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Abstract

We show that arithmetic local constants attached by Mazur and Rubin to pairs of
self-dual Galois representations which are congruent modulo a prime number p > 2 are
compatible with the usual local constants at all primes not dividing p and in two special
cases also at primes dividing p. We deduce new cases of the p-parity conjecture for
Selmer groups of abelian varieties with real multiplication (Theorem 4.14) and elliptic
curves (Theorem 5.10).

Introduction

Let M be a motive (in an old-fashioned sense) over a number field F with coefficients in another
number field L. For every finite prime p | p of L the p-adic realisation V = Mp of M is a
representation of the Galois group GF = Gal(F/F ), which is finite-dimensional over K = Lp

and geometric in the sense of Fontaine and Mazur [FM95].
The L-function L(M, s) =

∑
n>1 ann

−s (if well defined) is a Dirichlet series with coefficients in
L. It gives rise to complex-valued L-functions L(ιM, s) =

∑
n>1 ι(an)n−s for various embeddings

ι : L ↪→ C.
The conjectures of Bloch and Kato [BK90] (generalised by Fontaine and Perrin-Riou

[FPR94]) predict that the order of vanishing

ran(ιM) := ords=0L(ιM, s)

should be equal to

χf (F, V ∗(1)) := h1f (F, V ∗(1))− h0(F, V ∗(1)) = dimKH
1
f (F, V ∗(1))− dimKH

0(F, V ∗(1)),

where H1
f is the Bloch–Kato Selmer group [BK90, Definition 5.1] and

V ∗(1) = HomK(V,Zp(1)⊗Zp K).

If the motive M is self-dual in the sense that L is totally real and there exists a skew-
symmetric L-linear isomorphism M ' M∨(1) (inducing a skew-symmetric isomorphism of
K[GF ]-modules V ' V ∗(1)), then the completed L-function of ιM is expected to satisfy a
symmetric functional equation

(L∞ · L)(ιM, s) = as ε(M)(L∞ · L)(ιM,−s), (0.1)
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Compatibility of arithmetic and algebraic local constants

where ε(M) =
∏
v εv(M) is a product of local constants εv(M) = ±1 (εv(M) does not depend

on ι if v is a finite prime of F ; the product ε∞(M) =
∏
v |∞ εv(M) does not depend on ι either).

The functional equation (0.1) implies that

ε(M) = (−1)ran(ιM)+r∞(ιM), r∞(ιM) := ords=0L∞(ιM, s).

In particular, in the presence of (0.1) the mod-2 version of the Bloch–Kato conjecture

ran(ιM)
?≡ χf (F, V ) (mod 2) (0.2)

is equivalent to

ε(M)(−1)r∞(ιM) ?
= (−1)χf (F,V ). (0.3)

In the special case where the motive M is pure (necessarily of weight −1),

r∞(ιM) = 0, χf (F, V ) = h1f (F, V ),

the local constant εv(M) = εv(V ) for v -∞ depends only on the restriction V |Gv of V to the
local Galois group Gv = Gal(F v/Fv) and the archimedean term ε∞(M) depends only on V |Gw
for all w | p (see [Nek07, Erratum]). Consequently, in the pure case both sides of the conjectural
equality (0.3), which boils down to

ε(V )
?
= (−1)h

1
f (F,V ), (0.4)

depend only on V .
Several authors [DD09, DD11, MR07, MR08, Nek07] have tried to establish a relative version

of (0.3), namely, an equality

(−1)χf (F,V )/(−1)χf (F,V
′) ?

= (−1)r∞(ιM)−r∞(ιM ′) ε(M)/ε(M ′), (0.5)

or its special case when M and M ′ are pure,

(−1)h
1
f (F,V )/(−1)h

1
f (F,V

′) ?
= ε(V )/ε(V ′), (0.6)

for suitably related pairs of self-dual motives M and M ′.
If p 6= 2 and if there are GF -stable self-dual lattices T ⊂ V , T ′ ⊂ V ′ whose reductions

T = T/pT and T
′

= T ′/pT ′ are (symplectically) isomorphic GF -modules, a formula of Mazur
and Rubin [MR07, Theorem 1.4] (combined with Flach’s generalisation of the Cassels–Tate
pairing [Fla90]) expresses

χf (F, V )− χf (F, V ′) ≡
∑
v

d(Fv,F
′
v) (mod 2) ∈ Z/2Z

as a sum of local terms, each of which depends only on the restrictions T |Gv and T ′|Gv (only
finite primes v of F dividing p or those at which V or V ′ are ramified contribute to the formula).
Mazur and Rubin expect these local terms (‘arithmetic local constants’) to reflect the local
decomposition of

ε(M)/ε(M ′) =
∏
v

εv(M)/εv(M
′).

Our first main result (Theorem 2.17) confirms this intuition. We show that εv(V )/εv(V
′) =

(−1)d(Fv ,F ′v) for all v - p. In fact, we prove a purely local version of this statement for pairs of
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self-dual representations of the local Galois group Gv. A special case of this result was proved

by Chetty [Che10], who also treated some cases when v | p.
The case of v | p is much more complicated, in general. In § 3 we give an example of two

situations in which arithmetic local constants at v | p can be shown to match εv(V )/εv(V
′).

In § 4 we make explicit the relations (0.5), (0.6) in two global cases whose local behaviour at

primes above p is covered by results of § 3.

In § 5 we combine one of the main results of § 4 (Theorem 4.12) with techniques of [Nek13]

in order to relax the assumptions of [Nek13, Theorem A] as follows.

Theorem. If E is an elliptic curve defined over a totally real number field F and if EndQ(E) ⊗
Q 6= Q(i),Q(

√
−3), then the p-parity conjecture

ords=1L(E/F, s) ≡ rkZE(F ) + corkZp X(E/F )[p∞] (mod 2)

holds for all primes p 6= 2.

Corollary. Under the same assumptions the p-parity conjecture

ords=1L(E/F ′, s) ≡ rkZE(F ′) + corkZp X(E/F ′)[p∞] (mod 2)

holds (if p 6= 2) for any tower of finite extensions F ⊂ F1 ⊂ F ′, where F1/F is abelian and F ′/F1

is a Galois extension of odd degree.

See 5.12–5.13 for a more precise version of these statements (which also covers certain cases

when EndQ(E) ⊗ Q = Q(i),Q(
√
−3) or p = 2).

Notation and conventions. All representations (in particular, characters) are continuous. For a

number field F we denote by hF (respectively, ClF ) the class number (respectively, the ideal

class group) of the ring of integers OF of F . We abbreviate ⊗Z as ⊗. For an abelian group A we

let Â = A ⊗ Ẑ, where Ẑ is the pro-finite completion of Z.

1. Bilinear algebra

1.1 Let O be a discrete valuation ring with fraction field K, uniformiser π and residue field

k = O/πO of characteristic char(k) 6= 2. Let X be an O-module of finite length equipped with

a non-degenerate symmetric bilinear pairing

( , ) : X ×X −→ K/O.

1.2 The k-vector space X[π] has a canonical decreasing exhaustive filtration

F 0 = X[π] ⊃ F 1 = πX[π2] ⊃ F 2 = π2X[π3] ⊃ · · ·

whose graded quotients griF = F i/F i+1 (i > 0) are equipped with non-degenerate symmetric

pairings

( , )i : griF × griF −→ k, (πix, πiy)i = πi(x, y) (mod πO)

(which depend not only on ( , ) but also on π).
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1.3 The filtration F i is stable by any O-linear automorphism f : X −→ X. If f is an isometry
(i.e., if (f(x), f(y)) = (x, y) for all x, y ∈ X), then the induced automorphisms gri(f) : griF −→
griF are also isometries.

Proposition 1.4. If f : X −→ X is an isometry, then:

(i) dimk Im(Xf=1 −→ X/πX) ≡
∑

i>0 dimk Ker(gri(f)− 1) (mod 2).

(ii) [Nek07, Lemma 2.2.2] If πX = 0 (in other words, if (X, ( , )) is a quadratic space over k),
then

(−1)dimk(X
f=1) = det(−f).

Proof. (i) There is an orthogonal decomposition X = X1 ⊕ X⊥1 , where f − 1 is nilpotent
(respectively, invertible) on X1 (respectively, on X⊥1 ):

X1 =
⋃
n>1

Ker (f − 1)n, X⊥1 =
⋂
n>1

Im (f − 1)n.

Statement (i) is trivial for X⊥1 ; we can replace X by X1 and assume that f = 1 + N , where
N : X −→ X is nilpotent. The formula

{x, y} = (Nx, y) + (Nx,Ny)/2 = (Nx, (1 +N/2)y) (x, y ∈ X) (1.4.1)

defines a skew-symmetric (hence alternating, since 2 ∈ O× by assumption) bilinear form X ×
X −→ K/O with kernel equal to Ker(N) = Xf=1. The structure theory of symplectic O-modules
of finite length implies that there is an exact sequence

0 −→ Xf=1 −→ X −→ Z ⊕ Z −→ 0,

for a suitable O-module Z. As a result,

dimk Im(Xf=1 −→ X/πX) = dimk(X/πX)− 2 dimk(Z/πZ) ≡ dimk(X/πX)

= dimkX[π] =
∑
i>0

dimk gr
i
F (mod 2).

Finally, applying statement (ii) to the unipotent isometry gri(f) of griF , we obtain

dimk gr
i
F ≡ dimk Ker(gri(f)− 1) (mod 2).

(ii) In [Nek07, Lemma 2.2.2] we reproduced a proof of this statement due to Oesterlé (it relied
on a decomposition of f into a product of reflections). Alternatively, one can use the orthogonal
decomposition into generalised eigenspaces of f (after replacing k by its algebraic closure k and
X by X ⊗k k),

X =
⊕
λ

Xλ, Xλ =
⋃
n>1

Ker (f − λ)n.

The orthogonality relation Xλ ⊥ Xµ for λµ 6= 1 implies that dimkXλ = dimkX1/λ, hence

det(−f) = det(−f |X1)
∏
λ 6=1

(−λ)dimkXλ = det(−f |X1) = (−1)dimkX1 .

As f−1 is nilpotent on X1, formula (1.4.1) defines a skew-symmetric bilinear form X1×X1 −→ k

with kernel Xf=1
1 . It follows that

dimkX1 ≡ dimkX
f=1
1 = dimkX

f=1 (mod 2). 2
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Corollary 1.5. If f : X −→ X is an isometry, then

(−1)dimk Im(Xf=1−→X/πX) = det(−f |X[π]).

Proof. The right-hand side is equal to
∏
i>0 det(−gri(f)); the result follows from combining (i)

with (ii) applied to each griF . 2

2. Arithmetic local constants (the case ` 6= p)

2.1 Let O be the ring of integers in a finite extension K of Qp, where p 6= 2. Fix a uniformiser
π ∈ O and denote by k = O/πO the residue field of K.

2.2 Let K be a finite extension of Q`. In 2.6–2.17 we assume that ` 6= p. Denote by G =
Gal(K/K) ⊃ I ⊃ Iw the absolute Galois group, the inertia group and the wild inertia group of
K, respectively.

2.3 Let V be a finite-dimensional K-vector space equipped with a continuous linear action of
G and a non-degenerate G-equivariant skew-symmetric pairing

〈 , 〉 : V × V −→ K(1) = K ⊗Zp Zp(1).

2.4 For any G-stable O-lattice T ⊂ V , denote by T = T/πT its reduction modulo π. We say
that T is self-dual with respect to 〈 , 〉 if 〈 , 〉 induces a pairing T × T −→ O(1) whose reduction
T × T −→ k(1) = µp ⊗ k is non-degenerate.

2.5 Note that T is self-dual with respect to a multiple of 〈 , 〉 by a suitable scalar a ∈ K× if
dimK(V ) = 2 (or if T is an irreducible k[G]-module).

2.6 From now on until the end of § 2 we assume that T is self-dual with respect to 〈 , 〉 and
that ` 6= p.

According to Tate’s local duality the pairings

H i(T )×H2−i(T )
∪−→ H2(k(1)) ' k (H i(−) = H i(G,−))

are non-degenerate (and symmetric if i = 1). The local Euler characteristic formula implies that
the dimensions hi(T ) = dimkH

i(T ) satisfy

h1(T ) = h0(T ) + h2(T ) = 2h0(T ).

The unramified cohomology H1
ur(T ) = H1(G/I, T

I
) ⊂ H1(T ) is an isotropic subspace of the

quadratic space (H1(T ),∪) (since cdp(G/I) = 1) of dimension h1ur(T ) = h0(T ) = h1(T )/2.
It follows that H1

ur(T ) is a Lagrangian subspace of H1(T ), i.e., a subspace equal to its
own orthogonal complement (which is equivalent to being an isotropic subspace of dimension
h1(T )/2).

2.7 Similarly, the unramified cohomology H1
ur(V ) = H1(G/I, V I) ⊂ H1(V ) is a Lagrangian

subspace of H1(V ). The space H1(V ) is equipped with a non-degenerate symmetric pairing ∪ :
H1(V )×H1(V ) −→ H2(K(1)) ' K and its dimension is equal to dimKH

1(V ) = 2 dimKH
0(V ).
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By propagation [MR04, Example 1.1.2], H1
ur(V ) defines subspaces

H1
f (T ) = Ker(H1(T ) −→ H1(V )/H1

ur(V ))

=H1
ur(T ) +H1(T )tors ⊂ H1(T ),

H1
ur(T ) =H1(G/I, T I),

F = Im(H1
f (T ) −→ H1(T )) ⊂ H1(T ).

The subspace F is again Lagrangian in H1(T ). If V = V I is unramified, then F = H1
ur(T ).

Definition 2.8. For Lagrangian subspaces L,L′ ⊂ H1(T ), define

d(L,L′) = dimk(L/L ∩ L′) (mod 2) ∈ Z/2Z

(of course, d(L,L′) = d(L′, L), since dimk(L) = dimk(L
′) = h0(T )).

Proposition 2.9 [KMR13, Corollary 2.5]. If L0, L1, L2 ⊂ H1(T ) are Lagrangian subspaces,
then

d(L0, L1)− d(L0, L2) + d(L1, L2) = 0 ∈ Z/2Z.

2.10 Denote by
H1
/ur(−) = H1(−)/H1

ur(−) (− = V, T, T )

the ‘ramified part’ of H1(−). The restriction map induces an isomorphism

H1
/ur(−) ' H1(I,−)f=1 (− = V, T, T ),

where f ∈ G is any lift of the geometric Frobenius element generating G/I topologically.

Proposition 2.11. There is a canonical isomorphism

F/(F ∩H1
ur(T )) ' Im(H1

/ur(T )tors −→ H1
/ur(T )).

Proof. The left-hand side is isomorphic to

Im(F −→ H1
/ur(T )) = Im(H1

f (T ) −→ H1
/ur(T ) −→ H1

/ur(T )).

On the other hand,

Im(H1
f (T ) −→ H1

/ur(T )) =H1
f (T )/H1

ur(T ) = (H1
ur(T ) +H1(T )tors)/H

1
ur(T )

= Im(H1(T )tors −→ H1
/ur(T )).

The statement of the proposition follows from the fact that Im(H1(T )tors −→ H1
/ur(T )) =

H1
/ur(T )tors (the inclusion ‘⊂’ is automatic; the opposite inclusion ‘⊃’ is a consequence of the

fact that H1(T )/H1
f (T ) is torsion-free). 2

Proposition 2.12. There exists a non-degenerate symmetric bilinear pairing

( , ) : H1(I, T )tors ×H1(I, T )tors −→ K/O

for which f is an isometry.
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Proof. This is a local version of the Cassels–Tate pairing, attached to the duality isomorphism
RΓ(I, T ) ' RHomO(RΓ(I, T ),O[−1]) (cf. the discussion in [Nek06, 10.1]). It can be described
explicitly as follows. There is an orthogonal decomposition (with respect to 〈 , 〉) T = Ttame ⊕
Twild, in which Ttame = T Iw , T Iwwild = 0 and H i(I, T ) = H i(I/Iw, Ttame). We can replace T by Ttame

and assume that T is a representation of the group G/Iw, which is topologically generated by f
and any fixed topological generator t of the tame inertia group I/Iw. If q denotes the cardinality
of the residue field of K (which is prime to p, by assumption), then tf = ftq.

Consider 〈 , 〉 as a pairing 〈 , 〉 : T × T −→ O satisfying

∀x, y ∈ T 〈tx, ty〉 = 〈x, y〉, 〈fx, fy〉 = q−1〈x, y〉.
If c, c′ ∈ Z1(I/Iw, T ) are 1-cocycles whose cohomology classes [c], [c′] lie in H1(I/Iw, T )[πm]
(m > 0), then πmc(t) = (t− 1)a for some a ∈ T . We define

([c], [c′]) = (π−m〈a, c′(t)〉) (mod O) ∈ π−mO/O ⊂ K/O.
It is an elementary exercise to check that this formula defines a pairing with the required
properties. 2

Proposition-Definition 2.13. The invariant

e(T ) := d(F , H1
ur(T )) = dimk F/(F ∩H1

ur(T )) (mod 2) ∈ Z/2Z

satisfies
(−1)e(T ) det(−f |V I) ≡ det(−f |T I) (mod πO).

Proof. According to Proposition 2.11 we have

F/(F ∩H1
ur(T )) ' Im(Xf=1 −→ H1(I, T )) = Im(Xf=1 −→ X/πX), X = H1(I, T )tors

(since both maps X/πX −→ H1(I, T )/πH1(I, T ) −→ H1(I, T ) are injective). Combining
Proposition 2.12 with Corollary 1.5, we obtain

(−1)e(T ) = det(−f |X[π]) ∈ {±1} ⊂ k×,
hence

(−1)e(T ) det(−f |V I)≡ (−1)e(T ) det(−f |T I/πT I) = det(−f |T I/πT I) det(−f |X[π])

= det(−f |T I) (mod πO),

where the last equality follows from the exact sequence

0 −→ T I/πT I −→ T
I −→ X[π] −→ 0. 2

2.14 Deligne [Del73] defined local constants ε(V, ψ, dx) depending on V (more precisely, on the
corresponding representation of the Weil–Deligne group of K), a non-trivial additive character
ψ of K and a Haar measure dx on K. If dxψ is the Haar measure which is self-dual with respect
to ψ, then the value of ε(V ) = ε(V, ψ, dxψ) does not depend on ψ and is equal to ±1 [Nek07,
Proposition 2.2.1].

Deligne [Del73, (5.1)] also introduced modified local constants

ε0(V ) = ε(V ) det(−f |V I) ∈ O×

and showed [Del73, Theorem 6.5] that the value of ε0(V ) (mod πO) ∈ k× depends only on T ;
we denote it by ε0(T ). The congruence in Proposition 2.13 can be restated as follows.

Corollary 2.15. (−1)e(T )ε(V ) ≡ det(−f |T I) ε0(T )−1 (mod πO).
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2.16 Let V ′ be another representation of G with coefficients in K, equipped with a non-
degenerate G-equivariant skew-symmetric pairing 〈 , 〉′ : V ′× V ′ −→ K(1). Assume that T ′ ⊂ V ′
is a self-dual lattice with respect to 〈 , 〉′ and that there exists an isomorphism of k[G]-modules

T ' T ′ = T ′/πT ′ compatible with the pairings T × T −→ k(1) and T
′ × T ′ −→ k(1) induced by

〈 , 〉 and 〈 , 〉′, respectively.

Fix such an isomorphism T ' T ′; it induces an isomorphism H1(T ) ' H1(T
′
) under which

F ′ = Im(H1
f (T ′) −→ H1(T

′
)) ⊂ H1(T

′
)

becomes a Lagrangian subspace of H1(T ). The invariant d(F ,F ′) ∈ Z/2Z is the arithmetic local
constant of Mazur and Rubin [MR07].

Theorem 2.17 (Compatibility of arithmetic and algebraic local constants in the case ` 6= p). In
the situation of 2.16 we have (−1)d(F ,F ′) = ε(V )/ε(V ′).

Proof. Applying Corollary 2.15 to T and T ′, we obtain

(−1)e(T )ε(V ) ≡ (−1)e(T
′)ε(V ′) (mod πO),

hence (−1)e(T )ε(V ) = (−1)e(T
′)ε(V ′), since 1 6≡ −1 (mod πO). We conclude by noting that

e(T )− e(T ′) + d(F ,F ′) = 0 ∈ Z/2Z, thanks to Proposition 2.9. 2

3. Arithmetic local constants (the case ` = p)

3.1 Assume now that ` = p (6= 2) in the situation of 2.2 and that we are given T ⊂ V and
T ′ ⊂ V ′ as in 2.16 (with T self-dual, too).

3.2 Tate’s local duality still holds; the corresponding quadratic space (H1(T ),∪) has (even)
dimension h1(T ) = 2h0(T )+[K : Qp] dimk T . In order to produce suitable Lagrangian subspaces
of H1(T ) we need to assume that both V and V ′ are potentially semistable representations of G.

The Bloch–Kato subspaces

H1
f (−) = Ker(H1(−) −→ H1(−⊗Qp Bcris)) (− = V, V ′)

are then Lagrangian subspaces of H1(V ) and H1(V ′), respectively [BK90, Proposition 3.8]. They
define, by propagation, subspaces

H1
f (T ) = Ker(H1(T ) −→ H1(V )/H1

f (V )) ⊂ H1(T )

and H1
f (T ′) ⊂ H1(T ′). Their images

F = Im(H1
f (T ) −→ H1(T )) ⊂ H1(T ),

F ′ = Im(H1
f (T ′) −→ H1(T

′
)) ⊂ H1(T

′
) ' H1(T )

are Lagrangian subspaces of H1(T ).

3.3 One can attach to Fontaine’s moduleDpst(V ) a representationWD(V ) of the Weil–Deligne
group ofK [Fon94], [FPR94, I.1.3.2], which is self-dual in the same way as V is. The local constant
ε(V ) := ε(WD(V ), ψ, dxψ) ∈ {±1} is again independent of ψ (and similarly for ε(V ′)).

It would be highly desirable to relate ε(V )/ε(V ′) to the arithmetic local constant d(F ,F ′).
We will discuss two special cases in which this can be done, but it is not clear in what generality
one can expect such a relation to hold.
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3.4 In the first case the local conditions are given by flat cohomology, as in the pioneering

work of Mazur [Maz72]. Assume that Qp ⊂ K1 ⊂ K is a subfield and that T and T ′ have the

following properties.

(3.4.1) The ramification index of K1/Qp satisfies e(K1/Qp) < p− 1.

(3.4.2) The action of G on T and T ′ extends to an action of G1 = Gal(K/K1).

(3.4.3) All the data 〈 , 〉, 〈 , 〉′ and T ' T ′ are G1-equivariant.

(3.4.4) There exist π-divisible O-modules H and H′ over the ring of integers OK1 ⊂ K1 and

O[G1]-equivariant isomorphisms T ' TπH(K), T ′ ' TπH′(K).

3.5 Assumptions (3.4.2)–(3.4.4) imply that V and V ′ are crystalline representations of G1,

hence WD(V ), WD(V ′) are unramified representations of the Weil–Deligne group of K1 (which

are self-dual, up to the Tate twist). As a result, the local constants of both V and V ′ over any

extension of K1 are equal to 1.

Proposition 3.6. Under assumptions (3.4.1)–(3.4.4) we have F = F ′ and d(F ,F ′) = 0.

Proof. In this situation T = H[π](K), T
′
= H′[π](K) and

F = Im(H1
fppf(OK ,H[π]) −→ H1(T )), F ′ = Im(H1

fppf(OK ,H′[π]) −→ H1(T
′
)) (3.6.1)

(see [Nek12, Proposition A.2.6]). Assumption (3.4.1) implies, by Raynaud’s theorem [Ray74,

Corollary 3.3.6], that the fixed isomorphism T ' T ′ in (3.4.3) comes from a unique isomorphism

H[π] ' H′[π] of finite flat k-vector space schemes over OK1 . The statement of the theorem then

follows from the functoriality of the morphisms in (3.6.1). 2

3.7 In the second case we fix two representations ρ, ρ′ : G −→ GLn(O) with open kernel

whose reductions ρ = ρ′ : G −→ GLn(O/πO) = GLn(k) modulo π coincide. In order to simplify

the notation, write ρ+ = ρ, ρ′+ = ρ′ and denote by ρ− = ρ∗, ρ′− = (ρ′)∗ : G −→ GLn(O) the

dual representations. Instead of the pair T, T ′ as in 3.1 we consider the pair T ⊗ (ρ+ ⊕ ρ−) and

T ⊗ (ρ′+ ⊕ ρ′−).

3.8 The subspaces

F ⊂ H1(T ⊗ (ρ+ ⊕ ρ−)) = H1(T ⊗ (ρ′+ ⊕ ρ′−)) ⊃ F ′

are respectively equal to F = Y+ ⊕ Y− and F ′ = Y ′+ ⊕ Y ′−, where

Y± = Im(H1
f (T ⊗ ρ±)⊗O k ↪→ H1(T ⊗ ρ±)),

Y ′± = Im(H1
f (T ⊗ ρ′±)⊗O k ↪→ H1(T ⊗ ρ′±) = H1(T ⊗ ρ±)),

hence

d(F ,F ′) ≡ dimk(Y+/(Y+ ∩ Y ′+)) + dimk(Y−/(Y− ∩ Y ′−)) (mod 2).

The following proposition is a generalisation of [Nek13, Lemma 1.2].

Proposition 3.9. In the situation of 3.7 we have ε(V ⊗ (ρ ⊕ ρ∗)) = ε(V ⊗ (ρ′ ⊕ ρ′∗)) and

d(F ,F ′) = 0.
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Proof. Tate’s local duality gives rise to a perfect pairing

X+ ×X− = H1(T ⊗ ρ+)×H1(T ⊗ ρ−) −→ H2(k(1)) ' k

(thus dimk(X+) = dimk(X−)) under which Y ⊥+ = Y− and (Y ′+)⊥ = Y ′− [BK90, Proposition 3.8].
As in [Nek13, proof of Lemma 1.2], we have

dimk(Y±)− dimkH
0(T ⊗ ρ±) = dimKH

1
f (V ⊗ ρ±)− dimKH

0(V ⊗ ρ±)

= dimKDdR(V ⊗ ρ±)/F il0,

which does not depend on the sign ±. Together with an analogous formula for ρ′± this implies
that dimk(Y±) = dimk(X±)/2 = dimk(Y

′
±). As a result,

dimk(Y+ ∩ Y ′+) = dimk(Y+) + dimk(Y
′
+)− dimk(Y+ + Y ′+) = dimk(X+)− dimk(Y+ + Y ′+)

= dimk(Y+ + Y ′+)⊥ = dimk(Y
⊥
+ ∩ (Y ′+)⊥) = dimk(Y− ∩ Y ′−),

hence d(F ,F ′) = 0. The local constants satisfy

ε = ε(V ⊗ (ρ ⊕ ρ∗)) = det(V ⊗ ρ)(−1) ≡ det(V ⊗ ρ′)(−1) = ε(V ⊗ (ρ′ ⊕ ρ′∗)) = ε′ (mod πO),

which implies that ε = ε′ (since p 6= 2). 2

4. The global case

4.1 Let Qp ⊂ K ⊃ O −→ O/πO = k be as in 2.1 (in particular, p 6= 2).

4.2 Let F be a number field and S a finite set of primes of F containing all infinite primes

and all primes above p. Denote by GF,S = Gal(FS/F ) the Galois group of the maximal extension

of F unramified outside S.

4.3 Consider a global version of 2.16: let T (respectively, T ′) be a free O-module of finite

rank equipped with a continuous O-linear action of GF,S and a skew-symmetric bilinear GF,S-

equivariant pairing 〈 , 〉 : T × T −→ O(1) (respectively, 〈 , 〉′ : T ′ × T ′ −→ O(1)) whose reduction

T × T −→ k(1) (respectively, T
′ × T ′ −→ k(1)) modulo π is non-degenerate. Assume that there

exists an isomorphism of k[GF,S ]-modules T ' T
′

compatible with the above pairings; we fix

it and use it to identify various cohomology groups of T
′

with those of T . Set V = T ⊗O K,

V ′ = T ′ ⊗O K and assume that V and V ′ are potentially semistable representations of Gv =

Gal(F v/Fv), for all v | p.

4.4 For finite primes v - p (respectively, v | p) of F we have the submodulesH1
f (Gv, T )⊂H1(Gv,

T ) and H1
f (Gv, T

′) ⊂ H1(Gv, T
′) defined in 2.7 (respectively, in 3.2) and their images Fv,F ′v ⊂

H1(Gv, T ), which are Lagrangian subspaces of H1(Gv, T ). For v 6∈ S the representations V and

V ′ are unramified, hence Fv = F ′v = H1
ur(Gv, T ).

In other words, these subspaces define two self-dual Selmer structures [MR07, 1.2] F = {Fv}
and F ′ = {F ′v} for the self-dual k[GF,S ]-module T .
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4.5 The corresponding Selmer groups are

H1
F (F, T ) = Ker

(
H1(GF,S , T ) −→

⊕
v∈Sf

H1(Gv, T )/Fv

)
,

H1
F ′(F, T ) = Ker

(
H1(GF,S , T ) −→

⊕
v∈Sf

H1(Gv, T )/F ′v

)
,

where Sf = S\{v |∞}. Denote by h1F (F, T ) (respectively, h1F ′(F, T )) their respective dimensions

over k and let h0(F, T ) = dimkH
0(GF,S , T ).

The existence of Flach’s generalisation of the Cassels–Tate pairing [Fla90] implies [Nek13,
(1.1.3)] that

χf (F, V ) ≡ h1F (F, T )− h0(F, T ) (mod 2),

χf (F, V ′) ≡ h1F ′(F, T )− h0(F, T ) (mod 2),

hence

χf (F, V )− χf (F, V ′) ≡ h1F (F, T )− h1F ′(F, T ) (mod 2). (4.5.1)

4.6 The right-hand side of (4.5.1) is given by a formula of Mazur and Rubin [MR07, Theorem
1.4]:

h1F (F, T )− h1F ′(F, T ) ≡
∑
v∈Sf

d(Fv,F
′
v) (mod 2), (4.6.1)

where d(Fv,F ′v) ≡ dimk Fv/(Fv ∩F ′v) (mod 2), as in 2.8. Combining (4.6.1) with (4.5.1), we
obtain

χf (F, V )− χf (F, V ′) ≡
∑
v∈Sf

d(Fv,F
′
v) (mod 2). (4.6.2)

4.7 For each finite prime v of F , there are local constants εv(V ) = ε(V |Gv) = ±1 and
εv(V

′) = ε(V ′|Gv) = ±1, equal to 1 for v 6∈ S. If V and V ′ are p-adic realisations of self-dual
motives M and M ′ over F with isomorphic real Hodge realisations, then the archimedean L-
and ε-factors of M and M ′ coincide and the conjectural equality (0.5) becomes∏

v∈Sf

εv(V )/εv(V
′)

?
= (−1)χf (F,V )−χf (F,V ′) =

∏
v∈Sf

(−1)d(Fv ,F ′v), (4.7.1)

which is equivalent, thanks to Theorem 2.17, to∏
v | p

εv(V )/εv(V
′)

?
=
∏
v | p

(−1)d(Fv ,F ′v). (4.7.2)

If the discussion in § 3 applies at each v | p, then (4.7.2) holds term by term and we can go

backwards from (4.7.2) to (4.7.1) and (0.5). Let us make this explicit in two cases corresponding

to Propositions 3.6 and 3.9, respectively. The first case is covered in paragraphs 4.8 to 4.14 and

the second case in paragraphs 4.15 and 4.16.
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4.8 The first case involves abelian varieties with real multiplication. Let L be a totally real
number field and A an abelian variety over F equipped with a ring morphism OL ↪→ EndF (A).
For each rational prime p, the decomposition OL ⊗ Zp =

∏
p | pOL,p induces decompositions

Tp(A) =
∏
p | p

Tp(A), Vp(A) =
∏
p | p

Vp(A)

(Vp(A) is a free L ⊗ Qp-module). An OL-linear polarisation λ : A −→ At defines skew-symmetric
Weil pairings

Tp(A)× Tp(A) −→ Tp(A)⊗OL,p Tp(A) −→ Zp(1),

hence OL,p-bilinear skew-symmetric pairings

〈 , 〉 : Tp(A)× Tp(A) −→ HomZp(OL,p,Zp)(1) ' OL,p(1).

If Ker(λ)[p] = 0, then Tp(A) is self-dual with respect to 〈 , 〉 in the sense of 2.4.

4.9 We consider M = h1(A)(1) as a (self-dual) motive with coefficients in L. Its p-adic
realisations are Mp = Vp(A)∗(1) ' Vp(A) and the Euler factors of its L-function

Lv(M, s) = det(1− Frgeom(v)(Nv)−s |M Iv
p )−1 (v - p)

have coefficients in L and do not depend on p. The L-functions L(ιM, s) = L(ιA/F, s + 1) for
various embeddings ι : L ↪→ R are defined for Re(s) > 1/2 and are related to the usual L-function
of A (when we consider h1(A) as a motive with coefficients in Q) by

L(A/F, s) =
∏

ι:L↪→R

L(ιA/F, s). (4.9.1)

The archimedean L- and ε-factors of L(ιM, s) are equal to

L∞(ιM, s) = ((2π)−sΓ(s))[F :Q] dim(A)/[L:Q], ε∞(ιM) = (−1)(r1(F )+r2(F )) dim(A)/[L:Q].

The global ε-factor ε(ιA/F ) := ε(M) ∈ {±1} does not depend on ι, but we keep ι in the notation
in order not to confuse ε(ιA/F ) with the ε-factor of the product L-function (4.9.1).

4.10 The representation Vp(A) of GF is pure of weight −1 at each finite prime of F , which
implies that h0(F ′, Vp(A)) = 0, for every finite extension F ′/F . The rank of the Bloch–Kato
Selmer group of Vp(A) is equal to

h1f (F ′, Vp(A)) = rkOLA(F ′) + corkOL,p X(A/F ′)[p∞].

4.11 Fix a prime p of L dividing a rational prime p 6= 2 and let K = Lp, O = OL,p and
k = O/p. Assume that

(4.11.1) A and A′ are abelian varieties over F of the same dimension equipped with embeddings
OL ↪→ EndF (A),EndF (A′);

(4.11.2) there are OL-linear polarisations λ : A −→ At and λ′ : A′ −→ A′t such that Ker(λ)[p] =
Ker(λ′)[p] = 0. As in 4.8, they give rise to self-dual O[GF,S ]-modules (for suitable S)
T × T −→ O(1), T ′ × T ′ −→ O(1), where T = Tp(A) ⊂ V = Vp(A) and T ′ = Tp(A

′) ⊂
V ′ = Vp(A

′);
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(4.11.3) there exists an isomorphism of k[GF,S ]-modules T = T/pT ' T
′

= T ′/pT ′ compatible

with the reductions modulo p of the pairings from (4.11.2);

(4.11.4) the absolute ramification index of each prime v | p of F satisfies e(v | p) < p− 1;

(4.11.5) A and A′ have good reduction at all primes v | p of F .

These assumptions imply that, for each v | p, the restrictions of T and T ′ to Gv satisfy (3.4.1)–

(3.4.4) with K1 = K = Fv.

Theorem 4.12. In the situation of 4.11, let F ′ be a finite extension of F and α : GF ′ =

Gal(F/F ′) −→ {±1} a quadratic (or trivial) character. We have, for each ι : L ↪→ R,

(−1)h
1
f (F
′,Vp(A)⊗α)/ε(ιA⊗ α/F ′) = (−1)h

1
f (F
′,Vp(A′)⊗α)/ε(ιA′ ⊗ α/F ′),

where we have denoted by A ⊗ α the quadratic twist of A⊗F F ′ by α (and similarly for A′).

Proof. Let c(F ′, α) be the quotient of the left-hand side by the right-hand side. If α 6= 1, then

c(F ′, α) = c(F ′(α), 1)/c(F ′, 1), where F ′(α) = F
Ker(α)

. It follows that it is sufficient to prove the

claim for α = 1 (and varying F ′). As explained in 4.7, this follows from Theorem 2.17 and

Proposition 3.6 applied to T and T ′ over various completions of F ′. 2

4.13 If, in addition, dim(A) = dim(A′) = [L : Q] and the field F ′ is totally real, then the abelian
varieties A and A′ (as well as their quadratic twists) are potentially modular over F ′ [BLGGT14,
Corollary 5.4.2]. In particular, their L-functions over F ′ have meromorphic continuation to C
and satisfy the expected functional equations [BLGGT14, Corollary 5.4.3]

(L∞ · L)(ιA⊗ α/F ′, s) = as−1 ε(ιA⊗ α/F ′)(L∞ · L)(ιA⊗ α/F ′, 2− s),
(L∞ · L)(ιA′ ⊗ α/F ′, s) = bs−1 ε(ιA′ ⊗ α/F ′)(L∞ · L)(ιA′ ⊗ α/F ′, 2− s).

In particular, the analytic rank

ran(ιA⊗ α/F ′) := ords=1L(ιA⊗ α/F ′, s) ∈ Z

is defined and satisfies

(−1)ran(ιA⊗α/F
′) = ε(ιA⊗ α/F ′)

(and similarly for A′). The statement of Theorem 4.12 can be rewritten, therefore, as follows:

ran(ιA⊗ α/F ′)− h1f (F ′, Vp(A)⊗ α) ≡ ran(ιA′ ⊗ α/F ′)− h1f (F ′, Vp(A
′)⊗ α) (mod 2). (4.13.1)

Theorem 4.14. If, in the situation of Theorem 4.12, dim(A) = dim(A′) = [L : Q], the field F ′ is

totally real and A′ does not have potentially good reduction everywhere, then we have, for each

ι : L ↪→ R,

ran(ιA⊗ α/F ′) ≡ h1f (F ′, Vp(A)⊗ α) (mod 2).

Proof. The assumption on A′ implies, by [Nek13, Theorem 4.3(b)], that the right-hand side of

(4.13.1) is equal to 0 ∈ Z/2Z. 2
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4.15 We now consider a global situation in which Proposition 3.9 applies. Let T be as in 4.3 and
let F ⊂ F ′ ⊂ F1 be Galois extensions with Galois groups Gal(F1/F ) = D2n ⊃ Gal(F1/F

′) = Cn
(dihedral and cyclic group, respectively).

Assume that χ, χ′ : Gal(F1/F
′)−→O× are characters such that (χ′/χ)p

m
= 1 for somem> 0;

then χ′ = χ. Consider the induced representations I(χ) = IndD2n
Cn

(χ) and I(χ′) as representations
GF,S −→ GL2(O), for suitable S. They are self-dual in the sense that there exist symmetric

isomorphisms I(χ) ' I(χ)∗ and I(χ′) ' I(χ′)∗. Again, I(χ) = I(χ′).
The following theorem is a generalisation of [Nek13, Theorem 1.1].

Theorem 4.16. In the situation of 4.15, assume that, for each prime w | p of F ′ which is stable
by Gal(F ′/F ), the character χ′/χ is unramified at w. Then we have

(−1)h
1
f (F,V ⊗ I(χ))

/∏
v -∞

εv(V ⊗ I(χ)) = (−1)h
1
f (F,V ⊗ I(χ

′))

/∏
v -∞

εv(V ⊗ I(χ′)).

Proof. We apply the discussion in 4.7 to the pair of representations T ⊗ I(χ) and T ⊗ I(χ′)
of GF,S . As before, we need to analyse the individual terms for v | p in (4.7.2). If there is only
one prime w | v in F ′, our assumption implies that χ′/χ is trivial on the inertia group of w in
F1/F

′, hence on the full decomposition group of w in F1/F
′, by [MR07, Lemma 6.5(i)]. Thus

I(χ)|Gv = I(χ′)|Gv , which implies that Fv = F ′v and εv(V ⊗I(χ)) = εv(V ⊗I(χ′)). If vOF ′ = ww′,
then F ′w = Fv = F ′w′ and I(χ)|Gv = χw ⊕ χ−1w (where χw = χ|Gw), I(χ′)|Gv = χ′w ⊕ χ′−1w .
Proposition 3.9 then yields d(Fv,F ′v) = 0 and εv(V ⊗I(χ)) = εv(V ⊗I(χ′)). As a result, equality
(4.7.2) holds in our situation, hence so does (4.7.1), as claimed. 2

5. Elliptic curves with complex multiplication

5.1 Let Q be the algebraic closure of Q in C, let c ∈ GQ = Gal(Q/Q) be the complex
conjugation. Fix an imaginary quadratic field K ⊂ Q.

5.2 Denote by H (respectively, by Hg = H ∩Qab) the Hilbert class field (respectively, the
genus field) of K. If we write the discriminant of K in the form DK = −2ap1 · · · prq1 · · · qs, where
pj ≡ 1 (mod 4) and qk ≡ 3 (mod 4) are distinct primes, then

Hg =


H0 if a = 0,

H0(i) if a = 2,

H0(
√

(−1)s−12) if a = 3,

H0 = Q(
√
p1, . . . ,

√
pr, i
√
q1, . . . , i

√
qs).

The set of finite primes of the maximal real subfield H+
g of Hg which are ramified in Hg/H

+
g is

equal to

Ramf (Hg/H
+
g ) =


{v | 2} if s = 0 (=⇒ a 6= 0),

{v | q1} if s = 1 (=⇒ a 6= 2),

∅ if s > 2.

5.3 The Galois group Gal(H/Q) is a semi-direct product Gal(H/K) o {1, c} ' ClK o {1, c},
where c2 = 1 and cgc−1 = g−1 for each g ∈ Gal(H/K). This implies that the following properties
are equivalent:

H is a CM field⇐⇒ c ∈ Z(Gal(H/Q)) ⇐⇒ Cl2K = {1}
⇐⇒ Gal(H/Q) is abelian ⇐⇒ H = Hg.
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There are 65 known imaginary quadratic fields K for which H = Hg, with the largest value of
|DK | being equal to 5460 = 4 · 3 · 5 · 7 · 13. There is at most one additional K with H = Hg, but
its existence would contradict the generalised Riemann hypothesis [Wei73].

Proposition 5.4. If E1 is a elliptic curve defined over a subfield F of Q for whichO = EndQ(E1)
is an order in K, then there exists an isogeny E1 −→ E defined over F such that EndQ(E) =OK .

Proof. If O = Z+fOK is the order of conductor f > 1, then E = E1/{P ∈ E1(Q) | (fOK)·P = 0}
has the required property. 2

5.5 If E is an elliptic curve over F ⊂ Q such that EndQ(E) = OK and j(E) ∈ R, then

FK ⊃ K(j(E)) = H, F ⊃ H+ := Q(j(E)) and there exists an elliptic curve E0 over H+ such
that E0 ⊗H+ Q ' E ⊗F Q.

The set of H+-isomorphism classes of such curves E0 (modulo quadratic twists with respect
to the quadratic extension H/H+) is in a bijection with the set of algebraic Hecke characters

ψ : A×H � A×H/(H ⊗R)× = Ĥ× −→ K×, ψ|H× = NH/K (5.5.1)

which are c-equivariant (ψ ◦ c = c◦ψ). See [Shi71, Corollary, Theorem 10] and [Gro80, Theorems
10.1.3 and 10.2.1].

Each of the two curves corresponding to ψ has bad reduction at a prime v of H+ if and only
if v is ramified in H/H+ or there is w | v in H at which ψ is ramified (i.e. ψw(O×H,w) 6= {1}).

Note that a prime v ramified in H/H+ always lies above a prime in Ramf (Hg/H
+
g ), since

H+ ∩Hg = H+
g and H/Hg is unramified.

Proposition 5.6. Let E be as in 5.5. If K 6= Q(i),Q(
√
−3) and if p is a rational prime not

dividing 2DK , then there exists E0 as in 5.5 (which is equivalent to E being a quadratic twist
of E0 ⊗H+ F , since AutQ(E) = {±1}) with good reduction at all primes above p.

Proof. Let E1 be any elliptic curve over H+ such that E1 ⊗H+ Q ' E ⊗F Q. Denote by ψ the
Hecke character (5.5.1) corresponding to E1. Its p-component ψp : (H ⊗ Qp)

× −→ K× maps
(OH ⊗ Zp)

× to (K×)tors = {±1}, hence factors through (OH ⊗ Fp)
× −→ {±1} (since p 6= 2). It

is also trivial on 1−c(OH ⊗ Fp)
×, which coincides, by Hilbert’s Theorem 90, with the kernel of

the surjective norm map NH/H+ : (OH ⊗ Fp)
× � (OH+ ⊗ Fp)

× (the assumption p -DK implies
that p is unramified in H/Q). It follows that the restriction of ψp to (OH ⊗ Zp)

× factors as
ηp ◦NH/H+ for some ηp : (OH+ ⊗Fp)

× −→ {±1}. There exists η : A×
H+/(H

+)× −→ {±1} whose
p-component is equal to ηp. The character ψ · (η ◦NH/H+) then corresponds to an elliptic curve
E0 with the desired properties. 2

5.7 It may be worthwhile to recall that there are much sharper results than Proposition 5.6
(even though they will not be needed in the proof of Theorem 5.10 below). Let E and K be as
in Proposition 5.6.

(A) [Shi71, Example 3], [Gro80, Theorem 11.2.4]. If there is a prime q |DK such that q ≡
3 (mod 4), then qOK = Q2 and the character

ϕ : (ÔK)× � O×K,Q � (O/Q)× = (Z/qZ)×
χq−→ {±1}

(where χq(a) =
(
a
q

)
is the Legendre symbol) satisfies

ϕ ◦ c = ϕ, ϕ|
(ÔK)×∩K× = ϕ|O×K = ϕ|{±1} = id.
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It extends, therefore (in a unique way) to a morphism ϕ : K×(ÔK)× −→K× such that ϕ|K× = id
(and ϕ ◦ c = ϕ, by uniqueness). The Hecke character

ψ = ϕ ◦NH/K : A×H � Ĥ×
NH/K−→ K×(ÔK)×

ϕ−→ K× (5.7.1)

then corresponds to an elliptic curve E0 over H+ (together with its quadratic twist with respect
to H/H+) as in 5.5, which has good reduction at all primes v - q of H+.

A more refined argument [Roh82] shows that if DK is divisible by two distinct primes q1,
q2 ≡ 3 (mod 4), then there exists E0 as in 5.5 with good reduction at all primes of H+.

(B) If 8 |DK , then 2OK = P 2 and KP = Q2(x) with x2 = −2 or −10. We claim that there
exists a character

ϕ : (ÔK)× � O×K,P
α
� O×K,P /

1−c(O×K,P )(O×K,P )2 −→ {±1}

such that ϕ(−1) = −1. It is enough to check that α(−1) 6= 1, which follows from the fact that

1−c(O×K,P ) (mod 8) = {1, 1 + 4x,−3± 2x (mod 8)},
(O×K,P )2 (mod 8) = {1, 1 + 4x,−1± 2x (mod 8)}.

As in (A), it follows that ϕ extends in a unique way to ϕ :K×(ÔK)× −→K× such that ϕ|K× = id.
Formula (5.7.1) then defines a Hecke character corresponding to a pair of elliptic curves E0 as
in 5.5 with good reduction at all primes v - 2 of H+.

(C) Both constructions (A) and (B) yield Q-curves, but no such curves exist if DK =
−4p1 · · · pr, where pj ≡ 1 (mod 4) are distinct primes [Gro80, § 11], [Nak04, Proposition 5].
For reasons explained in 5.8 below we are particularly interested in imaginary quadratic fields
K for which H = Hg. Among the 65 known fields of this type there are four whose discriminant
is of the form DK = −4p1 · · · pr, namely,{

DK = −4p, p ∈ {5, 13, 37};
DK = −4 · 5 · 17.

In each of the first three cases DK = −4p we have H+ = Q(
√
p), H = H+(i), hK = 2 and

hH+ = 1, which implies that hH = 1 [FT93, Theorem 74, Corollary 1]. The group of units is
equal to O×H = µ4 · εZ, where ε = (1 +

√
5)/2, (3 +

√
13)/2 and 6 +

√
37, respectively. The prime

2 remains inert in H+/Q and Ramf (H/H+) = {(2)}: 2OH = P 2.
We claim that there is a c-equivariant Hecke character (5.5.1) of the form

ψ : A×H � Ĥ× = H×(ÔH)×
ϕ−→ K×, (5.7.2)

where ϕ|H× = NH/K and

ϕ|
(ÔH)× : (ÔH)× � O×H,P

α
� O×H,P /

1−cO×H,P (O×H,P )2µ4

NH/H+

−−−−−−→ NH/H+(O×H,P )/NH/H+(O×H,P )2
ϕ−→ {±1}.

It is enough to check that the composite map β = ϕ ◦NH/H+ ◦ α : O×H,P −→ {±1} satisfies, for
a suitable choice of ϕ,

β|
(ÔH)×∩H× = β|O×H = NH/K |O×H .

This is equivalent to NH/H+(α(ε)) 6= 1, since NH/K(ε) = −1 and NH/K(µ4) = {1}.
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If NH/H+(α(ε)) = 1, then ε2 ∈ NH/H+(O×H,P )2 and there exists u = ±1 such that uε ∈
NH/H+(O×H,P ). However, the quadratic Hilbert symbols (uε,−1)v over various completions of

H+ are given by

(±ε,−1)v =


1 if v - 2∞,
±1 if v =∞1,

∓1 if v =∞2.

The quadratic reciprocity law over H+ then implies that (±ε,−1)(2) = −1, hence ±ε 6∈
NH/H+(O×H,P ). It follows that there exists ϕ such that β(ε) = −1. This yields a Hecke character
ψ as in (5.7.2), which corresponds to a pair of elliptic curves E0 as in 5.5 with good reduction
at all primes v - 2 of H+.

5.8 Assume that E is an elliptic curve defined over a totally real field F ⊂Q and EndQ(E) =

OK . The field H+ = Q(j(E)) ⊂ F is then totally real and H = K(j(E)) is a CM field, hence
H = Hg and H+ = H+

g (in particular, if 2 - [F : Q], then H+ = Q and hK = 1).
The discussion in 5.7 implies that if DK 6= −3,−4 is not equal to −4 · 5 · 17 (nor to the

mythical 66th discriminant) and if there exists a prime q ≡ 3 (mod 4) dividing DK (respectively,
if no such prime q exists), then there exists a quadratic twist of E of the form E0⊗H+

g
F , where

E0 is an elliptic curve over H+
g with good reduction outside primes above q (respectively, with

good reduction outside primes above 2). However, this statement will not be used in the proof
of Theorem 5.10 below (Proposition 5.6 will suffice).

5.9 If E is an elliptic curve defined over a totally real field F ⊂ Q, then E is potentially
modular [Win09, Theorem A.1] and the analytic rank

ran(E/F ) = ords=1L(E/F, s) ∈ Z

is well defined (cf. the discussion in [Nek13, 4.2]). For each rational prime p, the rank of the
Bloch–Kato Selmer group h1f (F ′, Vp(E)) over any finite extension F ′ of F coincides with

sp(E/F
′) = rkZE(F ′) + corkZp X(E/F ′)[p∞].

The mod-2 version of the Bloch–Kato conjecture (0.2) boils down to

ran(E/F ) ≡ sp(E/F ) (mod 2) (?)

(the ‘p-parity conjecture’ for E over F ). As shown in [Nek13, Theorem A], the congruence (?)
holds in the following cases.

(5.9.1) E does not have complex multiplication.

(5.9.2) E has complex multiplication and 2 - [F : Q] (this can happen only if the class number
of K = EndQ(E) ⊗ Q is equal to 1).

(5.9.3) p 6= 2 and E does not acquire good reduction everywhere over any cyclic extension of F
[Nek13, Theorem 1.4(c)].

(5.9.4) E has complex multiplication by K = EndQ(E) ⊗ Q and p splits in K/Q.

(5.9.5) E has complex multiplication by K = EndQ(E) ⊗ Q and p is ramified in K/Q.

As (5.9.5) was not stated explicitly in [Nek13], here is the argument. The conjecture (?) is
invariant under isogeny, so we can assume that EndQ(E) =OK , by Proposition 5.4. The p-torsion
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E[p] is a reducible Fp[GF ]-module, since the cyclic subgroup E[P ] (where pOK = P 2) is stable
under GF . However, in the reducible case the p-parity conjecture is known: [DD11, Corollary
5.8] if p = 2, 3; [CFKS10, Theorem 2.1] if p > 3 and the reduction type of E at primes above p
is not too bad; the remaining cases follow from (5.9.3) (or from [Čes14]).

The case p = 2 is somewhat special. The argument in [Nek13] used in a crucial way the fact
proved in [DD11, Corollary 4.8] that (?) holds for p = 2 over any quadratic extension of F .

We will now prove (?) in most of the remaining cases (for p 6= 2).

Theorem 5.10. Let F be a totally real number field and E an elliptic curve defined over F with
complex multiplication by K = EndQ(E) ⊗ Q 6= Q(i),Q(

√
−3). Then the p-parity conjecture

ran(E/F ) ≡ sp(E/F ) (mod 2)

holds for all primes p - 2DK (note that the case p |DK is covered by (5.9.5)).

Proof. Thanks to Proposition 5.4 we can assume that EndQ(E) = OK . Recall from 5.8 that
H = Hg. According to Proposition 5.6 there exists an elliptic curve E0 over the real abelian field
F0 = H+ = H+

g with good reduction at all primes above p such that E is the twist of E0⊗F0F by
a suitable character α : GF −→ {±1}. The p-torsion E0[p] is an absolutely irreducible Fp[GF0 ]-
module, since Im(GF0 −→ Aut(E0[p]) ' GL2(Fp)) is the normaliser of a Cartan subgroup of
GL2(Fp).

We now apply the level-raising machinery to the cuspidal Hilbert modular eigenform with
complex multiplication g0 over F0 attached to E0. It has parallel weight 2, trivial character and
level n prime to p. If v is a finite prime of F0 not dividing pn, the Hecke operator T (v) acts on
g0 with an eigenvalue λg0(v) ∈ Z satisfying

det(1−X Frgeom(v) |Vp(E0)(−1)) = 1− λg0(v)X + (Nv)X2. (5.10.1)

According to [Rib90, Theorem 1] if F0 = Q (respectively, [Tay89] combined with [DS74, Lemme
6.11] and the Jacquet–Langlands correspondence if 2 | [F0 : Q]), there exist a prime v0 of F0 not
dividing pn, and a cuspidal eigenform g of parallel weight 2, trivial character and level dividing
v0n, which is new at v0 and whose Hecke eigenvalues satisfy

∀v - pv0n, λg(v) ≡ λg0(v) (mod p), (5.10.2)

for some prime p | p in the (totally real) number field L generated by the Hecke eigenvalues of g.
Moreover, the p-adic Galois representation attached to g is of the form Vp(A

′)(−1), where A′ is
an abelian variety over F0 with OL ⊂ EndF0(A′) and dim(A′) = [L : Q] (A′ arises as a simple
quotient of the Jacobian of a suitable modular (respectively, Shimura) curve).

Combining (5.10.2) with (5.10.1) and its analogue for g, we deduce from the Čebotarev
density theorem that

∀g ∈ GF0 , Tr(g |Vp(E0)) ≡ Tr(g |Vp(A′)) (mod p). (5.10.3)

The representations V = Vp(E0)⊗QpLp and V ′ = Vp(A
′) of GF0 are two-dimensional over K = Lp

and self-dual in the sense of 2.3. After rescaling the corresponding pairings 〈 , 〉 : V ×V −→ K(1)
and 〈 , 〉′ : V ′ × V ′ −→ K(1), we can assume that there exist GF0-stable self-dual lattices T ⊂ V
and T ′ ⊂ V ′ (cf. 2.5).

The congruence (5.10.3) implies that the k[GF0 ]-modules (where k = OL/p) T = T/pT and

T
′
= T ′/pT ′ have isomorphic semi-simplifications. However, T

ss ' E0[p]
ss ⊗ k = E0[p] ⊗ k is an

absolutely irreducible k[GF0 ]-module. It follows that T ' T ′ ' E0[p]⊗ k and that T (respectively,
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T ′) is unique up to a scalar multiple, hence is homothetic to Tp(E0) ⊗Zp OL,p (respectively, to
Tp(A

′)).
Consequently, the abelian varieties A = E0 ⊗ OL and A′ defined over the field F0 satisfy

(4.11.1)–(4.11.2). Moreover, the isomorphism T ' T
′

is compatible with the reductions modulo
p of the pairings 〈 , 〉 and 〈 , 〉′, possibly after multiplying one of them by a suitable element of
O× = O×L,p, since the space of k[GF0 ]-equivariant skew-symmetric isomorphisms T ' T

∗
(1) is

one-dimensional over k. Thus (4.11.3) is also satisfied. Finally, p -DK is unramified in F0/Q and
both A and A′ have good reduction at all primes of F0 above p, since the levels of both g0 and
g are prime to p. As a result, (4.11.4)–(4.11.5) also hold.

The form g is new at v0, which implies that the abelian variety A′ has totally toric reduction
at v0. It follows that the assumptions of Theorem 4.14 are satisfied for A and A′ (with F/F0

replacing the extension F ′/F from 4.13). The statement of Theorem 4.14 then becomes (?), since

L(ιA⊗ α/F, s) = L(E/F, s), h1f (F, Vp(A)⊗ α) = sp(E/F ). 2

5.11 The argument in the proof of Theorem 5.10 also works for K = Q(i) (respectively, K =
Q(
√
−3)), provided that p 6= 2 (respectively, p > 3) and that there exists an elliptic curve E0

over Q with good reduction at p such that E is a quadratic twist of E0 ⊗Q F .

5.12 Putting together 5.9–5.11, we see that the conjecture (?) for totally real number fields
F has been established in all non-CM cases and in at least (1− 2/65× 1/4) > 99% of CM cases,
namely, in all cases except the following two:

(5.12.1) p 6= 2, E has complex multiplication by K = Q(i) or Q(
√
−3), p is inert in K/Q,

2 | [F : Q], E acquires good reduction everywhere over a cyclic extension of F , and
no quadratic twist of E descends to an elliptic curve defined over Q which has good
reduction at p;

(5.12.2) p = 2, E has complex multiplication by K, 2 is inert in K/Q, 2 | [F : Q], and E does
not descend to any subfield F1 ⊂ F such that [F : F1] = 2.

5.13 Note that if (?) holds for E and all its quadratic twists over F , then

ran(E/F ′) ≡ sp(E/F ′) (mod 2)

holds for any tower of finite extensions F ⊂ F1 ⊂ F ′, where F1/F is abelian and F ′/F1 is a
Galois extension of odd degree [Nek06, 12.11.7–8].
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Del73 P. Deligne, Les constantes des équations fonctionnelles des fonctions L, in Modular functions
of one variable II (Antwerp, 1972), Lecture Notes in Mathematics, vol. 349 (Springer, Berlin,
1973), 501–597.

DS74 P. Deligne and J.-P. Serre, Formes modulaires de poids 1, Ann. Sci. Éc. Norm. Supér. (4) 7
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