−γf1 + δ2f)

∂

∂y
.

We have c = δ1f1 + δ2f2 and this means signature〈 , 〉l1 = 0. We now claim that annB(c) = B(γ, f).
Using

cf = f1X1 + f2X2,

cγ = δ2X1 − δ1X2,

we obtain B(γ, f) ⊂ annB(c). Now let cg = α1X1 + α2X2. Multiplication with f gives

(f1g − α1f)X1 + (f2g − α2f)X2 = 0.

Since (X1,X2) is a regular E2,0-sequence there must be an h ∈ E2,0 with f2g − α2f = hX1.
Since (f,X1) is a regular E2,0-sequence this also holds for f, f2. Therefore we have g = hγ in
E2,0/(f), which shows the claim. That BR0 (γ) = annBR0

(f2) is obvious. We have obtained

C R0 =
B

annB(c)
=

E2,0

(γ, f)
.

To prove that Theorems 1.5 and 5.2 produce the same values one has to check that there is a positive
real number r such that rcc1 = detDX in B. We have

c · c1 = c trace DX − c2 = cdet
∂(γ, f)
∂(x, y)

in B. We verify the existence of such an r in the following example.
Set f := x2 + yk+1, γ := y, δ1 := −(k + 1), δ2 := yl. We have

X1 = −(k + 1)x2 and X2 = −2xy + x2yl + yl+k+1.

One computes
detDX = −2(k + 1)(l + k + 1)xyl+k

and

cdet
∂(γ, f)
∂(x, y)

= −2(k + 1)xyl+k

in B. Here we have r = l + k + 1.
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