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A homomorphism theorem for
projective planes

Don Row

We prove that a non-degenerate homomorphic image of a projective

plane is determined to within isomorphism by the inverse image

of any one point. An application gives conditions for the

preservation of central collineations by a homomorphism.

Except for papers by D.R. Hughes [3] and L.A. Skornjakov [7], a

growing list of examples [4, 5, 6], and some non-existence results [7, 2,

3], little general information concerning homomorphisms of projective

planes is available. The aim of this note is to give a standard

fundamental isomorphism theorem for these homomorphisms, and from it a

simple coordinate-free derivation of Hughes' conditions [3; Theorems h.l,

h.2, U.3D for the preservation of central collineations by a homomorphism.

ISOMORPHISM THEOREM. A non-degenerate homomorphic image of a

projective plane is determined to within isomorphism by the inverse image

of any one point.

Proof. Consider homomorphisms h. : IT •+ w. of a plane ir into
Is I*

planes IT. , i = 1, 2 . Let A, B, r, ... be the points and

a, 3, Y> ••• the lines of TT . For convenience we identify each line

with the set of points incident with it. Denoting the inverse image, or

coset, with respect to h- , containing any element B by [fi] . we

assume [̂ ]i = [A]2 for some point A € Tf (in which case we write [/\]

for both [ A] .) .
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We now prove [B]j = [B]2 for any B \ [A] , remembering that

[B]. = U ([B]- n 3) , the union being taken over all 3 z> B •
% 3 v

Each l i n e of h.v con ta ins a t l e a s t t h r e e p o i n t s and we s e l e c t

T f AB so t h a t r | [A] , r I M i . Thus for any A € 3 n [ B ] I ,

h\hY = hjAB ensur ing t h a t AT n [ A ] i s non-empty and

h2TA = h2t0i2T = h2/\B . I f g n [A] i s empty then 7z2AB t hz& , g iv ing

7i2A = h2hT.h2$ = h2Q (even i f h2T = h2B) .

3

On the other hand, if & n [A] is non-empty we first choose a point

A satisfying hi& $ h\$ , h2b $ h2& as follows: select 6 => B with

6 n [AJ empty and A £ 6 so that A ^ [B]2 > and consequently by the

above argument, A ^ [B]i . There is a line 3' ̂  B whose image under

hi does not contain either TzjA or fcjA . Thus any A f B n [B]i is

perspective from A to some point of 3' n [B]i . Again by the preceding

argument, 3' n [B]j c 31 n [B]2 and thus A € 3 n [B]2 (even if

h2h c ft26')'

Hence [Q]\ c [B]2 and, interchanging the roles of fcj and h2 ,

[B]j = [B]2 . Thus the two homomorphisms have identical point cosets and,

as [AB]j = {A'B' | A' f [A], B' (. [B]} = [AB]2 whenever [A] # [B] ,

identical line cosets. Consequently the map TijA •*• h2X , h\k •*• h2k ;

A, A € TT is well defined and an isomorphism, fcjTT •*• h2n . //

3y considering h\ and defining h2 by [A]2 = [A ] j ,

[B]2 = {A|A € IT, A ^ [A]!} , [AB]2 = {X | X « ir} for any two points A, B

in distinct cosets of h\ we see that the theorem fails if one of the

h.ii is degenerate.
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THEOREM (Hughes). A hanomorphiem having a non-degenerate image

preserves a central collineation g if and only if there are points

Bj gB having images distinct from the image of the centre, and not

incident with the image of the axis, of the collineation.

Proof. Consider h : u •+ v' , and write h\ = h , hi = hg . To

show g is preserved it suffices to show [A ] i = [A]2 for any A € y

satisfying hA \ hBT where Y is the centre, and y the axis, of g

If A ( [A]t , writing A' = AB.y , we have TZA' = h/\ and

consequently hgh = hTh.h(^'g^) = hTA.h(AgB) = hh = hgH , that is

A f [A]2 . As fcA \ hBT

show [Alj = [A]2 .

hgk { hgBV , we similarly consider g'1 and

A /

The converse is apparent. //
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