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ABSTRACT 
The Antarctic ice sheet has almost no net annual 

ablation on its surface, so most mass losses are by 
iceberg calving along its perimeter, which may be 
either grounded in shallow water or floating in deep 
water. An ice cliff forms along the perimeter in both 
cases. Wave action undercuts ice margins in the tide
water zone along beaches, and causes coastal calving 
if the rate of undercutting compares with the forward 
ice velocity. If the ice velocity is sufficiently 
greater, the Ice sheet advances into deeper water and 
becomes afloat at depths of 200 to 300 m (Robin 1979). 
A floating ice shelf then forms and icebergs calve 
along the Ice front. Iceberg calving along this ice 
front may be due to several causes (Holdsworth 1977, 
Robin 1979). Since iceberg calving, either from ice 
shelves or in the tidewater zone of beaches between 
ice shelves, is the principal ablation mechanism of 
the Antarctic 1ce sheet, it is important to under
stand calving dynamics quantitatively. This paper 
presents the results of a finite-element examination 
of calving along floating margins of the ice sheet. 

The calving of icebergs from either tidewater 
glaciers or from floating ice shelves is the pre
dominant ablation mechanism for existing ice sheets 
(Reeh 1968, Robin 1979). It has been postulated that 
the stability of the marine West Antarctic ice sheet 
depends on the extent and stability of buttressing 
ice shelves (Stuiver and others 1981). Disintegration 
histories of major ice sheets in the northern hemi
sphere indicate downdraw through ice streams and 
calving embayments as the significant mechanism of 
Ice-sheet removal (Denton and Hughes 1981, Ruddiman 
and Mclntyre 1981). Ice shelves, because of their 
occurrence at high latitudes and general low relief, 
are considered more susceptible to slight climatic 
changes (Mercer 1978). In this light, a better under
standing of processes leading to calving is seen to 
be necessary for assessing both past histories of 
the cryosphere, as well as the future behavior of 
existing 1ce sheets. 

Previous work has dealt with either analytic sol
utions for the configuration of isolated crevasses in 
an ice mass subjected to uniform tension (Weertman 
1973) or an idealized ice shelf as a beam subjected 
to externally determined torques. Reeh (1968) has 
studied the problem of a viscous beam subjected to a 
torque produced by the imbalance of hydrostatic 
pressures of the ice front, while Holdsworth (1973) 

has modelled the stress and bending-moment distri
bution for a relatively short ice ramp not in hydro
static equilibrium due to a rapid change in water 
level. Iken (1977) has used finite element analysis 
to describe a tidewater calving situation. 

In the present work, the calving process 1s 
investigated using a finite element program 
(Zienkiewicz 1971, Schmidt 1977) to obtain an approxi
mate solution to the equations governing slow creep
ing Newtonian flow with velocity and pressure as inde
pendent variables. The program is based on composite 
quadrilateral elements formed by four triangular ele
ments with the centroid of the quadrilateral a common 
node for the four triangles and the sides of the 
quadrilateral formed by the bases of the triangular 
elements. A linear velocity profile is assumed in 
each triangle with the hydrostatic pressure constant 
in the quadrilateral. The finite element technique 
used in the analysis presented here allows the speci
fication of realistic ice configurations including 
cracks and spatially variable material properties. In 
addition one can use realistic equations of state 
(flow laws) without the constraints imposed by an 
analytic solution. Perhaps most important, one can 
look at the time evolution of the system as it res
ponds to the changing stress configuration created 
by the development and propagation of a crack. 

Of importance to note here is the difficulty that 
any of these methods encounter in attempting to quan
tify a fracture criterion. Stress and strain-rate dis
tribution, as well as the past history of the ice in 
question, seem to affect the formation of crevasses 
(Holdsworth 1969, Hambrey and M'uller 1978) and esti
mates of the critical values for fracture range over 
orders of magnitude. For this reason we have chosen 
the simplest criterion, i.e. that the crevasses form 
at the point of maximum tension. Propagation of the 
crevasse into the ice shelf will be discussed later. 

Shown in Figure 1 is the finite element grid used 
to analyze a floating ice shelf. The hatched area 
represents a highly viscous material with a density 
approximating that of ice-shelf ice, while the un-
hatched area represents the supporting sea-water in 
which the ice shelf floats. The densities of ice-
shelf ice and sea-water are taken to be 0.917 and 
1.03 Mg m3 respectively. The flow-law constant of the 
ice-shelf ice is taken to be 3.14 bar a-1 with the 
exponent equal to one, corresponding to an ice shelf 
600 m thick at a temperature of -4°C (Reeh 1968). The 
sea-water is represented by a Newtonian fluid with a 
flow law constant two orders of magnitude lower than 
that used for the ice. While not the actual viscosity 
of water, this value produces accurate results while 
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Fig.l. Finite element grid used to model a floating 
ice shelf. The unhatched region is a low viscosity 
water-like material while the hatched region is a 
higher viscosity ice-like material. The point 
marked G.L. represents the grounding line and is 
constrained not to move. 

avoiding a round-off error problem due to the actual 
difference in order of magnitude of 15 in viscosities 
of ice and water. The lower left corner of the ice
like material (marked G.L.) represents the grounding 
line and is constrained not to move (a finite ground
ing-line velocity in the right-hand direction would 
not affect the overall analysis). An important aspect 
of this model is that because both the ice and water 
are included, the boundary conditions at the ice-
water interface are automatically included in the 
analysis. The initial configuration is one in which 
hydrostatic equilibrium exists at every point along 
the flow line. Boundary conditions for the model then 
consist simply of a free top surface, no flow into or 
out of the water region (right side and bottom) and 
the left-side boundary constrained only to move in 
the vertical direction (no flow across the grounding 
line). Due to the horizontal imbalance of hydrostatic 
forces at the ice front a bending torque is generated. 
Unlike Reeh's model in which this torque is extern
ally calculated and applied as a boundary condition, 
this bending torque is generated internal to the 
model by the interaction between the ice elements and 
the water elements in the finite element program. 
Figure 2 shows a comparison of deflections from 
Reeh's beam analysis with deflections of the center-
line (midpoint from top surface to bottom surface to 
compensate for ice thinning allowed in this model 
but not dealt with by Reeh) predicted by the finite 
element method. Qualitatively they predict very 
similar results. The bending down of the ice front 
is compensated for by the arching up of the ice 
surface from one to several ice thicknesses back from 
the ice front. This arching and bending produces a 
non-uniform distribution of tensions along the top 
surface with a maximum tension of 3.44 bars about one 
half an ice thickness or 300 m from the ice front. 
This tension at the surface is shown in Figure 3. 
Continued time sequencing (using the output velo
cities to distort the grid which is then used as in
put for the next time step) shows little change in 
this stress distribution. Assuming that a crack will 
form at the position of maximum tensile stress, we 
introduce a crack by removing an element 10 m wide 
at the point of maximum tensile stress. Shown in 
Figure 3 are curves of surface tensile stress for 
cracks 30 and 60 m deep. Tensile stress is reduced on 
either side of the crack while tensile stresses more 
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Fig.3. Normal stress at the centroids of elements 
along the surface of floating ice for no-crack and 
for cracks of different depths. The grounding line 
is to the left and the calving front to the right. 

than one ice thickness away are not appreciably 
affected. This leaves the possibility of a second 
crack developing about one half an ice thickness 
behind the first crack at the new point of maximum 
tensile stress. We will not deal further with this 
possibility. Time evolution of the surface tensile 
stress after the crack has opened is shown in Figure 
4 for a crack with bottom at sea-level (55 m deep). 
Little change is seen in the vicinity of the crack, 
the only notable effect being a slight increase in 
the tensile stress far from the ice front. 

Lacking an adequate fracture criterion for ice, 
we were unable to automate the propagation of the 
crack into the ice. Instead a heuristic approach was 
taken whereby two independent criteria were applied 
to determine if the crack would increase in depth. 
The first criterion was that the crack be opening 
along its entire depth. This was necessary because 
it was found that a crack of up to 115 m deep would 
still be opening at the bottom while at an inter
mediate level (slightly above sea-level) it would be 
closing. The opening at greater depths is thought to 
be caused by the general thinning and elongation of 
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F ig .5 . Time evolut ion of a crack, i n i t i a l l y 10 m 
wide and 44 m deep, f i l l e d two-thi rds f u l l of 
water, from time of 0.015 to 0.05 a. 

the ice she l f , an e f fec t not deal t w i th by Weertman 
(1973). Weertinan's predic t ion for the depth of a 
water-free crack in an ice mass subjected to a 3 bar 
uniform tension (the average of the tension produced 
by the unbalanced hydrostat ic forces at the ice f ron t 
of an ice shel f 600 m th ick ) was 52 m, which agrees 
well wi th our predic t ion of a s tab le , non-closing 
crack with bottom close to sea-level (about 60 m 
deep). 

The second c r i t e r i o n adopted to determine cont in 
ued crack propagation was tha t tension be observed 
in the ice element immediately below the crack bottom. 
The f i n i t e element program outputs re l i ab le stress 
and s t ra in - ra te information a t the centro id and at 
the four in tegrat ion points w i th in each element. Thus 
for an element 30 m deep below the crack one can r e l i 
ably determine the tensions at three levels w i th in 
the element, 6, 15, and 24 m below the crack bottom. 

As has been pointed out , a water-free crack can 
only open to approximately sea level in an ice shel f 
600 m th i ck . Weertman (1973) provides an analyt ic 
expression fo r the depth of propagation of a crack 
f i l l e d to various depths with water (the hydrostat ic 
pressure provided by the higher density water serves 
to balance the hydrostat ic pressure in the i c e ) . For 
a crack f i l l e d two-thirds f u l l of water, the analyt ic 
so lut ion y ie lds a crack depth of 126 m. Applying our 
two c r i t e r i a to a crack two-thi rds f u l l of water 
(done in the f i n i t e element program by applying c a l 
culated hydrostat ic pressures to the faces of the 
elements surrounding the crack) one f inds the crack 
stable and opening to a depth of 138 m. Applying the 
c r i t e r i o n of necessary tension in the element below 
the crack, one f inds the level of zero tension coin
ciding with the crack bottom at a crack depth of 
113 m. We accept these resul ts as re la t i ve quant i 
ta t i ve agreement with the analy t ic so lu t ions . 

Up to th is point l i t t l e has been done that could 
not be performed equally well by the analyt ic methods. 
The strength of the f i n i t e element method l i e s in 
continuing the analysis i n time beyond the point 
where the assumptions necessary fo r the analy t ic 
solut ions have broken down. Shown in Figure 5 is the 
time evolut ion of the conf igurat ion of the crack with 
the lef t -hand edge of the crack reposit ioned to zero 
to remove the displacement down-stream produced by 
thinning of the ice she l f . The time step between 
adjacent configurat ions is approximately 2 d. In 
Figure 6 one sees the corresponding tensions at d i f f 
erent levels w i th in the element d i r ec t l y below the 
crack bottom. One can readi ly note a general trend of 
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Fig.6. Normal stress with time at various levels 
within the element directly beneath the crack 
bottom. The straight lines represent least squares 
fits to the data. 

increasing tension in the element as time progresses. 
If one assumes a linear variation of stresses within 
the element one can obtain a measure of the depth of 
the level of zero tension. The movement of this level 
of zero tension with time is shown in Figure 7 as the 
relative level change, plotted three ways, with res
pect to sea-level, with respect to the crack bottom, 
and with respect to the ice surface. The various 
curves have been displaced for clarity. From these 
curves rates of movement of the level of zero tension 
can be obtained. For this particular crack depth of 
108 m one finds the level of zero tension moving 
deeper into the ice at a rate of between 0.41 and 
0.30 m d"1 depending on the reference point chosen. 
A similar analysis for cracks of different depths 
shows similar lowerings of the level of zero tension 
with time, shown in Figure 8. This analysis suggests 
that, while absolute tensions below an opening crack 
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Fig.7. Movement of the level of zero tension as a 
function of time taken with respect to sea-level, 
the crack bottom, or the surface. Least squares 
f i t s are shown by straight l ines. 
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Fig.8. Rate of movement of the level of zero tension 
for cracks two-thirds full of water and differing 
bottom depth below sea-level. Zero-level movement 
is measured with respect to surface, sea-level, 
and crack bottom. 

may decrease to zero as the crack propagates deeper 
into the ice, the time evolution of the ice shelf 
will tend to increase the tension below a crack. Thus, 
a crack which extends to the level of zero tension at 
a certain time, will, as time passes, develop greater 
and greater tensions immediately below the crack. In 
the absence of a well-defined fracture criterion one 
can hypothesize that the crack might propagate rapidly 
to near the level of zero tension and stop until the 
ice shelf as a whole has deformed with time to a 
sufficient extent to again initiate fracture and 
crack propagation. This deformation leading to in
creased tension below the crack appears to accelerate 
as the crack becomes progressively deeper (Fig.8). 

As an extreme example of this phenomenon we took 
a crack 530 m deep (about 90% of the ice thickness) 
filled with sufficient water (90% of the crack depth) 

so that the crack bottom was near the level of zero 
tension. Time evolution of this configuration showed 
a very rapid increase of the tensions in the element 
directly below the crack with the level of zero ten
sion moving as rapidly as 10 m d"1. 

With this information one can hypothesize a 
reasonable scenario for crack evolution leading to 
calving. Following the calving of an iceberg the ice 
front will deflect downward at the same time that the 
ice surface more than one ice thickness from the ice 
front arches upward. This will lead to a tension 
maximum about one-half to one ice thickness from the 
ice front. Fracture is assumed to occur in this 
region. In the absence of melt water this crack can 
only propagate to near sea-level. Indeed, throughout 
the entire evolution of the crack it will have to be 
filled to near sea-level to prevent the crack from 
closing. It has been seen that the time evolution of 
the distorting ice shelf will somewhat relax this 
condition as the ice shelf bends in such a way as to 
increase the tension at the crack bottom with time. 
Iceberg calving by this mechanism will be strongly 
seasonal in character since it depends on copious 
melt water to keep the crack open. Not dealt with in 
this analysis is the possibility of bottom crevasses, 
which can extend through close to 78% of the shelf 
thickness (Weertman 1980) joining with surface cracks 
to produce calving. 
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