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ON THE FRAGILITY OF INTERPOLATION

ANDRZEJ TARLECKI

Abstract. We study a version of the Craig interpolation theorem formulated in the framework of
the theory of institutions. This formulation proved crucial in the development of a number of key results
concerning foundations of software specification and formal development. We investigate preservation
of interpolation properties under institution extensions by new models and sentences. We point out that
some interpolation properties remain stable under such extensions, even if quite arbitrary new models and
sentences are permitted. We give complete characterisations of such situations for institution extensions by
new models, by new sentences, as well as by new models and sentences, respectively.

§1. Introduction. The Craig interpolation theorem [13] states that when an
implication ϕ⇒ � between premise ϕ and conclusion � holds then there is an
interpolant � built using the symbols the premise and the conclusion have in common
(i.e., built on the intersection of the signatures of ϕ and of �, respectively) that
witnesses this implication, that is, such that both ϕ⇒ � and �⇒ � hold. This is
one of the fundamental properties of the classical first-order logic, with numerous
consequences and links with other key properties developed in the framework of
classical model theory [12].

In the area of foundations of system specification and formal development,
interpolation proved indispensable for a number of most fundamental features of
various approaches. This was perhaps first pointed out in [28], where it was used to
ensure composability of subsequent implementation steps (later refined in various
forms of so-called modularisation theorem [49, 50]). Perhaps better known is the
work on module algebra [3], where the interpolation theorem was used to obtain
crucial distributive laws for their export operator ([35] joined the two threads later).
The standard by now proofs of completeness of proof calculi for consequences
of structured specification rely on interpolation [6, 11] (in fact, no “good” sound
and complete such proof calculus may exist without an appropriate interpolation
property for the underlying logic [41]). These and further results concerning
completeness of various reasoning systems necessary in the process of reliable
software development involve interpolation explicitly, but the same idea that showing
properties of a union of a number of extensions of a basic theory must rely on some
form of interpolation (perhaps disguised as the Robinson consistency theorem [36])
is omnipresent in both practical and foundational aspects of computing.
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2 ANDRZEJ TARLECKI

Applications of logic in computer science face the problem of dealing with a
multitude of logical systems. This follows from the real needs of practical software
development, based on the multitude of application areas as well as of practically
important programming paradigms, features, and languages. In the area of software
specification, this led to various attempts to abstract away from the details of a
specific logical system in use. Such an independence of the foundations for software
specification from the particulars of the underlying logic has been successfully
achieved by relying on the concept of an institution, introduced by Goguen and
Burstall as a formalisation of the notion of a logical system [26] (see, for instance, [40]
for an exhaustive account of such ideas, with further examples in the development
of specification formalisms such as Casl [1]).

Independently of these applications, it has been realised quite early that
institutions offer a framework for developing a very abstract version of model
theory, going beyond what has been studied within abstract model theory following
[2]. This was noted in [42] and expanded in many crucial directions by Diaconescu
and his group; Diaconescu’s monograph [15] offers an extensive overview of this
work, with later developments scattered through numerous articles (see, e.g., [18]
and the references therein).

In particular, in the institutional model theory the interpolation property is
formulated so that it can be studied (and used) for logical systems departing
considerably from the first-order logic. This was put forward in [42], but we use here
a still more refined formulation of interpolation given in [14, 38]. This formulation of
the interpolation property uses logical entailment (rather than implication), sets of
sentences (rather than individual sentences) and, most crucially, works over arbitrary
commutative squares of signature morphisms (rather than over union/intersection
squares only). Consequently, it caters for instance for logical systems where one lacks
compactness, conjunction and other classical connectives, and even the concept of
the set of symbols used in a formula and intersection/union of signatures may not be
directly available. Indeed, the key point of many of the applications mentioned above
is the need to abstract away from signature inclusions and deal with interpolation
properties with respect to other signature morphisms. For instance, non-injective
signature morphisms are of practical importance when parameterised specifications
with the standard pushout-style parameter passing are considered [21, 47]. Much
subsequent work used this formulation, and included development of generic model-
theoretic proof techniques to establish interpolation property for logical systems
formalised as institutions satisfying a number of structural properties. This led to
new results concerning various logical systems, as well as to studying interpolation
in even more general context of non-standard entailment relations [7, 14, 17, 19,
23–25, 34].

The need for the use of many logical systems leads to the need for establishing
their required properties, including the interpolation property we study here. Rather
than establishing such properties for each system anew, it is desirable to ensure them
in the course of systematic construction of new logics, perhaps along the lines aimed
at for instance in [31, 32] or [8–10]. Typically, the new logics are linked with the
original ones by institution (co)morphisms [26, 27]. An important line of research
here was to clarify sufficient conditions on the institution (co)morphisms that allow
interpolation properties to be “borrowed” from one institution by another [16, 23].
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ON THE FRAGILITY OF INTERPOLATION 3

In this paper we address a perhaps more basic question that arises in this
framework: namely, whether interpolation properties can be spoiled by extending a
logic by new abstract models or sentences. Looking at the standard formulation of
the Craig interpolation property, it seems that the answer is always positive: given
a true implication, to spoil an interpolant for its premise and conclusion, just add
a new abstract model that satisfies the premise but not the interpolant, or a new
abstract model that satisfies the interpolant but not the conclusion, thus spoiling
the required entailment between the premise and the interpolant, or between the
interpolant and the conclusion, respectively. This should work, except for the trivial
cases when the signature of the premise includes or is included in the signature of
the conclusion. At a closer look though, in the framework where one considers
arbitrary morphisms between the signatures involved, when we add new models for
the signature of the premise or for the signature of the conclusion, new models for
their union signature may emerge (as reducts w.r.t. some signature morphisms of
the models added explicitly) and ruin the implication between the premise and the
conclusion one starts with.

We explore the consequences of this phenomena, and characterise exactly
the situations where interpolation is stable under extensions of the institution.
Equivalently, looking at the other side of this coin, we characterise the situations
where new models or sentences may spoil the interpolation property. More precisely:
we consider separately institution extensions where only new models, only new
sentences, and both new models and sentences, respectively, are permitted. In each
of these three cases complete characterisations are given, formulating necessary and
sufficient conditions for a commutative square of signature morphisms under which
no such institution extension may spoil interpolation properties over this square.

Similar characterisations are then derived for a natural finitary version of the
Craig interpolation property, where the interpolant set of sentences is required to
be finite (or, somewhat more generally, of a bounded cardinality) for any sets of
premises and conclusions similarly bounded.

Finally, we study the so-called Craig–Robinson (or parameterised) interpolation,
which is in general stronger than the Craig interpolation and is in fact needed in many
applications, for instance in the area of software specifications and development
[15, 20, 40]. Similar complete characterisations are obtained, with an interesting
difference concerning the characterisation of commutative squares of signature
morphisms that admit interpolation in any extension of the institution by new
models and sentences, when a certain symmetry in the role of the premise and
conclusion signatures, present in the classical Craig interpolation, breaks down.

§2. Institutions.

2.1. Notational preliminaries. For any function f : X → Y , given a set X ′ ⊆ X ,
f(X ′) = {f(x) | x ∈ X ′} ⊆ Y is the image of X ′ w.r.t. f, and for Y ′ ⊆ Y ,
f–1(Y ′) = {x ∈ X | f(x) ∈ Y ′} is the coimage of Y ′ w.r.t. f.

Throughout the paper we freely use the basic notions from category theory
(category, functor, natural transformation, pushout, etc.). Composition in any
category is denoted by “;” (semicolon) and written in the diagrammatic order. For
instance, f : A→ B is a retraction if for some g : B → A we have g;f = idB , and
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4 ANDRZEJ TARLECKI

f : A→ B is a coretraction (or section) if for some g : B → A we have f;g = idA.
The collection of objects of any category K is written as |K|. The category of sets is
denoted by Set, and the (quasi-)category of classes (or discrete categories) by Class.

2.2. Institutions. In the area of foundations of software specification and
development [40] it is standard by now to abstract away from the details of the
logical system in use, relying on the formalisation of a logical system as an institution
[26]. An institution I consists of:

• a category SigI of signatures;
• a functor SenI : SigI → Set, giving a set SenI(Σ) of Σ-sentences for each

signature Σ ∈ |SigI|;
• a functor ModI : Sigop

I → Class, giving a class (or a discrete category)1 ModI(Σ)
of Σ-models for each signature Σ ∈ |SigI|; and

• a family 〈|=I,Σ ⊆ ModI(Σ) × SenI(Σ)〉Σ∈|SigI| of satisfaction relations

such that the reducts ModI(�) : ModI(Σ′) → ModI(Σ) of models and translations
SenI(�) : SenI(Σ) → SenI(Σ′) of sentences induced any signature morphism � : Σ →
Σ′ preserve the satisfaction relation, that is, for any ϕ ∈ SenI(Σ) andM ′ ∈ ModI(Σ′)
the following satisfaction condition holds:

M ′ |=I,Σ′ SenI(�)(ϕ) iff ModI(�)(M ′) |=I,Σ ϕ.

The subscripts I and Σ are typically omitted. For any signature mor-
phism � : Σ → Σ′, the translation Sen(�) : Sen(Σ) → Sen(Σ′) is often denoted
by � : Sen(Σ) → Sen(Σ′), and the reduct Mod(�) : Mod(Σ′) → Mod(Σ) by
� : Mod(Σ′) → Mod(Σ). For instance, combining this with the notation for

image and coimage, for Φ ⊆ Sen(Σ), �(Φ) = {�(ϕ) | ϕ ∈ Φ} ⊆ Sen(Σ′), and
for M ⊆ Mod(Σ), M –1

� = {M ′ ∈ Mod(Σ′) |M ′
� ∈ M} ⊆ Mod(Σ′), and the

satisfaction condition may be re-stated as:M ′ |= �(ϕ) iffM ′
� |= ϕ.

For any signature Σ, the satisfaction relation extends naturally to sets of
Σ-sentences and classes of Σ-models. For any set Φ ⊆ Sen(Σ), the class of
models of Φ is Mod (Φ) = {M ∈ Mod(Σ) |M |= Φ} (such classes of models
are called definable), and for any class M ⊆ Mod(Σ), the theory of M is
Th(M) = {ϕ ∈ Sen(Σ) | M |= ϕ}. The latter notation is also used for the theory
generated by a set of sentences: for Φ ⊆ Sen(Σ), Th(Φ) = Th(Mod (Φ)).

As usual, each satisfaction relation determines (semantic) entailment between
sets of sentences: Φ ⊆ Sen(Σ) entails Ψ ⊆ Sen(Σ) (or Ψ is a consequence of Φ),
written Φ |= Ψ, when Ψ ⊆ Th(Φ). The satisfaction condition implies that the
semantic entailment is preserved under translation along signature morphisms: for
any � : Σ → Σ′, if Φ |= Ψ then �(Φ) |= �(Ψ). If the opposite implication holds as
well, i.e., Φ |= Ψ iff �(Φ) |= �(Ψ) for all Φ,Ψ ⊆ Sen(Σ), we say that � : Σ → Σ′ is
conservative. In particular, if the reduct � : Mod(Σ′) → Mod(Σ) is surjective then
� : Σ → Σ′ is conservative.2

1We disregard here model morphisms, which are crucial in many applications of the notion of
institution [15, 40], but for the purposes of this paper are irrelevant.

2The terminology varies; some authors use the term “conservative” for signature morphism that
induce surjective reducts [27]. The more permissive definition used here seems closer to the standard
definition of a conservative theory interpretation [12].
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ON THE FRAGILITY OF INTERPOLATION 5

We typically decorate the names for institution components and for other derived
notions by primes, indices, etc., to identify the institution they refer to, and rely on
this convention whenever the institution is clear from the context. So, for instance,
Mod1 is the model functor in an institution I1, |=′ is the satisfaction relation (and
entailment) in I′, etc.

Examples of institutions abound, see, for instance, [15, 40] for detailed definitions
of many standard and not so standard logical systems formalised as institutions.
Here, let us just sketch three standard examples.

Example 2.1. The institution FO of (many-sorted) first-order logic has signatures
that consist of a set of sort names, a set of operation names with an arity (given
as a finite sequence of sort names) and a result sort indicated for each operation
name, and a set of predicate names with an arity indicated for each predicate
name. We consider finite signatures only, with all symbols taken from a predefined
(infinite) vocabulary, which makes the category of signatures small. Terms are
built from variables by “formal application” of operation names respecting their
arities and result sorts (constants are nullary operations). Then atomic formulae are
predicate “applications” to tuples of terms of the sorts indicated by the predicate
arities, and first-order formulae are built from those using the usual Boolean
connectives (including nullary false) and quantification. First-order sentences are
closed formulae (i.e., formulae with no free occurrences of variables). We assume that
in each sentence variables of different sorts are distinct. First-order models consist
of many-sorted carrier sets (one set for each sort name), functions to interpret
operation names and relations to interpret predicate names, in accordance with the
indicated arities and result sorts. Satisfaction of first-order sentences in first-order
models so built is defined as usual. Finally, signature morphisms map sort names to
sort names, operation names to operation names and predicate names to predicate
names preserving their arities and result sorts. For any such morphism, translation of
sentences is defined by renaming sorts (for variables), operation and predicate names
as indicated by the morphism, and reducts of models are defined by interpreting
each symbol of the source signature as the symbol the signature morphism maps it
to is interpreted in the argument model. The satisfaction condition holds, and this
indeed defines an institution [26]. We will assume that all carrier sets in first-order
models are nonempty. The variant of first-order logic where empty carrier sets are
allowed in models will be denoted by FO∅.3 Another variant is the institution FOEQ
of first-order logic with equality, where we have a binary equality predicate for each
sort, interpreted as the identity relation in all models.

Example 2.2. The institution EQ of (many-sorted) equational logic may be
defined as the restriction of the institution FOEQ of first-order logic with equality
to the signatures with no predicates other than equalities (models are usually called
algebras then), and sentences are limited to universally quantified equalities. Again,
EQ∅ is the variant of EQ where empty carriers are permitted (see [15, 40] for a more
explicit definition).

3The distinction between FO and FOEQ does not matter much, since the (non-)emptiness of the
carrier of any sort may be captured by a logical sentence. However, this is in contrast with equational
logic, sketched in Example 2.2, where the same distinction is crucial and leads to different properties of
the logic (see, for instance, Example 3.1 and [45]).
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6 ANDRZEJ TARLECKI

Example 2.3. The institution PL of propositional logic may be viewed as a
restriction of the institution of first-order logic to signatures with no sort names
(and hence no operation names and nullary predicates only). More explicitly, PL
has finite sets of propositional variables as signatures, with signature morphisms
being arbitrary functions between those sets. Propositional sentences are built
from propositional variables using the usual Boolean connectives (with obvious
translations under functions renaming propositional variables). Models over a
signature are given as subsets of this signature (consisting of the propositional
variables that are satisfied in the model) with reducts w.r.t. signature morphisms
given as their coimage. With the usual satisfaction of propositional sentences in
such models, the satisfaction condition is easy to check.

In the above sample institutions FO, EQ, and PL all injective signature morphisms
induce surjective reducts, and so are conservative. This need not be the case for non-
injective morphisms. However, in FO∅ in EQ∅, the variants of FO and of EQ where
empty carriers of some sorts are permitted in models, not all injective signature
morphisms are conservative.

In the examples above, and in many other standard cases, all the signatures,
sentences, and models are quite familiar, and link with many intuitions and implicit
assumptions. We should stress though that when exploiting the generality of the
concept and working with an arbitrary institution, such connotations should
be dropped. All the entities involved (signatures, their morphisms, sentences,
models, satisfaction relations) are considered entirely abstract, with completely
unknown structure and properties. It is perhaps surprising how far one can go
with developments of the foundations for software specification [40] and an abstract
version of model theory [15] in such an abstract setting.

2.3. Extending institutions by models and sentences. We introduce two basic ways
of extending institutions, by adding new “abstract” models, and new “abstract”
sentences, respectively. The definitions are shaped after the definition of constraints
in [26, 40]. The basic observation is that when a new sentence is to be added to the
set of sentences over a signature, with some predefined notion of satisfaction in the
institution models, it must also be “fitted” to other signatures to mimic its translation
along signature morphisms with this signature as a source. Hence, together with each
new sentence, we also add its “formal translations” along signature morphisms.
Then, the satisfaction of the formal translations so added is determined by the
satisfaction condition. Similarly, when we want to add new models to the class of
models over a signature—apart from the new models themselves, we must also add
their “formal reducts”.

Consider an arbitrary institution I = 〈Sig,Sen,Mod, 〈|=Σ〉Σ∈|Sig|〉.
Suppose that for each signature we are given a set of (new) “sentences” with

predefined satisfaction relation in I-models, which may be organised as a signature-
indexed family of sets with relations between the model classes and these sets:
NS = 〈NSΣ, |=NS

Σ ⊆ Mod(Σ) ×NSΣ〉Σ∈|Sig|.4

4We disregard foundational problems that may arise here: in general the collection Sen+(Σ) defined
below may turn out to be a proper class (not a set). One way around this is to work with a more
general notion of institution, where classes (rather than sets) of sentences over any signature are allowed.
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We define the extension of I by sentences NS to be the institution I+ =
〈Sig,Sen+,Mod, 〈|=+

Σ 〉Σ∈|Sig|〉, where for Σ ∈ |Sig|, Sen+(Σ) = Sen(Σ) ∪ {	�(ϕ′)
 |
ϕ′ ∈ NSΣ′ , � : Σ′ → Σ}.5 Then for M ∈ Mod(Σ), M |=+

Σ ϕ iff M |=Σ ϕ for ϕ ∈
Sen(Σ), and forϕ′ ∈ NSΣ′ , � : Σ′ → Σ, we defineM |=+

Σ 	�(ϕ′)
 to hold iffM � |=NS
Σ′

ϕ′. Finally, for any signature morphism � : Σ → Σ′′, Sen+(�)(ϕ) = Sen(�)(ϕ)
for ϕ ∈ Sen(Σ), and for ϕ′ ∈ NSΣ′ , � : Σ′ → Σ, we define Sen+(�)(	�(ϕ′)
) =
	(�;�)(ϕ′)
.

This defines an institution, where for Σ ∈ |Sig|, the new sentences ϕ ∈ NSΣ are
present as 	idΣ(ϕ)
. Clearly, such an extension does not affect semantic entailments
between sets of sentences of the original institution.

Institution extensions by new sentences compose in the following sense: if I++ is
an extension by new sentences of an extension I+ of I by new sentences then I++ is
an extension of I by sentences (the union of the sets of new sentences added in each
step should be used for each signature). Note also that I is its own extension by (the
empty set of) new sentences.

Suppose then that for each signature we are given a class of (new) “models” with
predefined satisfaction relation for I-sentences, organised as a signature-indexed
family of classes with relations between these classes and the sets of sentences:
NM = 〈NMΣ, |=NM

Σ ⊆ NMΣ × Sen(Σ)〉Σ∈|Sig|.
Then we define the extension of I by models NM to be the institution

I+ = 〈Sig,Sen,Mod+, 〈|=+
Σ 〉Σ∈|Sig|〉, where for Σ ∈ |Sig|, Mod+(Σ) = Mod(Σ) ∪

{	M ′
�
 |M ′ ∈ NMΣ′ , � : Σ → Σ′}.6 Then for ϕ ∈ Sen(Σ), M |=+

Σ ϕ iff M |=Σ ϕ

for M ∈ Mod(Σ), and for M ′ ∈ NMΣ′ , � : Σ → Σ′, we define 	M ′
�
 |=+

Σ ϕ

to hold iff M ′ |=NM
Σ′ �(ϕ). Finally, for any signature morphism � : Σ′′ → Σ,

Mod+(�)(M ) =M � for M ∈ Mod(Σ), and for M ′ ∈ NSΣ′ , � : Σ → Σ′, we define

Mod+(�)(	M ′
�
) = 	M ′

�;�
.
This defines an institution, where for Σ ∈ |Sig|, the new models M ∈ NMΣ are

present as 	M idΣ
. Clearly, such an extension mail spoil some of the semantic
entailments between sets of sentences of the original institution: for Σ ∈ |Sig|, Φ,Ψ ⊆
Sen(Σ) if Φ |=+ Ψ then Φ |= Ψ but the opposite may fail in general (this is in contrast
with institution extensions by sentences).

Institutions extensions by new models compose in the following sense: if I++ is
an extension by new models of an extension I+ of I by new models then I++ is an
extension of I by models (the union of the classes of new models added in each step
should be used for each signature). Note also that I is its own extension by (the
empty class of) new models.

In the rest of this paper we will use the above constructions presenting new
sentences NS and new models NM somewhat informally, avoiding much of the
notational burden. In particular, we will disregard the formal distinction between

Alternatively, we may assume that Sig is small, or that it is locally small and NSΣ �= ∅ for a set of
signatures Σ only.

5��(ϕ′)� is our syntax for the sentence ϕ′ ∈ NSΣ′ formally “fitted” by � : Σ′ → Σ to the signature Σ;
we assume that no sentences of the form ��(ϕ′)� are present in I.

6�M ′
�� is our syntax for the modelM ′ ∈ NMΣ′ formally “fitted” by � : Σ → Σ′ to the signature Σ;

we assume that no models of the form �M ′
�� are present in I.
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8 ANDRZEJ TARLECKI

ϕ ∈ NSΣ and 	idΣ(ϕ)
, as well as betweenM ∈ NMΣ and 	M idΣ
. For Σ ∈ |Sig|,
we may also define the satisfaction relations |=NS

Σ indirectly by definingMod+(ϕ) ⊆
Mod(Σ) for each ϕ ∈ NSΣ (then forM ∈ Mod(Σ),M |=NS

Σ ϕ iffM ∈Mod+(Σ)),
and |=NM

Σ by definingTh+(M ) ⊆ Sen(Σ) for eachM ∈ NMΣ (then forϕ ∈ Sen(Σ),
M |=NM

Σ ϕ iff ϕ ∈ Th+(M )).

Example 2.4. We may define an extension of the institution PL of propositional
logic (see Example 2.3) by sentences, adding for each signature Σ a new sentence
evenΣ, with the satisfaction relation extended so that M |=+ evenΣ if M contains
an even number of propositional variables (an even number of propositional
variables holds in M). In the resulting extension PL+ defined as above, for a
signature morphism (which is a function between the sets of propositional variables)
� : Σ → Σ′, Sen+(�)(even�) is 	�(evenΣ)
, which is distinct from evenΣ′ . Indeed,
putting Sen+(�)(evenΣ) = evenΣ′ would violate the satisfaction condition for
some �.

Example 2.5. We may also define an extension of the institution PL of
propositional logic by models, adding for each signature Σ and Σ-model M, a
new model M̃ , where the satisfaction of propositional sentences in M̃ is defined
by interpreting propositional connectives as usual, but the truth of all occurrences
of propositional variables is determined separately for each occurrence, from left
to right, and after each occurrence the values of all propositional variables are
“swapped” (from true to false and vice versa). Thus, for instance the sentence
p ∧ q holds in M̃ if p ∈M and q �∈M , and p ∨ p holds in any model M̃ . In the
resulting extension PL+, for any signature Σ and M ∈ Mod(Σ), for any signature
morphism � : Σ′ → Σ, M̃ � (that is, Mod+(�)(M̃ )) and M̃ � are distinct Σ′-models,
even though one may easily check that they satisfy exactly the same propositional
sentences.

2.4. Institution morphisms. There are a number of standard notions to capture
relationships between different institutions, with institution morphisms [26] and
comorphisms [27] (plain maps [29] or representations [43]) perhaps the most
common.

Let I = 〈Sig,Sen,Mod, 〈|=Σ〉Σ∈|Sig|〉 and I′ = 〈Sig′,Sen′,Mod′, 〈|=′
Σ′〉Σ′∈|Sig′|〉 be

institutions. An institution morphism � : I → I′ consists of:

• a functor �Sig : Sig → Sig′,
• a natural transformation �Sen : �Sig ;Sen′ → Sen, i.e., a family of functions
�SenΣ : Sen′(�Sig(Σ)) → Sen(Σ) natural in Σ ∈ |Sig|, and

• a natural transformation �Mod : Mod → (�Sig)op;Mod′, i.e., a family of
functions �ModΣ : Mod(Σ) → Mod′(�Sig(Σ)) natural in Σ ∈ |Sig|

such that for any signature Σ ∈ |Sig|, ϕ′ ∈ Sen′(�Sig(Σ)), andM ∈ Mod(Σ),M |=Σ

�SenΣ (ϕ′) iff �ModΣ (M ) |=′
�Sig (Σ)

ϕ′ (this is referred to as the satisfaction condition

for �).
To simplify the notation, all three components of an institution morphism � are

typically denoted by � as well, omitting the superscripts whenever they are clear
from the context.
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It follows that semantic entailment is preserved by translation under institution
morphisms: for any signature Σ ∈ |Sig| and sets of sentences Φ′,Ψ′ ⊆ Sen′(�(Σ)),
if Φ′ |=′ Ψ′ then �Σ(Φ′) |= �Σ(Ψ′). Moreover, if the translation of models
�Σ : Mod(Σ) → Mod′(�(Σ)) is surjective then the opposite implication holds as
well, that is, Φ′ |=′ Ψ′ iff �Σ(Φ′) |= �Σ(Ψ′).

For instance, there is an obvious institution morphisms from the institution FO
of first-order logic to the institution PL of propositional logic (removing from
signatures everything but nullary predicates). For further examples of institution
morphisms spelled out in detail we refer to [15, 40].

Throughout this paper we deal with a special case of institution morphisms that
leave the signature category intact, that is, where the signature functor is the identity.
This also allows us to disregard institution comorphisms, since in this case the two
notions are essentially the same (institution morphisms from I to I′ with the identity
signature functor coincide with comorphisms from I′ to I with the identity signature
functor).

An institution morphism � : I → I′ is logically trivial if it is the identity
on signatures and surjective on sentences and models, that is, Sig′ = Sig and
�Sig = idSig, and for all signatures Σ ∈ |Sig|, the functions �Σ : Sen′(Σ) → Sen(Σ)
and �Σ : Mod(Σ) → Mod′(Σ) are surjective.

Proposition 2.6. Logically trivial institution morphisms identify only sentences
and models that are logically equivalent, that is, if an institution morphism � : I → I′

is logically trivial then for any signature Σ ∈ |Sig| :

1. for any I′-sentences ϕ′, �′ ∈ Sen′(Σ), if �Σ(ϕ′) = �Σ(�′) then for all I′-models
M ′ ∈ Mod′(Σ),M ′ |=′ ϕ′ iffM ′ |=′ �′;

2. for any I-models M,N ∈ Mod(Σ), if �Σ(M ) = �Σ(N ) then for all I-sentences
ϕ ∈ Sen(Σ),M |= ϕ iff N |= ϕ.

Proof. Follows by the satisfaction condition for � : I → I′ and surjectivity of
�Σ : Mod(Σ) → Mod′(Σ) and �Σ : Sen′(Σ) → Sen(Σ):

1. Suppose ϕ = �Σ(ϕ′) = �Σ(�′). Since �Σ : Mod(Σ) → Mod′(Σ) is surjective,
for anyM ′ ∈ Mod′(Σ) there isM ∈ Mod(Σ) such that �Σ(M ) =M ′. Hence,
by the satisfaction condition for � : I → I′,M ′ |=′ ϕ′ iffM |= ϕ iffM ′ |=′ �′.

2. Similarly, suppose �Σ(M ) = �Σ(N ) =M ′. Since �Σ : Sen′(Σ) → Sen(Σ) is
surjective, for any ϕ ∈ Sen(Σ) there is ϕ′ ∈ Sen′(Σ) such that �Σ(ϕ′) = ϕ.
Hence, by the satisfaction condition for � : I → I′, M |= ϕ iff M ′ |=′ ϕ′ iff
N |= ϕ. �

Special institution morphisms relate institutions with their extensions by new
sentences and by new models, respectively, introduced in Section 2.3.

Let I+
NS be the extension of institution I = 〈Sig,Sen,Mod, 〈|=Σ〉Σ∈|Sig|〉 by

sentences NS = 〈NSΣ, |=NS
Σ ⊆ Mod(Σ) ×NSΣ〉Σ∈|Sig|, as defined in Section 2.3.

Then there is an obvious institution morphism �NS : I+
NS → I, where �SigNS and

�ModNS are identities (the former is the identity functor on Sig, the latter is
the identity natural transformation on Mod : Sigop → Class), and for Σ ∈ |Sig|,
(�SenNS)Σ : Sen(Σ) → Sen+

NS(Σ) are inclusions. Somewhat ambiguously, we refer to
this institution morphism as the extension of I by NS as well.
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Similarly, let I+
NM be the extension of I = 〈Sig,Sen,Mod, 〈|=Σ〉Σ∈|Sig|〉 by models

NM = 〈NMΣ, |=NM
Σ ⊆ NMΣ × Sen(Σ)〉Σ∈|Sig|, as defined in Section 2.3. There

is an obvious institution morphism �NM : I → I+
NM, where �SigNM and �SenNM are

identities, and for Σ ∈ |Sig|, (�ModNM)Σ : Mod(Σ) → Mod+
NM(Σ) are inclusions. We

also refer to this institution morphism as the extension of I by NM.
Institution morphisms compose in the obvious, component-wise manner [26].

Proposition 2.7. Consider institutions I′ = 〈Sig,Sen′,Mod′, 〈|=′
Σ〉Σ∈|Sig|〉 and

I′′ = 〈Sig,Sen′′,Mod′′, 〈|=′′
Σ〉Σ∈|Sig|〉 with a common signature category, and an

institution morphism � : I′ → I′′ with �Sig = idSig. Then for some institution I,
extension I+

NS of I by new sentences, extension I+
NM of I by new models, and

logically trivial institution morphisms �′ : I′ → I+
NS and �′′ : I+

NM → I′′ we have
� = �′;�NS ;�NM;�′′:

I′
�′−→ I+

NS
�NS−−−→ I

�NM−−−→ I+
NM

�′′−→ I′′︸ ︷︷ ︸
�

Proof. First, define I = 〈Sig,Sen′′,Mod′, 〈|=Σ〉Σ∈|Sig|〉, where for Σ ∈ Sig,M ′ ∈
Mod′(Σ) and ϕ′′ ∈ Sen′′(Σ), we define M ′ |=Σ ϕ

′′ to hold iff M ′ |=′
Σ �Σ(ϕ′′), or

equivalently (by the satisfaction condition for �) iff �Σ(M ′) |=′′
Σ ϕ

′′. This indeed
defines an institution, since the satisfaction condition for I follows from the
satisfaction condition for I′ and naturality of �Sen (or the satisfaction condition
for I′′ and naturality of �Mod ).

Consider “new” sentences NS = 〈NSΣ, |=NS
Σ ⊆ Mod′(Σ) ×NSΣ〉Σ∈|Sig|, where

for Σ ∈ |Sig|, NSΣ = Sen′(Σ) \ �Σ(Sen′′(Σ)) and |=NS
Σ is the restriction of |=′

Σ to
NSΣ. Let I+

NS be the extension of I by sentences NS, as defined in Section 2.3,
with the institution morphism �NS : I+

NS → I defined above.7 Then define the
institution morphism �′ : I′ → I+

NS to be the identity on signatures and models,
with �′Σ : Sen+

NS(Σ) → Sen′(Σ), for Σ ∈ |Sig|, defined as �Σ : Sen′′(Σ) → Sen′(Σ)
on Sen′′(Σ) ⊆ Sen+

NS(Σ), and for � : Σ′ → Σ in Sig and ϕ′ ∈ NSΣ′ ⊆ Sen′(Σ′),
�′Σ(	�(ϕ′)
) = Sen′(�)(ϕ′) ∈ Sen′(Σ).

The translations of sentences so defined are indeed natural in Σ: for any
� : Σ1 → Σ2, we have to check that �′Σ1

;Sen′(�) = Sen+
NS(�);�′Σ2

as functions from
Sen+

NS(Σ1) to Sen′(Σ2). For sentences in Sen′′(Σ1) this follows directly from the
naturality of�Sen. For sentences of the form 	�(ϕ′)
 ∈ Sen+

NS(Σ1), where � : Σ′ → Σ1

and ϕ′ ∈ NSΣ′ , we have

Sen′(�)(�′Σ1
(	�(ϕ′)
)) = Sen′(�)(Sen′(�)(ϕ′)) = Sen′(�;�)(ϕ′) =

�′Σ2
(	(�;�)(ϕ′)
) = �′Σ2

(Sen+
NS(�)(	�(ϕ′)
)).

To check the satisfaction condition for �′, consider Σ ∈ |Sig|, M ′ ∈ Mod′(Σ)
and ϕ ∈ Sen+

NS(Σ). We have to show that M ′ |=′
Σ �

′
Σ(ϕ) iff M ′ |=+

NS,Σ ϕ. For
ϕ ∈ Sen′′(Σ), this follows from the satisfaction condition for � and our definitions:
M ′ |=′

Σ �
′
Σ(ϕ) is then the same asM ′ |=′

Σ �Σ(ϕ), which is equivalent to �Σ(M ′) |=′′
Σ

ϕ, which in turn defines M ′ |=I,Σ ϕ and M ′ |=+
NS,Σ ϕ. For ϕ of the form 	�(ϕ′)
,

where � : Σ′ → Σ and ϕ′ ∈ NSΣ′ , this follows as well, since M ′ |=′
Σ �

′
Σ(	�(ϕ′)
)

7Footnote 4 applies here as well if needed.

https://doi.org/10.1017/jsl.2024.19 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.19


ON THE FRAGILITY OF INTERPOLATION 11

coincides withM ′ |=′
Σ Sen′(�)(ϕ′), which is the same asM ′ |=NS

Σ Sen′(�)(ϕ′), which
in turn definesM ′ |=+

NS,Σ 	�(ϕ′)
.
Consider now “new” models NM = 〈NMΣ, |=NM

Σ ⊆ NMΣ × Sen′′(Σ)〉Σ∈|Sig|,
where for Σ ∈ |Sig|, NMΣ = Mod′′(Σ) \ �Σ(Mod′(Σ)) and |=NM

Σ is the restriction of
|=′′

Σ toNMΣ. Let I+
NM be the extension of I by modelsNM, as defined in Section 2.3,

with institution morphism �NM : I → I+
NM defined above. Then let the institution

morphism �′′ : I+
NM → I′′ be the identity on signatures and sentences, with

�′′Σ : Mod+
NM(Σ) → Mod′′(Σ), for Σ ∈ |Sig|, defined as �Σ : Mod′(Σ) → Mod′′(Σ)

on Mod′(Σ) ⊆ Mod+
NM(Σ), and for � : Σ → Σ′ in Sig andM ′ ∈ NMΣ′ ⊆ Mod′′(Σ),

�′′Σ(	M ′
�
) = Mod′′(�)(M ′). By similar arguments as for �′ : I′ → I+

NS , it follows

that �′′Σ : Mod+
NM(Σ) → Mod′′(Σ), Σ ∈ |Sig|, are natural in Σ, and the satisfaction

condition holds for �′′.
It is easy now to check directly that indeed � = �′;�NS ;�NM;�′′. �

§3. Interpolation.

3.1. Classical interpolation. The Craig interpolation theorem [13] states that if an
implication between two first-order formulae ϕ⇒ � holds then there is a formula
� that uses only the symbols common to ϕ and � such that both ϕ⇒ � and
�⇒ � hold; � is then called an interpolant for ϕ and �. This is one of the key
properties of first-order logic, with numerous applications, including simpler proofs
of similarly famous and important results like the Robinson consistency [36] and
Beth definability [4] theorems. The original proof in [13] relied on proof-theoretic
arguments, even though many of the applications (as well as some later proofs)
of the result have been model-theoretic in nature. The interpolation property has
been investigated (and proved or disproved) for many standard extensions (and
fragments) of first-order logic [48] as well as for other logical systems, for instance
for various modal and intuitionistic logics [22].

The above statement of the interpolation property implicitly involves the following
union/intersection square of signatures:

Σp ∩ Σc

�

ϕ⇒ � Σp Σc �⇒ �

ϕ⇒ �
Σp ∪ Σc

�
�

��

�
�
��

�
�
��

�
�

��

where Σp and Σc are (first-order) signatures forϕ and�, respectively, and the arrows
indicate signature inclusions.

As recalled in Section 1, interpolation proved indispensable for many foundational
aspects of computer science and software engineering, in particular, in the
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12 ANDRZEJ TARLECKI

foundations of software specification and development [40]. However, the classical
formulation of Craig’s interpolation for many applications in this area requires some
generalisations, which perhaps do not bring much new insight for this property in
the framework of first-order logic, but may be important when other logical systems
are considered.

To begin with, the use of implication should be replaced by entailment. Then,
we should deal with entailments between sets of sentences, rather than between
individual sentences (strictly speaking, this is needed for the premiseϕ and especially
for the interpolant �—for notational symmetry, we do this for the conclusion � as
well). Both these generalisations are irrelevant for first-order logic, where implication
captures semantic entailment, and a set of sentences in the premise of each single-
conclusion entailment may always be replaced by a single sentence (since we have
finite conjunctions and the logic is compact8). However, for instance, working in
equational logic we have no implication available, and an interpolant cannot be
always expressed as a single equation—even though the interpolation property holds
if a set of equations is permitted as an interpolant [37].

Perhaps most importantly, for instance in applications where parameterised
specifications and their “pushout-style” instantiations [21] are involved, we have
to go beyond union/intersection squares of signatures and beyond inclusions to
relate the signatures. More general classes of signature squares are needed, with
non-injective signature morphisms necessary to capture for instance morphisms
from the formal to actual parameters, used to “fit” the latter into the mould given
by the former. Typically in applications at least pushouts of signature morphism
are involved, sometimes additionally restricted to indicated classes of morphisms
permitted at the “bottom-left” and “bottom-right” of the squares, respectively
[6, 15, 34, 49, 50]. However, for the purposes of this paper we will consider
interpolation properties for an arbitrary commuting square of signature morphisms.

The above remarks lead to a general definition of the interpolation property in an
arbitrary institution.

3.2. Interpolation in an institution. Throughout the rest of this paper, we consider
an institution I = 〈Sig,Sen,Mod, 〈|=Σ〉Σ∈|Sig|〉, and study interpolation properties
over the following commutative square (∗) of signature morphisms:9

Σi

Σp Σc

Σu

�
�

��

�
�
��

�
�
��

�
�

��

�ip �ic

�pu �cu

(∗)

8An institution I = 〈Sig,Sen,Mod, 〈|=Σ〉Σ∈|Sig|〉 is compact if for any signature Σ ∈ |Sig|, set Φ ⊆
Sen(Σ) of Σ-sentences and Σ-sentenceϕ ∈ Sen(Σ), whenever Φ |= ϕ then Φ0 |= ϕ for some finite Φ0 ⊆ Φ.

9To help memorising the notation: p for premise, c for conclusion, u for union, and i for intersection
(or interpolant).
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ON THE FRAGILITY OF INTERPOLATION 13

Let Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc) be such that �pu(Φ) |=Σu �cu(Ψ). An inter-
polant for Φ and Ψ (over diagram (∗)) is a set Θ ⊆ Sen(Σi) of Σi -sentences such that
Φ |=Σp �ip(Θ) and �ic(Θ) |=Σc Ψ.

Σi

Θ

Φ |= �ip(Θ) Σp Σc �ic(Θ) |= Ψ

�pu(Φ) |= �cu(Ψ)

Σu

�
�

��

�
�
��

�
�
��

�
�

��

�ip �ic

�pu �cu

To simplify some further statements, if �pu(Φ) �|=Σu �cu(Ψ) then we say that any
set Θ ⊆ Sen(Σi) is an interpolant for Φ and Ψ (over diagram (∗)).

A commutative square (∗) of signature morphisms admits interpolation if all sets
Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc) such that �pu(Φ) |=Σu �cu(Ψ) have an interpolant.

Example 3.1. In the institution FO of first-order logic, as well as any of its
variants mentioned in Example 2.1, if the square (∗) is a pushout and at least one
of �ip : Σi → Σp, �ic : Σi → Σc is injective on sorts then (∗) admits interpolation;
otherwise interpolation may fail for (∗) (see [7]). In the institution EQ of equational
logic if the square (∗) is a pushout and �ic : Σi → Σc is injective then (∗) admits
interpolation; otherwise interpolation may fail for (∗), and in EQ∅, where empty
carriers are permitted, interpolation may fail even for intersection/union squares of
signatures (see [45]). In the institution PL of propositional logic, all pushouts admit
interpolation.

It is well known that the interpolation property of a logical system is fragile.
When the logic is strengthened or weakened, when new models or sentences are
added, the interpolation property may easily be spoiled. Clearly, this may happen
when entirely new signatures are added, with new models and sentences over them.
Therefore, we will consider the category of signatures to be fixed, and consider only
such extensions of institutions that preserve it.

Throughout the rest of the paper we study in some detail how the interpolation
property may be spoiled by adding new models or sentences. This will be done from
a “local” perspective, for particular commutative squares of signature morphisms,
as well as for particular interpolants.

We say that an interpolant Θ ⊆ Sen(Σi) for Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc) (over
diagram (∗)) is stable under extensions of the institution by models if for every
extension I+ of I by new models, Θ is an interpolant for Φ and Ψ in I+; otherwise
we say that the interpolant Θ is fragile.

While adding new models may spoil existing interpolants, it cannot create new
non-trivial ones: in all extensions I+ of I by new models, if �pu(Φ) |=+

Σu
�cu(Ψ) then

any interpolant for Φ and Ψ in I+ is an interpolant for Φ and Ψ in I. Adding
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14 ANDRZEJ TARLECKI

new sentences cannot spoil a particular interpolant, but may spoil interpolation
property for a given diagram (there may be no interpolant for new sentences, or sets
of sentences that contain them), and may create new interpolants (involving some
new sentences).

To begin with, we identify some special cases where interpolation is ensured and
is stable under any extension of the institution.

3.3. Interpolants may be stable.

Lemma 3.2. Consider the diagram (∗) of signature morphisms.

1. If Sen(�ip) : Sen(Σi) → Sen(Σp) is surjective and �cu : Σc → Σu is conservative
then (∗) admits interpolation.

2. If Sen(�ic) : Sen(Σi) → Sen(Σc) is surjective and �pu : Σp → Σu is conservative
then (∗) admits interpolation.

Proof. Let Φ ⊆ Sen(Σc) and Ψ ∈ Sen(Σc) be such that �pu(Φ) |= �cu(Ψ).

1. Suppose Sen(�ip) : Sen(Σi) → Sen(Σp) is surjective and �cu : Σc → Σu is con-
servative. Consider Θ = �–1

ip (Φ) ⊆ Sen(Σi). First, since Φ = �ip(Θ), we have
Φ |= �ip(Θ). Then, since (∗) commutes, �pu(Φ) = �pu(�ip(Θ)) = �cu(�ic(Θ)),
and so �cu(�ic(Θ)) |= �cu(Ψ). Hence �ic(Θ) |= Ψ by conservativity of �cu . Thus
Θ is an interpolant for Φ and Ψ.

2. Suppose Sen(�ic) : Sen(Σi) → Sen(Σc) is surjective and �pu : Σp → Σu is conser-
vative. Consider Θ = �–1

ic (Ψ) ⊆ Sen(Σi). Then Ψ = �ic(Θ), and so �ic(Θ) |= Ψ.
Moreover, �pu(�ip(Θ)) = �cu(�ic(Θ)) = �cu(Ψ), and so �pu(Φ) |= �pu(�ip(Θ)),
which implies Φ |= �ip(Θ) by conservativity of �pu . Thus Θ is an interpolant
for Φ and Ψ. �

A trivial special case here is when �ip and �cu , or �ic and �pu , are isomorphisms,
which can be further refined as follows:

Corollary 3.3. Consider the diagram (∗) of signature morphisms. If:

1. �ip : Σi → Σp is a retraction and �cu : Σc → Σu is a coretraction, or
2. �ic : Σi → Σc is a retraction and �pu : Σp → Σu is a coretraction,

then (∗) admits interpolation.

Proof. Follows by Lemma 3.2, since signature morphisms that are retractions
induce surjective translations of sentences, and signature morphisms that are
coretractions induce surjective reduct functions on model classes, and so are
conservative. �

This shows that if the signature morphisms in (∗) satisfy the premises of
Corollary 3.3 then the diagram enjoys a stable interpolation property, which cannot
be spoiled by any institution extension that leaves the category of signatures
unchanged! No matter how we add new models or sentences, the interpolation
property is ensured by the properties of the signature morphisms involved and the
implied properties of the translations of sentences and reducts of models they induce
in the institution and in any of its extensions.

The conditions stated in Corollary 3.3 are in fact quite strong and in many
practical situations do not depart too far from the trivial case when Σp is (up
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to isomorphism) included in Σc or vice versa. Namely, when the diagram (∗) is
a pushout then condition 1 implies that �cu : Σc → Σu is an isomorphism, and
condition 2 implies that �pu : Σp → Σu is an isomorphism. Dually, when (∗) is
a pullback then condition 1 implies that �ip : Σi → Σp is an isomorphism, and
condition 2 implies that �ic : Σi → Σc is an isomorphism.

Somewhat similarly, interpolation is preserved and reflected by logically trivial
institution morphisms:

Proposition 3.4. Let � : I → I′ be a logically trivial institution morphism.
Diagram (∗) in the category of signatures admits interpolation in I iff it admits
interpolation in I′.

Proof. Since for each signature Σ ∈ |Sig|, �Σ : Mod(Σ) → Mod′(Σ) is surjective,
for any sets of I′-sentences Φ′,Ψ′ ⊆ Sen′(Σ), Φ′ |=′ Ψ′ iff �Σ(Φ′) |= �Σ(Ψ′) (by
the remark after the definition of institution morphism in Section 2.4). Moreover,
since �Σ : Sen′(Σ) → Sen(Σ) is surjective, for any sets of I-sentences Φ,Ψ ⊆ Sen(Σ),
Φ = �Σ(�–1

Σ (Φ)) and Ψ = �Σ(�–1
Σ (Ψ)), so that Φ |= Ψ iff �–1

Σ (Φ) |=′ �–1
Σ (Ψ).

Thus, for Φ′ ⊆ Sen′(Σp) and Ψ′ ⊆ Sen′(Σc), if �Σp (Φ′) and �Σc (Ψ′) have an
interpolant Θ ⊆ Sen(Σi) in I then �–1

Σi
(Θ) is an interpolant for Φ′ and Ψ′ in I′.

Similarly, for Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc), if �–1
Σp (Φ) and �–1

Σc (Ψ) have an

interpolant Θ′ ⊆ Sen′(Σi) in I′ then �Σi (Θ′) is an interpolant for Φ and Ψ in I. �
Propositions 2.7 and 3.4 imply that institution extensions by new models and

by new sentences are of primary importance for our study of the fragility of
interpolation.

§4. Spoiling an interpolant by new models. Recall that we study interpola-
tion over a commutative square of signature morphisms (∗) in an institution
I = 〈Sig,Sen,Mod, 〈|=Σ〉Σ∈|Sig|〉. Throughout this section, let Φ ⊆ Sen(Σc) and
Ψ ⊆ Sen(Σc) be such that �pu(Φ) |= �cu(Ψ), and let Θ ⊆ Sen(Σi) be an interpolant
for Φ and Ψ in I.

Lemma 4.1. Suppose that there exists a set of Σp-sentences Φ• ⊇ Φ such that
�ip(Θ) �⊆ Φ• and for all signature morphisms � : Σu → Σp, if �(�pu(Φ)) ⊆ Φ• then
�(�cu(Ψ)) ⊆ Φ•. Then the interpolant Θ for Φ and Ψ is not stable under extensions of
I by models.

Proof. Let I+ be the extension of I by a new Σp-model M (and its reducts
	M �
 ∈ Mod+(Σ) for � : Σ → Σp, see Section 2.3), with Th+(M ) = Φ•.

Then for all models K ∈ Mod+(Σu), if K |=+ �pu(Φ) then K |=+ �cu(Ψ): this
clearly holds for K ∈ Mod(Σu). For new models of the form K = 	M �
 with
� : Σu → Σp, if 	M �
 |=+ �pu(Φ) then M |=+ �(�pu(Φ)), that is �(�pu(Φ)) ⊆ Φ•,
which by the assumptions implies �(�cu(Ψ)) ⊆ Φ•. HenceM |=+ �(�cu(Ψ)) and so
	M �
 |=+ �cu(Ψ). This shows �pu(Φ) |=+ �cu(Ψ).

However, M �|=+ �ip(Θ) (since �ip(Θ) �⊆ Φ•) and so Φ �|=+ �ip(Θ), which proves
that Θ is not an interpolant for Φ and Ψ in I+. �

The key property of the set Φ• used in the above lemma is that it cannot be used to
separate �pu(Φ) from �cu(Ψ) via any morphism � : Σu → Σp. More formally, for any
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signatures Σ,Σ′ ∈ |Sig|, we say that Υ ⊆ Sen(Σ) never separates Φ′ ⊆ Sen(Σ′) from
Ψ′ ⊆ Sen(Σ′) when for all morphisms � : Σ′ → Σ, if �(Φ′) ⊆ Υ then �(Ψ′) ⊆ Υ.

Lemma 4.2. For any sets Φ ⊆ Sen(Σ) of Σ-sentences and Φ′,Ψ′ ⊆ Sen(Σ′) of Σ′-

sentences, there is the least set [Φ′ Σ′
�
Σ

Ψ′](Φ) ⊆ Sen(Σ) of Σ-sentences that includes Φ

and never separates Φ′ from Ψ′.

Proof. Consider the set E of all sets Υ ⊆ Sen(Σ) such that Φ ⊆ Υ and for all
signature morphisms � : Σ′ → Σ, if �(Φ′) ⊆ Υ then �(Ψ′) ⊆ Υ. E is nonempty and

is closed under intersection. Then [Φ′ Σ′
�
Σ

Ψ′](Φ) =
⋂

E . �

Corollary 4.3. If �ip(Θ) �⊆ [�pu(Φ)
Σu
�
Σp
�cu(Ψ)](Φ) then the interpolant Θ for Φ

and Ψ is not stable under extensions of I by models.

Proof. Directly from Lemma 4.1, with Φ• = [�pu(Φ)
Σu
�
Σp
�cu(Ψ)](Φ). �

Lemma 4.4. Suppose that there exists a set of Σc-sentences Ψ◦ ⊇ �ic(Θ) such
that Ψ �⊆ Ψ◦ and for all signature morphisms � : Σu → Σc , if �(�cu(Φ)) ⊆ Ψ◦ then
�(�pu(Ψ)) ⊆ Ψ◦. Then the interpolant Θ for Φ and Ψ is not stable under extensions
of I by models.

Proof. Let I+ be the extension of I by a new Σc-model N (and its reducts
	N �
 ∈ Mod+(Σ) for � : Σ → Σc), with Th+(N ) = Ψ◦.

Then for all models K ∈ Mod+(Σu), if K |=+ �pu(Φ) then K |=+ �cu(Ψ): this
clearly holds for K ∈ Mod(Σu). For new models of the form K = 	N �
 with
� : Σu → Σc , if 	N �
 |=+ �pu(Φ) then N |=+ �(�pu(Φ)), that is, �(�pu(Φ)) ⊆ Ψ◦.
By the assumptions this implies �(�pu(Ψ)) ⊆ Ψ◦. Hence N |=+ �(�cu(Ψ)), and so
	N �
 |=+ �pu(Ψ). This shows �pu(Φ) |=+ �cu(Ψ).

However, N |= �ic(Θ) (since �ic(Θ) ⊆ Ψ◦), while N �|= Ψ (since Ψ �⊆ Ψ◦). Hence
�ic(Θ) �|=+ Ψ, which shows that Θ is not an interpolant for Φ and Ψ in I+. �

Corollary 4.5. If Ψ �⊆ [�pu(Φ)
Σu
�
Σc
�cu(Ψ)](�ic(Θ)) then the interpolant Θ for Φ

and Ψ is not stable under extension of I by models.

Proof. By Lemma 4.4, with Ψ◦ = [�pu(Φ)
Σu
�
Σc
�cu(Ψ)](�ic(Θ)). �

Corollaries 4.3 and 4.5 present sufficient conditions which ensure that a particular
interpolant may be spoiled under an extension of the institution by new models. In
fact, these conditions jointly are also necessary:

Theorem 4.6. The interpolant Θ for Φ and Ψ is stable under extensions of I by
models if and only if the following conditions hold:

1. �ip(Θ) ⊆ [�pu(Φ)
Σu
�
Σp
�cu(Ψ)](Φ), and

2. Ψ ⊆ [�pu(Φ)
Σu
�
Σc
�cu(Ψ)](�ic(Θ)).
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Proof. The “only if” part follows by Corollaries 4.3 and 4.5, by contraposition.
For the “if” part: assume that the interpolant Θ for Φ and Ψ is not stable under

extensions of I by models, and let I+ be an extension of I by models such that Θ
is not an interpolant for Φ and Ψ in I+, that is, we have �pu(Φ) |=+ �cu(Ψ), but
Φ �|=+ �ip(Θ) or �ic(Θ) �|=+ Ψ.

1. If Φ �|=+ �ip(Θ) then for some model M ∈ Mod+(Σp), M |=+ Φ and
M �|=+ �ip(Θ). Then Φ ⊆ Th+(M ) and �ip(Θ) �⊆ Th+(M ). Moreover,
Th+(M ) never separates �pu(Φ) from �cu(Ψ), since if for some � : Σu → Σp,
�(�pu(Φ)) ⊆ Th+(M ) and �(�cu(Ψ)) �⊆ Th+(M ), then M � |=+ �pu(Φ) and
M � �|=+ �cu(Ψ), which contradicts �pu(Φ) |=+ �cu(Ψ). It follows now that

[�pu(Φ)
Σu
�
Σp
�cu(Ψ)](Φ) ⊆ Th+(M ), and so �ip(Θ) �⊆ [�pu(Φ)

Σu
�
Σp
�cu(Ψ)](Φ).

2. If �ic(Θ) �|=+ Ψ then for some modelN ∈ Mod+(Σc),N |=+ �ic(Θ) andN �|=+

Ψ. Then �ic(Θ) ⊆ Th+(N ) and Ψ �⊆ Th+(N ). Moreover, Th+(N ) never sepa-
rates �pu(Φ) from �cu(Ψ), since if for some � : Σu → Σc , �(�pu(Φ)) ⊆ Th+(N )
and �(�cu(Ψ)) �⊆ Th+(N ), then N � |=+ �pu(Φ) and N � �|=+ �cu(Ψ), contra-

dicting �pu(Φ) |=+ �cu(Ψ). It follows now that [�pu(Φ)
Σu
�
Σc
�cu(Ψ)](�ic(Θ)) ⊆

Th+(N ), so Ψ �⊆ [�pu(Φ)
Σu
�
Σc
�cu(Ψ)](�ic(Θ)). �

The above theorem gives precise conditions that ensure stability of a particular
interpolant under extensions of the institution by new models. Of course, this also
yields a precise characterisation of specific interpolation properties that can be
spoiled by adding new abstract models. It should be stressed that the conditions in
use a purely “syntactic”—they do not refer to the semantic properties of the sets of
sentences involved, so in particular, they depend on a specific syntactic form of the
sentences, and the conclusions may vary when sentences considered are replaced by
semantically equivalent sentences that are of a different syntactic form.

Example 4.7. Consider a trivial example in the institution PL of propositional
logic. In the diagram (∗), let Σp = {p, r}, Σc = {p, q}, Σu = Σp ∪ Σc = {r, p, q},
Σi = Σp ∩ Σc = {p}, and the four signature morphisms are inclusions.

Let ϕ be r ∧ p and � be p ∨ q. Clearly, ϕ |= �, and ϕ and � have a number of
distinct interpolants in PL.10

One interpolant for ϕ and � is p (since clearly r ∧ p |= p and p |= p ∨ q).
Consider PL-model M = {r} ∈ ModPL(Σp). Let PL+ be an extension of PL by
a new Σp-model M̃ (with interpretation of propositional sentences “swapping” the
valuation of propositional variables, as in Example 2.5). Then M̃ |=+ r ∧ p while
M̃ �|=+ p, and so p is not an interpolant for ϕ and � in PL+. In fact, it is easy to
check that Φ• = {ϕ ∈ SenPL(Σp) | M̃ |=+ ϕ} satisfies the premises of Lemma 4.1.

Moreover, one can easily calculate [r ∧ p Σu
�
Σp
p ∨ q](r ∧ p) ⊆ SenPL(Σp): there

are exactly two morphisms �, �′ : Σu → Σp such that �(r ∧ p) = �′(r ∧ p) = r ∧ p,
namely they both map r to r and p to p, and then map q to any of the symbols in

10When convenient, we write ϕ for {ϕ}, relying on the context to impose such identification of a
sentence with the one-element set that contains it.
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Σp, say, �(q) = p and �′(q) = r. Consequently, [r ∧ p Σu
�
Σp
q ∨ p](r ∧ p) = {r ∧ p, r ∨

p, p ∨ p} (since no morphism from Σu to Σp maps r ∧ p into {p ∨ r, p ∨ p}). Thus,
by Corollary 4.3, any interpolant for ϕ and � other than p ∨ p may be spoiled by
extending PL by new models.

Indeed, p ∨ p is an interpolant for ϕ and � (since of course r ∧ p |= p ∨ p and
p ∨ p |= p ∨ q). Consider PL-model N = {q} ∈ ModPL(Σc). Let now PL+ be the
extension of PL by a new Σc-model Ñ (with interpretation of propositional sentences
“swapping” the valuation of propositional variables, as in Example 2.5). Then
Ñ |=+ p ∨ p while Ñ �|=+ p ∨ q, which shows that p ∨ p is not an interpolant for ϕ
and � in PL+. In fact, since no morphism from Σu to Σc maps r ∧ p to p ∨ p, we

have [r ∧ p Σu
�
Σc
p ∨ q](p ∨ p) = {p ∨ p} ⊆ SenPL(Σc), and so it also follows directly

from Corollary 4.5 that in some extension of PL by new models p ∨ p is not an
interpolant for ϕ and �.

Summing up: none of the interpolants for ϕ and� in PL is stable under extension
of PL by new models.

Let now ϕ′ be (p ∨ r) ∧ (p ∨ ¬r) and �′ be (p ∨ q) ∧ (p ∨ ¬q). Clearly,
(p ∨ r) ∧ (p ∨ ¬r) |= (p ∨ q) ∧ (p ∨ ¬q). Perhaps the most obvious interpolant for
ϕ′ and �′ is p (since (p ∨ r) ∧ (p ∨ ¬r) |= p and p |= (p ∨ q) ∧ (p ∨ ¬q)). This
interpolant, however, is fragile: it may be spoiled by extending PL by new models.
Namely, reasoning similarly as above, we can calculate:

[(p ∨ r) ∧ (p ∨ ¬r) Σu
�
Σp

(p ∨ q) ∧ (p ∨ ¬q)]((p ∨ r) ∧ (p ∨ ¬r)) =

{(p ∨ r) ∧ (p ∨ ¬r), (p ∨ p) ∧ (p ∨ ¬p)} ⊆ SenPL(Σp).

Thus, by Corollary 4.3, p is not an interpolant for ϕ′ and �′ in an extension of PL
by new models.

Another interpolant for ϕ′ and �′ in PL is (p ∨ p) ∧ (p ∨ ¬p) (which in PL is
semantically equivalent to p). Since

(p ∨ p) ∧ (p ∨ ¬p) ∈ [(p ∨ r) ∧ (p ∨ ¬r) Σu
�
Σp

(p ∨ q) ∧ (p ∨ ¬q)]((p ∨ r) ∧ (p ∨ ¬r)),

Corollary 4.3 cannot be used here to conclude that this interpolant gets spoiled in
an extension of PL by new models. Moreover,

[(p ∨ r) ∧ (p ∨ ¬r) Σu
�
Σc

(p ∨ q) ∧ (p ∨ ¬q)]((p ∨ p) ∧ (p ∨ ¬p)) =

{(p ∨ p) ∧ (p ∨ ¬p), (p ∨ q) ∧ (p ∨ ¬q)} ⊆ SenPL(Σc).

Consequently, Corollary 4.5 does not apply here either.
Theorem 4.6 implies that (p ∨ p) ∧ (p ∨ ¬p) is an interpolant forϕ′ and�′ stable

under extensions of PL by new models.

§5. Spoiling interpolation by new models. As in the previous section, consider
institution I = 〈Sig,Sen,Mod, 〈|=Σ〉Σ∈|Sig|〉, commutative square of signature mor-
phisms (∗), and sets of sentences Φ ⊆ Sen(Σp) and Ψ ∈ Sen(Σc) such that �pu(Φ) |=
�cu(Ψ). Theorem 4.6 gives the exact characterisation of interpolants that are stable
under extensions of I by new models. Of course, this also characterises interpolants
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that are fragile. In this section we characterise situations where all interpolants for
the premise Φ and conclusion Ψ may be spoiled at once when the institution is
extended by new models.

Corollary 5.1. Define Φ• = [�pu(Φ)
Σu
�
Σp
�cu(Ψ)](Φ) ⊆ Sen(Σp) and Ψ◦ =

[�pu(Φ)
Σu
�
Σc
�cu(Ψ)](�ic(�–1

ip (Φ•))) ⊆ SenΣc . If Ψ �⊆ Ψ◦ then there is an extension

I+ of I by models such that there is no interpolant for Φ and Ψ in I+.

Proof. Let I+ be the extension of I by a new Σp-model M (and its reducts
	M �
 ∈ Mod+(Σ) for � : Σ → Σp), with Th+(M ) = Φ•, and a new Σc-model N

(and its reducts 	N �
 ∈ Mod+(Σ) for � : Σ → Σc), with Th+(N ) = Ψ◦.
Then �pu(Φ) |=+ �cu(Ψ)—the corresponding arguments in the proofs of Lemmas

4.1 and 4.4 work here as well.
Consider now any set Θ ⊆ Sen(Σi). If �ip(Θ) �⊆ Φ• then M �|=+ �ip(Θ), but

M |=+ Φ (since Φ ⊆ Φ•), and so Φ �|=+ �ip(Θ). Otherwise Θ ⊆ �–1
ip (Φ•), so �ic(Θ) ⊆

�ic(�–1
ip (Φ•)) ⊆ Ψ◦. HenceN |=+ �ic(Θ) and sinceN �|=+ Ψ, �ic(Θ) �|=+ Ψ. Thus, no

set Θ ⊆ Sen(Σi) is an interpolant for Φ and Ψ in I+. �

The converse of Corollary 5.1 does not hold, since the conclusion follows as well
when we limit our attention to consequences of Φ, rather than arbitrary sentences

in Φ• = [�pu(Φ)
Σu
�
Σp
�cu(Ψ)](Φ).

To avoid repetition, for the rest of this section let

Θ∗ = �–1
ip ([�pu(Φ)

Σp
�
Σu
�cu(Ψ)](Φ) ∩ Th(Φ))

(more explicitly: Θ∗ = {� ∈ Sen(Σi) | �ip(�) ∈ [�pu(Φ)
Σp
�
Σu
�cu(Ψ)](Φ),Φ |= �ip(�)}).

Lemma 5.2. If Ψ �⊆ [�pu(Φ)
Σu
�
Σc
�cu(Ψ)](�ic(Θ∗)) then no interpolant for Φ and Ψ is

stable under extensions of I by models.

Proof. Consider an interpolant Θ ⊆ Sen(Σi) for Φ and Ψ in I.

If Θ �⊆ Θ∗ then �ip(Θ) �⊆ [�pu(Φ)
Σu
�
Σp
�cu(Ψ)](Φ), since Φ |= �ip(Θ). Therefore, by

Corollary 4.3, the interpolant Θ for Φ and Ψ is not stable under extensions of I by
models.

Otherwise Θ ⊆ Θ∗. Then we have Ψ �⊆ [�pu(Φ)
Σu
�
Σc
�cu(Ψ)](�ic(Θ)) since

[�pu(Φ)
Σu
�
Σc
�cu(Ψ)](�ic(Θ)) ⊆ [�pu(Φ)

Σu
�
Σc
�cu(Ψ)](�ic(Θ∗)). Hence, by Corollary 4.5,

the interpolant Θ for Φ and Ψ is not stable under extensions of I by models. �

The thesis of Lemma 5.2 seems weaker that that of Corollary 5.1—but only
superficially so:

Lemma 5.3. If no interpolant for Φ and Ψ is stable under extensions of I by models
then there is an extension I+ of I by models such that Φ and Ψ have no interpolant in I+.
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Proof. Let E be the family of all interpolants Θ ⊆ Sen(Σi) for Φ and Ψ in I. For
each Θ ∈ E , let IΘ be an extension of I by models such that Θ is not an interpolant for
Φ and Ψ in IΘ. Without loss of generality we may assume that the new models added
in IΘ are distinct for Θ ∈ E , i.e., model classes ModΘ(Σ) \ Mod(Σ), for Θ ∈ E , Σ ∈
|Sig|, are mutually disjoint. Define I+ to be the extension of I by models such that for
Σ ∈ |Sig|, Mod+(Σ) =

⋃
Θ∈E ModΘ(Σ) with the satisfaction relation inherited from

the appropriate IΘ, Θ∈E . Then�pu(Φ) |=+ �cu(Ψ), since this holds in every IΘ, Θ∈E .
Moreover, none of Θ ∈ E is an interpolant for Φ and Ψ in I+, since it is not an inter-
polant for Φ and Ψ in IΘ. Consequently, there is no interpolant for Φ and Ψ in I+. �

Corollary 5.4. If Ψ �⊆ [�pu(Φ)
Σu
�
Σc
�cu(Ψ)](�ic(Θ∗)) then there is an extension I+

of I by models such that there is no interpolant for Φ and Ψ in I+.

Proof. Directly by Lemmas 5.2 and 5.3. �
Theorem 5.5. There is an interpolant for Φ and Ψ in every extension of I by models

if and only if Ψ ⊆ [�pu(Φ)
Σu
�
Σc
�cu(Ψ)](�ic(Θ∗)) and �ic(Θ∗) |= Ψ.

Proof. For the “if” part: by definition of Θ∗, we have Φ |= �ip(Θ∗), and so if
�ic(Θ∗) |= Ψ then Θ∗ is an interpolant for Φ and Ψ in I. Moreover, since �ip(Θ∗) ⊆
[�pu(Φ)

Σu
�
Σp
�cu(Ψ)](Φ), by Theorem 4.6, if Ψ ⊆ [�pu(Φ)

Σu
�
Σc
�cu(Ψ)](�ic(Θ∗)) then Θ∗

is an interpolant for Φ and Ψ in every extension of I by models.
For the “only if” part: if there is an interpolant for Φ and Ψ in every extension of I

by models then, by contrapositive of Lemma 5.3, there is an interpolant Θ ⊆ Sen(Σi)
for Φ and Ψ in I that is stable under extensions of I by models. Therefore, by

Theorem 4.6, Ψ ⊆ [�pu(Φ)
Σu
�
Σc
�cu(Ψ)](�ic(Θ)) and �ip(Θ) ⊆ [�pu(Φ)

Σu
�
Σp
�cu(Ψ)](Φ).

Together with Φ |= �ip(Θ), the latter implies Θ ⊆ Θ∗. Thus �ic(Θ) ⊆ �ic(Θ∗), hence

Ψ ⊆ [�pu(Φ)
Σu
�
Σc
�cu(Ψ)](�ic(Θ∗)), and since �ic(Θ) |= Ψ, we also have �ic(Θ∗) |= Ψ—

which completes the proof. �
Example 5.6. Recall Example 4.7. As argued there, every interpolant for r ∧ p

and p ∨ q in PL is fragile. Consequently, by Lemma 5.3, there is an extension of
PL by models in which r ∧ p and p ∨ q have no interpolant. Let us also check how
Theorem 5.5 works here:

As in Example 4.7, [r ∧ p Σu
�
Σp
p ∨ q](r ∧ p) = {r ∧ p, p ∨ r, p ∨ p}. Then, applying

the notation Θ∗ as defined above for the case at hand, Θ∗ = {p ∨ p}. Recalling

another argument in Example 4.7, [r ∧ p Σu
�
Σc
p ∨ q](Θ∗) = {p ∨ p}, and so p ∨ q �∈

[r ∧ p Σu
�
Σc
p ∨ q](Θ∗). Thus, by Theorem 5.5, it is not the case that in every extension

of PL by models there is an interpolant for r ∧ p and p ∨ q.
Looking now at the interpolants for (p ∨ r) ∧ (p ∨ ¬r) and (p ∨ q) ∧ (p ∨ ¬q),

as in Example 4.7, we have

[(p ∨ r) ∧ (p ∨ ¬r) Σu
�
Σp

(p ∨ q) ∧ (p ∨ ¬q)]((p ∨ r) ∧ (p ∨ ¬r)) =

{(p ∨ r) ∧ (p ∨ ¬r), (p ∨ p) ∧ (p ∨ ¬p)}.
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Therefore, again applying the notation Θ∗ for the current case, Θ∗ = {(p ∨ p) ∧
(p ∨ ¬p)}, and then:

[(p ∨ r) ∧ (p ∨ ¬r) Σu
�
Σc

(p ∨ q) ∧ (p ∨ ¬q)](Θ∗) =

{(p ∨ q) ∧ (p ∨ ¬q), (p ∨ p) ∧ (p ∨ ¬p)},
which contains (p ∨ q) ∧ (p ∨ ¬q). Since (p ∨ p) ∧ (p ∨ ¬p) |= (p ∨ q) ∧ (p ∨ ¬q),
by Theorem 5.5, (p ∨ r) ∧ (p ∨ ¬r) and (p ∨ q) ∧ (p ∨ ¬q) have an interpolant in
every extension of PL by models. Indeed, in Example 4.7 we argued independently
that (p ∨ p) ∧ (p ∨ ¬p) is such an interpolant.

§6. Spoiling interpolation by new sentences. As before, we study interpolation
in an institution I = 〈Sig,Sen,Mod, 〈|=Σ〉Σ∈|Sig|〉 over a commutative square of
signature morphisms (∗).

Changes to a logical system and its properties that may arise when new sentences
are introduced are in no sense dual to those resulting from extending the logical
system by new models. In particular, new sentences do not modify entailments
between the sentences of the original system, so they never spoil existing interpolants
for old sentences. However, on the one hand, new sentences (over the premise
and conclusion signatures) may lead to new entailments �pu(Φ) |=+ �cu(Ψ) with
no interpolant for Φ and Ψ (when Φ or Ψ involve new sentences). On the other
hand, adding appropriate new sentences (over the interpolant signature) may restore
(or establish) the interpolation property (with new interpolants involving new
sentences).

The first rough idea (see, for instance, the semantic characterisation of
interpolation in [15]) is that to spoil interpolation for the diagram (∗), we look
for a class K ⊆ Mod(Σi) that is not definable in I, and then build an extension I+

of I by new sentences ϕ ∈ Sen+(Σp) and � ∈ Sen+(Σc) such thatMod+(ϕ) = K –1
�ip

andMod+(�) = K –1
�ic

. It follows then that �pu(ϕ) |=+ �cu(�), and it may seem that
there should be no interpolant for ϕ and � (since such an interpolant would have
to define K). However, the latter need not be true in general.

One technical nuance is that a set Θ ⊆ Sen+(Σi) of sentences may then be an
interpolant for ϕ and � even if Mod+(Θ) �= K, namely when K ⊆Mod+(Θ) and
no model inMod+(Θ) \ K has a �ic-expansion to a model in Mod(Σc).

Example 6.1. In the institution EQ∅ of equational logic (with empty carriers
permitted) consider the diagram (∗), where Σi has two sorts s, t and constants
a, b : t, Σp extends it by a unary operationf : s → t, Σc extends Σi by a constant c : s ,
Σu = Σp ∪ Σc , and the signature morphisms are inclusions. Let Φ = {∀x:s. f(x) =
a,∀x:s. f(x) = b} ⊆ SenEQ∅(Σp) and Ψ = {a = b} ⊆ SenEQ∅(Σc). Then Φ |=Σu Ψ
butMod (Φ) �ip �⊆Mod (Ψ) �ic (sinceMod (Φ) contains models with the carrier of
sort s empty, whileMod (Ψ) does not). However, Θ = {∀x:s. a = b} ⊆ SenEQ∅(Σi)
is an interpolant for Φ and Ψ.

Another technicality is that the strong requirement Mod+(ϕ) = K –1
�ip

may be

weakened to Mod+(ϕ) �ip = K. Similarly, at the conclusion side, it is enough to

assume that all �ic-expansions of the models in K are inMod (�), K –1
�ic

⊆Mod (�),
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or equivalently, no model in K is a �ic-reduct of a Σc-model outside Mod (�),
K ⊆ Mod(Σi) \ ((Mod(Σc) \Mod (�)) �ic ). We may also permit a gap between

Mod+(ϕ) �ip and Mod(Σi) \ ((Mod(Σc) \Mod (�)) �ic ) as long as no definable class
separates them.

Most importantly though, new sentences over signatures Σp and Σc may result in
new Σi -sentences as well (as translations of the added sentences), and some Σi -model
classes that are not definable in I may become definable in I+.

The following notion will be used to take care of this: for any signature Σ ∈ |Sig|
and collection F = {〈Σj ,Mj〉 | Σj ∈ |Sig|,Mj ⊆ Mod(Σj), j ∈ J },11 we say that a
class M ⊆ Mod(Σ) of Σ-models is definable in I from F if for a family of signature
morphisms �l : Σjl → Σ, where jl ∈ J , l ∈ L, and a set Φ ⊆ Sen(Σ) of Σ-sentences
we have M =

⋂
l∈L Mjl

–1
�jl

∩Mod (Φ).

Lemma 6.2. If there are classes of models M ⊆ Mod(Σp) and N ⊆ Mod(Σc) such
that:

1. M –1
�pu ⊆ N –1

�cu and
2. no class of models K ⊆ Mod(Σi) such that M �ip ⊆ K and K –1

�ic
⊆ N is definable

in I from {〈Σp,M〉, 〈Σc ,N〉},
then there is an extension I+ of I by new sentences such that the diagram (∗) does not
admit interpolation.

Proof. Let I+ extend I by the following new sentences: Σp-sentence ϕ (and
its translations 	�(ϕ)
 ∈ Sen+(Σ) for � : Σp → Σ) such that Mod+(ϕ) = M, and
Σc-sentence � (and its translations 	�(�)
 ∈ Sen+(Σ) for � : Σc → Σ) such that
Mod+(�) = N . Then �pu(ϕ) |=+ �cu(�), sinceMod+(�pu(ϕ)) = M –1

�pu ⊆ N –1
�cu =

Mod+(�cu(�)).
Suppose that there is an interpolant Θ+ ⊆ Sen+(Σi) for ϕ and � in I+.

By the construction of I+, Θ+ = Θ ∪ {	�l (ϕ)
 | �l : Σp → Σi , l ∈ Lp} ∪ {	�l (�)
 |
�l : Σc → Σi , l ∈ Lc}, where Θ ⊆ Sen(Σi) (and Lp and Lc are disjoint). This means
that K =Mod+(Θ+) is definable in I from {〈Σp,M〉, 〈Σc ,N〉}.

However, ϕ |=+ �ip(Θ+), hence M ⊆Mod+(�ip(Θ+)) = K –1
�ip

and so M �ip ⊆
K. Moreover, �ic(Θ+) |=+ �, and so K –1

�ic
=Mod+(�ic(Θ+)) ⊆ N—which yields a

contradiction. �
Theorem 6.3. There is an extension I+ of I by new sentences in which the diagram

(∗) does not admit interpolation if and only if there are classes of modelsM ⊆ Mod(Σp)
and N ⊆ Mod(Σc) such that:

1. M –1
�pu ⊆ N –1

�cu and
2. no class of models K ⊆ Mod(Σi) such that M �ip ⊆ K and K –1

�ic
⊆ N is definable

in I from {〈Σp,M〉, 〈Σc ,N〉}.

Proof. The “if” part is Lemma 6.2.
For the “only if” part: consider an extension I+ of I by new sentences, and let

Φ+ ⊆ Sen+(Σp) and Ψ+ ⊆ Sen+(Σc) be such that �pu(Φ+) |=+ �cu(Ψ+) but there is

11J is a set of indices that “name” the elements of F ; we introduce such sets of indices whenever
convenient.
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no interpolant for Φ+ and Ψ+ in I+. Put M =Mod+(Φ+) and N =Mod+(Ψ+).
Clearly, M –1

�pu ⊆ N –1
�cu .

Suppose there is a class of models K ⊆ Mod(Σi) such that M �ip ⊆ K and

K –1
�ic

⊆ N that is definable in I from {〈Σp,M〉, 〈Σc ,N〉}. Then there are Σi -
sentences Θ ⊆ Sen(Σi) and signature morphisms �l : Σp → Σi , l ∈ Lp, and
�l : Σc → Σi , l ∈ Lc , such that K =

⋂
l∈Lp M

–1
�l
∩

⋂
l∈Lc N

–1
�l
∩Mod (Θ). Put

Θ+ = Θ ∪
⋃
l∈Lp �l (Φ+) ∪

⋃
l∈Lc �l (Ψ+) ⊆ Sen+(Σi). Then Mod+(Θ+

i ) = K, and
Θ+ is an interpolant for Φ+ and Ψ+ in I+—which yields a contradiction. �

Example 6.4. Consider an example in the institution FOEQ of first-order logic
with equality. Let all the signatures in the diagram (∗) extend Σi , which has
exactly one sort Nat, constant 0 : Nat and operation s : Nat → Nat. In addition,
Σp has bop : Nat ×Nat → Nat and Σc has + : Nat ×Nat → Nat. Finally,
Σu = Σp ∪ Σc , and all four signature morphisms in (∗) are inclusions.

Let M ⊆ Mod(Σp) be the class of all models with the carrier set freely generated
by 0 and s (where each element is the value of exactly one of the terms of the form
sn(0)). Let then N ⊆ Mod(Σc) be the class of models that satisfy the following
implication:

� ≡ (∀x, y:Nat. x + 0 = x ∧ x + s(y) = s(x + y)) ⇒∀x, y:Nat. x + y = y + x.

Let FO+
EQ be the extension of FOEQ by a new Σp-sentence ϕ (and its formal

translations) such that Mod+(ϕ) = M.12 No new Σc-sentence is added, since N
is already definable in FOEQ. Clearly, M –1

�pu ⊆ N –1
�cu , and so �pu(ϕ) |=+ �cu(�).

However, no class of modelsK ⊆ Mod(Σi) that is definable by first-order sentences
excludes non-standard models of natural numbers (with “infinitary” elements).
Moreover, there is no signature morphism from Σp to Σi . Therefore, if M �ip ⊆ K ⊆
Mod(Σi) and K is definable in FOEQ from {〈Σp,M〉} then K –1

�ic
�|=+ � (addition

does not have to commute on “infinitary” arguments). Consequently, ϕ and � have
no interpolant in FO+

EQ.
However, if we remove the additional operation bop from the signature Σp

(and replace it by a unary operation uop : Nat → Nat) the situation becomes
quite different. We have then a (unique) signature morphism � : Σp → Σi , and
the sentence 	�(ϕ)
 ∈ Sen+(Σi) defines up to isomorphism the standard model
of natural numbers, and therefore is an interpolant for ϕ and �.

For institutions like PL, where all classes of models are definable, it might
seem that all commutative squares of signature morphisms admit interpolation,
and no extension by sentences may spoil this property. However, this need not
be the case, since in general, in an arbitrary institution, for classes of models
M ⊆ Mod(Σp) and N ⊆ Mod(Σc) such that M –1

�pu ⊆ N –1
�cu the inclusion M �ip ⊆

Mod(Σi) \ ((Mod(Σc) \ N ) �ic ) may fail, and then no class K ⊆ Mod(Σi) satisfies

M �ip ⊆ K and K –1
�ic

⊆ N .

12For instance, using Standard ML [30] notation, ϕ might be written as datatype Nat = 0 |
s of Nat.
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Example 6.5. In the institution PL consider the diagram (∗) where Σp =
{p}, Σc = {q}, Σu = {r}, and Σi = ∅ (this determines the four signature mor-
phisms as well). Note that Sen(Σi) is non-empty (it contains for instance
false, ¬false, etc.) and Mod(Σi) = {∅}, where ∅ is the empty Σi -model. Putting
M = {{p}} and N = {{q}}, we have M –1

�pu = {{r}} = N –1
�cu , but M �ip = {∅} �⊆

Mod(Σi) \ ((Mod(Σc) \ N ) �ic ), since {∅} –1
�ic

= {∅, {q}} �⊆ N . Indeed, there is no
interpolant for p and q, even though �pu(p) = r = �cu(q).

The diagram (∗) admits weak amalgamation if for all modelsM ∈ Mod(Σp) and
N ∈ Mod(Σc) such that M �ip = N �ic there is a model K ′ ∈ Mod(Σu) such that
K ′

�pu =M andK ′
�cu = N . The diagram (∗) admits amalgamation if such a model

K ′ ∈ Mod(Σu) is always unique. This is a standard property used extensively in
“institutional” foundations of software specifications [39, 40]. Amalgamation (and
hence weak amalgamation) holds for pushouts in all the sample institutions and
their variants we defined in Examples 2.1–2.3; it fails though for some non-pushout
diagrams.

Lemma 6.6. Suppose that the diagram (∗) admits weak amalgamation. Then for
all classes of models M ⊆ Mod(Σp) and N ⊆ Mod(Σc), M –1

�pu ⊆ N –1
�cu implies

(M �ip ) –1
�ic

⊆ N .

Proof. Let M ∈ M, and let N ∈ Mod(Σc) be a �ic-expansion of M �ip , i.e.,
N �ic =M �ip . By the weak amalgamation property we have K ′ ∈ Mod(Σu)

such that K ′
�pu =M and K ′

�cu = N . Then K ′ ∈ M –1
�pu ⊆ N –1

�cu , and so
N = K ′

�cu ∈ N . �

Corollary 6.7. If the diagram (∗) admits weak amalgamation and each class of
Σi -models is definable then the diagram (∗) admits interpolation in every extension of
the institution I by new sentences.

Proof. Directly from Lemma 6.6 and Theorem 6.3. �

It turns out that the weak amalgamation property is also a necessary condition
in the above corollary, in a strong sense:

Corollary 6.8. If the diagram (∗) does not admit weak amalgamation then it does
not admit interpolation in some extension of the institution by new sentences, nor in its
further extensions by new sentences.

Proof. ConsiderM ∈ Mod(Σp) andN ∈ Mod(Σc) such thatM �ip = N �ic , but
there is no model K ′ ∈ Mod(Σu) such that K ′

�pu =M and K ′
�cu = N . Then

the classes M = {M} ⊆ Mod(Σp) and N = Mod(Σc) \ {N} ⊆ Mod(Σc) satisfy the
requirements 1 (M –1

�pu ⊆ N –1
�cu ) and 2 (since (M �ip ) –1

�ic
�⊆ N ) in Lemma 6.2, and

so indeed, as in the proof of Lemma 6.2, interpolation over (∗) fails in the extension
I+ of I by new sentences ϕ ∈ Sen+(Σp) and� ∈ Sen+(Σc) withMod+(ϕ) = M and
Mod+(�) = N . Moreover, since there is no classK ⊆ Mod(Σi) such thatM �ip ⊆ K
andK –1

�ic
⊆ N , no further extension of I+ by new sentences may create an interpolant

for ϕ and �. �
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Theorem 6.9. Assume that each class of Σi -models is definable. Then the diagram
(∗) admits interpolation in every extension of the institution I by new sentences if and
only if it admits weak amalgamation.

Proof. The “if” part is Corollary 6.7; the “only if” part follows by
Corollary 6.8. �

If we disregard foundational issues (see footnote 4) and extend the institution
by enough new sentences to make all classes of Σi -models definable (in general this
may require a proper class of sentences though) then in such an extension of the
institution by new sentences the diagram (∗) admits interpolation provided it admits
weak amalgamation.

§7. Spoiling interpolation by new models and sentences. As so far, we study
interpolation over a commutative diagram of signature morphisms (∗) in an insti-
tution I = 〈Sig,Sen,Mod, 〈|=Σ〉Σ∈|Sig|〉, in this section addressing the possibilities of
spoiling interpolation by extending the institution with new models and sentences.

An extension of an institution I by new models and sentences is an extension I++

by new sentences of an extension I+ by new models of the institution I.
The order of the extensions used above is irrelevant. For, let I+ be the extension of I

by models NM = 〈NMΣ, |=NM
Σ ⊆ NMΣ × Sen(Σ)〉Σ∈|Sig|, and I++ be the extension

of I+ by sentences NS = 〈NSΣ, |=NS
Σ ⊆ Mod+(Σ) ×NSΣ〉Σ∈|Sig| (see Section 2.3 for

the definitions and notation). Then define I′ as the extension of I by sentences
NS ′ = 〈NSΣ, |=NS′

Σ ⊆ Mod(Σ) ×NSΣ〉Σ∈|Sig|, where M |=NS′
Σ ϕ iff M |=NS

Σ ϕ for
Σ ∈ |Sig|, M ∈ Mod(Σ) and ϕ ∈ NSΣ. Then I++ coincides with the extension of
I′ by models NM′ = 〈NMΣ, |=NM′

Σ ⊆ NMΣ × Sen′(Σ)〉Σ∈|Sig|, where for Σ ∈ |Sig|
and M ∈ NMΣ, M |=NM′

Σ ϕ iff M |=NM
Σ ϕ for ϕ ∈ Sen(Σ), and for � : Σ′ → Σ,

ϕ′ ∈ NSΣ′ ,M |=NM′
Σ 	�(ϕ′)
 iff 	M �
 |=NS

Σ′ ϕ
′.

Obviously, we have “sinks” and “sources” of institution morphisms that link
institution I and its extension I++ by models and sentences:

I
�NM−−−−→ I+ �NS←−−− I++ I

�NS′←−−−− I′
�NM′−−−−→ I++

However, in general there is no institution morphism between I and I++. Their
relationship can be captured by another kind of mapping between institutions,
where sentences and models translate covariantly, called institution encodings [44]
or forward institution morphisms [27] (used in an interesting way for instance
in [5]).

Corollary 3.3 gives a sufficient condition that ensures that the Craig interpolation
property over a diagram (∗) is stable under extensions of the institution by new
models and sentences. The key result here is that this is also a necessary condition:
if the conditions 1 and 2 stated in Corollary 3.3 fail for the diagram (∗) then in some
extension of the institution by new models and sentences, the diagram (∗) does not
admit interpolation.

Theorem 7.1. The diagram (∗) admits interpolation in all extensions of I by new
models and sentences if and only if at least one of the following conditions holds:

1. �ip : Σi → Σp is a retraction and �cu : Σc → Σu is a coretraction, or
2. �ic : Σi → Σc is a retraction and �pu : Σp → Σu is a coretraction.
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Proof. The “if” part follows by Corollary 3.3.
For the “only if” part, assume that conditions 1 and 2 do not hold. Let I+ be

the extension of I by a new Σp-model M and a new Σc-model N (and their formal
reducts) such that M and N do not satisfy any I-sentences. Let then I++ be the
extension of I+ by a new Σp-sentence ϕ and a new Σc-sentence � (and their formal
translations) such that:

• Mod++(ϕ) = {M} ∪ {	N �pi ;�ic 
 | �pi : Σp → Σi , �pi ;�ip = idΣp}.
• Mod++(�) = {	M �cu ;�up
 | �up : Σu → Σp, �pu ;�up = idΣp} ∪

{	N �cc 
 | �cc : Σc → Σc , �cc �= idΣc}.
We have then:

• Mod++(�pu(ϕ)) =Mod++(ϕ) –1
�pu = Mϕ ∪Nϕ , where

Mϕ = {	M �up
 | �up : Σu → Σp, �pu ;�up = idΣp}.
Nϕ = {	N �uc 
 | �uc : Σu → Σc , �pu ;�uc = �pi ;�ic : Σp → Σc ,

�pi : Σp → Σi , �pi ;�ip = idΣp}.
• Mod++(�cu(�)) =Mod++(�) –1

�cu = M� ∪N�, where
M� = {	M �up
 | �up : Σu → Σp, �cu ;�up = �cu ;�up : Σc → Σp,

�up : Σu → Σp, �pu ;�up = idΣp}.
N� = {	N �uc 
 | �uc : Σu → Σc , �cu ;�uc �= idΣc}.

Clearly, Mϕ ⊆ M�. Moreover, N ϕ ⊆ N� when �ip : Σi → Σp is not a retraction
(since then N ϕ = ∅) or �cu : Σc → Σu is not a coretraction (since then all
�uc : Σu → Σc satisfy �cu ;�uc �= idΣc ). However, under our assumptions, at least one
of these conditions holds (since condition 1 above does not hold), so we have
Mod++(�pu(ϕ)) ⊆Mod++(�cu(�)), that is, �pu(ϕ) |=++ �cu(�).

Suppose now that Θ ⊆ Sen++(Σi) is an interpolant forϕ and� in I++. In particular,
ϕ |=++ �ip(Θ) and soM |=++ �ip(Θ).

For I-sentences � ∈ Sen(Σi), M �|=++ �ip(�), so Θ must not contain any “old”
sentences � ∈ Sen(Σi). Hence all sentences in Θ are formal translations of ϕ or of
� to the signature Σi .

Consider such a translation of ϕ, 	�pi(ϕ)
 ∈ Sen++(Σi), where �pi : Σp → Σi .
If 	�pi(ϕ)
 ∈ Θ then M |=++ �ip(	�pi(ϕ)
), and so �pi ;�ip = idΣp . It follows that
	N �pi ;�ic 
 |=++ ϕ, and so N |=++ �ic(	�pi(ϕ)
).

Consider now a translation of �, 	�ci(�)
 ∈ Sen++(Σi), where �ci : Σc → Σi .
If 	�ci(�)
 ∈ Θ then M |=++ �ip(	�ci(�)
). Therefore �ci ;�ip = �cu ;�up for some
�up : Σu → Σc such that �pu ;�up = idΣp . Then �pu : Σp → Σu is a retraction, and so
�ic : Σi → Σc is not a coretraction (since condition 2 does not hold). Therefore,
�ci ;�ic �= idΣc , hence 	N �ci ;�ic 
 |=++ �, and so N |=++ �ic(	�ci(�)
).

Consequently, N |=++ �ic(Θ). But N �|=++ �, hence �ic(Θ) �|=++ �.
This shows that no Θ ⊆ Sen++(Σi) is an interpolant for ϕ and � in I++ when

conditions 1 and 2 do not hold. �

§8. Bounded interpolation. It may be argued that in practical applications the
relevant sets of sentences considered in the definition of the interpolation property
(premises, conclusions and, most crucially, interpolants) should be finite. In this
section we show how the characterisation results concerning the fragility of
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interpolants and interpolation carry over to this case as well. We discuss this in a
somewhat more general setting, allowing the “size” of the sets of sentences involved
to be bounded by a suitable cardinal (rather than requiring them to be finite).

Let κ be a regular cardinal13 —the finitary case mentioned above corresponds to
κ = ℵ0.

As so far, let I = 〈Sig,Sen,Mod, 〈|=Σ〉Σ∈|Sig|〉 be an institution; we consider a
commutative diagram (∗) in the category of signatures Sig.

An interpolant Θ ⊆ Sen(Σi) for Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc) is κ-bounded if
the cardinality of Θ is smaller than κ. A commutative square (∗) of signature
morphisms admits κ-bounded interpolation if all sets Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc)
of cardinalities smaller than κ such that �pu(Φ) |= �cu(Ψ) have a κ-bounded
interpolant.

A diagram (∗) may admit κ-bounded interpolation without admitting Craig
interpolation (as defined in Section 3.2), and the opposite implication does not
hold either (in compact institutions though, if (∗) admits Craig interpolation then it
admits κ-bounded interpolation). Similarly, for κ′ < κ, any κ′-bounded interpolant
is κ-bounded, but a diagram (∗) may admit κ′-bounded interpolation without
admitting κ-bounded interpolation, and the opposite implication does not hold
either.

In Section 4 we discussed when particular interpolants may be spoiled by
extending the institution by new models. The arguments and results there apply
directly to the special situation when the interpolant is κ-bounded. In particular,
Theorem 4.6 holds for κ-bounded interpolants as it is.

Section 5 culminates with Theorem 5.5, which in a way characterises the set
Θ∗ ⊆ Sen(Σi) defined there as the largest possible interpolant for Φ ⊆ Sen(Σp)
and Ψ ⊆ Sen(Σc) stable under extensions of the institution by new models. For the
bounded case we have to be able to choose an appropriate “sufficiently small” subset
of Θ∗, otherwise the result and its proof carries over:

Theorem 8.1. Consider Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc) such that �pu(Φ) |=
�cu(Ψ). Put Θ∗ = �–1

ip ([�pu(Φ)
Σu
�
Σp
�cu(Ψ)](Φ) ∩ Th(Φ)).

There is a κ-bounded interpolant for Φ and Ψ in every extension of I by
models if and only if for some Θ◦ ⊆ Θ∗ of cardinality smaller than κ, Ψ ⊆
[�pu(Φ)

Σu
�
Σc
�cu(Ψ)](�ic(Θ◦)) and �ic(Θ◦) |= Ψ.

Proof. For the “if” part: by definition of Θ∗, since by the assumption Θ◦ ⊆
Θ∗, we have Φ |= �ip(Θ◦). Together with �ic(Θ◦) |= Ψ this means that Θ◦ is an

interpolant for Φ and Ψ in I. Moreover, since �ip(Θ◦) ⊆ [�pu(Φ)
Σu
�
Σp
�cu(Ψ)](Φ) and

Ψ ⊆ [�pu(Φ)
Σu
�
Σc
�cu(Ψ)](�ic(Θ◦)), Theorem 4.6 implies that Θ◦ is an interpolant for

Φ and Ψ in every extension of I by models. Of course, Θ◦ is κ-bounded by the
assumption.

13An infinite cardinal κ is regular if the cardinality of the union of every set of cardinality smaller
than κ of sets of cardinality smaller than κ is smaller than κ [33].
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For the “only if” part, if there is a κ-bounded interpolant for Φ and Ψ in every
extension of I by models then there is a κ-bounded interpolant Θ◦ ⊆ Sen(Σi)
for Φ and Ψ in I that is stable under extensions of I by models—this follows
by mimicking the proof of Lemma 5.3 with only κ-bounded interpolants con-

sidered. Therefore, by Theorem 4.6, Ψ ⊆ [�pu(Φ)
Σu
�
Σc
�cu(Ψ)](�ic(Θ◦)) and �ip(Θ◦) ⊆

[�pu(Φ)
Σu
�
Σp
�cu(Ψ)](Φ). Together with Φ |= �ip(Θ◦), the latter implies Θ◦ ⊆ Θ∗. Since

we also have �ic(Θ◦) |= Ψ—this completes the proof. �

In the context of the κ-bounded interpolation property, we may additionally
assume that the cardinalities of Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc) are smaller than
κ—this does not change the above result though.

To adapt the results of Section 6 to the κ-bounded interpolation, we first have to
adjust some basic notions.

For any signature Σ ∈ |Sig|, a class of models M ⊆ Mod(Σ) is κ-definable in I
if for a set Φ ⊆ Sen(Σ) of cardinality smaller than κ, M =Mod (Φ). Then, given
a collection F = {〈Σj ,Mj〉 | Σj ∈ |Sig|,Mj ⊆ Mod(Σj), j ∈ J }, M ⊆ Mod(Σ) is
κ-definable in I from F if for a set Φ ⊆ Sen(Σ) of Σ-sentences of cardinality smaller
than κ and a set L of cardinality smaller than κ with signature morphisms �l : Σjl →
Σ, jl ∈ J , l ∈ L, we have M =

⋂
l∈L Mjl

–1
�jl

∩Mod (Φ).

The appropriate reformulation of Theorem 6.3 for the bounded interpolation is
rather obvious now:

Theorem 8.2. There is an extension I+ of I by new sentences in which the diagram
(∗) does not admit κ-bounded interpolation if and only if there are classes of models
M ⊆ Mod(Σp) and N ⊆ Mod(Σc) such that:

1. M –1
�pu ⊆ N –1

�cu and
2. no class of models K ⊆ Mod(Σi) such that M �ip ⊆ K and K –1

�ic
⊆ N is κ-

definable in I from {〈Σp,M〉, 〈Σc ,N〉}.

Proof. The proofs of Theorem 6.3 and of Lemma 6.2 essentially carry over to
the present case (with κ-definability and sets of sentences of cardinality smaller than
κ used in place of definability and arbitrary sets of sentences, respectively). �

The links between the weak amalgamation and interpolation properties carry over
to the bounded interpolation as well. In particular, Lemma 6.6 remains unaffected,
and Corollary 6.8 holds for the κ-bounded interpolation. Moreover, Corollary
6.7 and Theorem 6.9 hold for the κ-bounded interpolation if we strengthen the
requirement of definability of Σi -model classes to their κ-definability.

Interestingly, the final remark of Section 6 indicating that if the weak amalgama-
tion property is assumed, the interpolation property may be ensured by extending
the institution by (a possibly proper class of) new sentences, in the bounded case
may be refined in a non-trivial way:

Theorem 8.3. Assume that the category of signatures Sig is locally small. If the
diagram (∗) admits weak interpolation then there is an extension I+ of I by new
sentences such that the diagram (∗) admits κ-bounded interpolation in I+.
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Proof. Define institutions Iα = 〈Sig,Senα,Mod, 〈|=αΣ〉Σ∈|Sig|〉 by transfinite
induction as follows:

• I0 = I,
• for any ordinal α, Iα+1 is the extension of Iα by new Σi -sentences �Φ, one for

each set Φ ⊆ Senα(Σp) of cardinality smaller than κ such thatModα(Φ) �ip is
not κ-definable in Iα , withModα+1(�Φ) =Modα(Φ) �ip ,

• for any limit ordinal � , I� = 〈Sig,Sen� ,Mod, 〈|=�Σ〉Σ∈|Sig|〉, where for Σ ∈ |Sig|,
Sen�(Σ) =

⋃
α<� Senα(Σ) and |=�Σ =

⋃
α<� |=αΣ , and for � : Σ → Σ′, Sen�(�) =⋃

α<� Senα(�).

By the construction, for any ordinal α and set Φ ⊆ Senα(Σp) of cardinality smaller
than κ, the classModα(Φ) �ip ⊆ Mod(Σi) is κ-definable in Iα+1.

Let � be the initial (least) ordinal of cardinality κ. Then in I� , for any set Φ ⊆
Sen�(Σp) of cardinality smaller than κ, Mod�(Φ) �ip is κ-definable (which implies
that I�+1 = I�), since for any such set Φ we have that Φ ⊆ Senα(Σp) for some α < �.
This holds for instance for α =

⋃
{ < � | Φ ∩ Sen(Σp) �= ∅}, since the cardinality

ofα, which is the union of a set of cardinality smaller thanκ of ordinals of cardinality
smaller than κ, is smaller than κ. (Note that this argument would not work if sets
Φ of arbitrary cardinality were to be considered.) Consequently, Mod�(Φ) �ip =
Modα(Φ) �ip is κ-definable in Iα+1, and so in I� as well.

Now, the thesis follows for I+ = I� : for Φ ⊆ Sen(Σp) and Ψ ⊆ Sen(Σc) of
cardinalities smaller thanκ, if�pu(Φ) |= �cu(Ψ) then (Mod+(Φ) �ip ) –1

�ic
⊆Mod+(Ψ)

by Lemma 6.6. Since Mod+(Φ) �ip is κ-definable in I+, there is Θ ⊆ Sen+(Σi) of

cardinality smaller than κ such thatMod+(Θ) =Mod+(Φ) �ip . It follows that Θ is
a κ-bounded interpolant for Φ and Ψ. �

The key result of Section 7, Theorem 7.1, applies for the bounded interpolation as
it stands. The only adjustment needed is a small refinement in the proof of Lemma
3.2 (which may require an appropriate axiom of choice); the proof of Proposition
3.4 requires a similar adjustment:

Lemma 8.4. Consider the diagram (∗) of signature morphisms.
1. If Sen(�ip) : Sen(Σi) → Sen(Σp) is surjective and �cu : Σc → Σu is conservative

then (∗) admits κ-bounded interpolation.
2. If Sen(�ic) : Sen(Σi) → Sen(Σc) is surjective and �pu : Σp → Σu is conservative

then (∗) admits κ-bounded interpolation.

Proof. Adjusting the proof of Lemma 3.2: consider Φ ⊆ Sen(Σc) and Ψ ∈
Sen(Σc) of cardinalities smaller than κ and such that �pu(Φ) |= �cu(Ψ).

1. Suppose Sen(�ip) : Sen(Σi) → Sen(Σp) is surjective and �cu : Σc → Σu is conser-
vative. Choose Θ ⊆ �–1

ip (Φ) ⊆ Sen(Σi) of the same cardinality as Φ such that
�ip(Θ) = Φ. Trivially, Φ |= �ip(Θ). Then �pu(Φ) = �pu(�ip(Θ)) = �cu(�ic(Θ)),
and so �cu(�ic(Θ)) |= �cu(Ψ). Hence �ic(Θ) |= Ψ by conservativity of �cu . Thus
Θ is a κ-bounded interpolant for Φ and Ψ.

2. Suppose Sen(�ic) : Sen(Σi) → Sen(Σc) is surjective and �pu : Σp → Σu is
conservative. Choose Θ ⊆ �–1

ic (Ψ) ⊆ Sen(Σi) of the same cardinality as Ψ such
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that �ic(Θ) = Ψ. Trivially, �ic(Θ) |= Ψ. Moreover, �pu(�ip(Θ)) = �cu(�ic(Θ)) =
�cu(Ψ), and so �pu(Φ) |= �pu(�ip(Θ)), which implies Φ |= �ip(Θ) by conserva-
tivity of �pu . Thus Θ is a κ-bounded interpolant for Φ and Ψ. �

Now, Corollary 3.3 and Theorem 7.1 hold for κ-bounded interpolation: their
proofs carry over relying on Lemma 8.4 in place of Lemma 3.2.

§9. Craig–Robinson interpolation. In many applications, in particular in the
theory of structured specifications and modular software development, the Craig
interpolation property turns out a bit too weak if the underlying institution does
not enjoy some sufficient closure properties. What is needed is a stronger form
of interpolation, where the entailments between the premise and the conclusion,
and between the interpolant and the conclusion are to hold only in the context
of an additional theory or specification, which may be viewed as an additional
“parameter” for the interpolation property. This leads to the following definition,
working again in an institution I = 〈Sig,Sen,Mod, 〈|=Σ〉Σ∈|Sig|〉 over a commutative
square (∗) of signature morphisms [15, 20, 40]:

For any sets of sentences Φ ⊆ Sen(Σp) and Γ,Ψ ⊆ Sen(Σc) such that
�pu(Φ) ∪ �cu(Γ) |=Σu �cu(Ψ), an interpolant for Φ and Ψ w.r.t. Γ (over diagram (∗))
is a set Θ ⊆ Sen(Σi) of Σi -sentences such that Φ |=Σp �ip(Θ) and �ic(Θ) ∪ Γ |=Σc Ψ.

Σi

Θ

Φ |= �ip(Θ) Σp Σc �ic(Θ) ∪ Γ |= Ψ

�pu(Φ) ∪ �cu(Γ) |= �cu(Ψ)

Σu

�
�

��

�
�
��

�
�
��

�
�

��

�ip �ic

�pu �cu

The diagram (∗) admits Craig–Robinson (or parameterised) interpolation if for all
Φ ⊆ Sen(Σp) and Γ,Ψ ⊆ Sen(Σc) such that �pu(Φ) ∪ �cu(Γ) |= �cu(Ψ), there is an
interpolant Θ ⊆ Sen(Σi) for Φ and Ψ w.r.t. Γ.

Clearly, the Craig interpolation property is a special case of the Craig–Robinson
interpolation property where only the empty “parameter” set Γ = ∅ is considered—
however, in general the latter property is stronger. This is true in spite of the fact
that in institutions satisfying certain “closure” properties, the latter is implied by
the former. For instance, if I has infinitary implication14 then any diagram (∗) admits
Craig interpolation in I if and only if it admits Craig–Robinson interpolation. The
same holds if the institution is compact and has the usual binary implication, etc.

14That is: for any signature Σ ∈ |Sig|, set of sentences Γ ⊆ Sen(Σ) and sentence � ∈ Sen(Σ), there
is a sentence �Γ ⇒ �� ∈ Sen(Σ) such that for all models M ∈ Mod(Σ), M |= �Γ ⇒ �� iff M �|= Γ or
M |= �.
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Consequently, in the institutions FO of first-order logic and PL of propositional logic
when a commutative square of signature morphisms admits Craig interpolation then
it admits Craig–Robinson interpolation as well. This is not the case for equational
logic though:

Example 9.1. In the institution EQ of equational logic, consider the diagram (∗)
where all signatures have a single sort s, and Σi = Σc have constants a, b, c, d : s ,
while Σp = Σu extends them by a unary operation f : s → s (and the signature
morphisms are inclusions). Put Φ = {f(a) = b, f(c) = d}, Γ = {a = c}, Ψ =
{b = d}. Clearly, Φ ∪ Γ |= Ψ. However, there are no non-trivial consequences of
Φ over the signature Σi (conditional equations are not in EQ), and so there is no
interpolant for Φ and Ψ w.r.t. Γ. This shows that in the institution of equational
logic even union-intersection squares of signature inclusions need not admit Craig–
Robinson interpolation.

Although the results presented in the previous sections do not apply directly to
the Craig–Robinson interpolation, the techniques introduced may be used to show
pretty much similar facts. For instance:

Theorem 9.2. Let Φ ⊆ Sen(Σp) and Γ,Ψ ⊆ Sen(Σc) be sets of sentences such that
�pu(Φ) ∪ �cu(Γ) |= �cu(Ψ). An interpolant Θ ⊆ Sen(Σi) for Φ and Ψ w.r.t. Γ is stable
under extensions of I by models if and only if the following conditions hold:

1. �ip(Θ) ⊆ [(�pu(Φ) ∪ �cu(Γ))
Σu
�
Σp
�cu(Ψ)](Φ), and

2. Ψ ⊆ [(�pu(Φ) ∪ �cu(Γ))
Σu
�
Σc
�cu(Ψ)](�ic(Θ) ∪ Γ).

Proof. Following the pattern of the proof of Theorem 4.6 (and lemmas and
corollaries it relies on):

For the “if” part, suppose that I+ is an extension of I by models such that Θ is
not an interpolant for Φ and Ψ w.r.t. Γ in I+, that is, we have �pu(Φ) |=+ �cu(Ψ), but
Φ �|=+ �ip(Θ) or �ic(Θ) ∪ Γ �|=+ Ψ.

1. If Φ �|=+ �ip(Θ) then for some model M ∈ Mod+(Σp), M |=+ Φ and
M �|=+ �ip(Θ). Then Φ ⊆ Th+(M ) and �ip(Θ) �⊆ Th+(M ). Moreover,
Th+(M ) never separates �pu(Φ) ∪ �cu(Γ) from �cu(Ψ). It follows that

[(�pu(Φ) ∪ �cu(Γ))
Σu
�
Σp
�cu(Ψ)](Φ) ⊆ Th+(M ), which implies �ip(Θ) �⊆

[(�pu(Φ) ∪ �cu(Γ))
Σu
�
Σp
�cu(Ψ)](Φ).

2. If �ic(Θ) ∪ Γ �|=+ Ψ then for some model N ∈ Mod+(Σc), N |=+ �ic(Θ) ∪ Γ
and N �|=+ Ψ. Then �ic(Θ) ∪ Γ ⊆ Th+(N ) and Ψ �⊆ Th+(N ), and Th+(N )
never separates �pu(Φ) ∪ �cu(Γ) from �cu(Ψ). It follows now that

[(�pu(Φ) ∪ �cu(Γ))
Σu
�
Σc
�cu(Ψ)](�ic(Θ)) ⊆ Th+(N ), which implies Ψ �⊆

[(�pu(Φ) ∪ �cu(Γ))
Σu
�
Σc
�cu(Ψ)](�ic(Θ)).

For the “only if” part, let I+ be an extension of I by a new Σp-model M and a
new Σc-model N (and their formal reducts) with:
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• Th+(M ) = [(�pu(Φ) ∪ �cu(Γ))
Σu
�
Σp
�cu(Ψ)](Φ),

• Th+(N ) = [(�pu(Φ) ∪ �cu(Γ))
Σu
�
Σc
�cu(Ψ)](�ic(Θ) ∪ Γ).

In I+, we still have �pu(Φ) ∪ �cu(Γ) |=+ �cu(Ψ). However, if condition 1 fails then
M �|=+ �ip(Θ), and so Φ �|=+ �ip(Θ), and if condition 2 fails then N �|=+ Ψ, and
so �ic(Θ) ∪ Γ �|=+ Ψ. In either case, Θ is not an interpolant for Φ and Ψ w.r.t. Γ
in I+. �

Theorem 9.3. Consider Φ ⊆ Sen(Σp) and Γ,Ψ ⊆ Sen(Σc) that satisfy

�pu(Φ) ∪ �cu(Γ) |= �cu(Ψ). Put Θ∗ = �–1
ip ([(�pu(Φ) ∪ �cu(Γ))

Σu
�
Σp
�cu(Ψ)](Φ) ∩

Th(Φ)).
There is an interpolant for Φ and Ψ w.r.t. Γ in every extension of I by models if and

only if Ψ ⊆ [(�pu(Φ) ∪ �cu(Γ))
Σu
�
Σc
�cu(Ψ)](�ic(Θ∗)) and �ic(Θ∗) ∪ Γ |= Ψ.

Proof. Following the pattern of the proof of Theorem 5.5:
For the “if” part, just notice that under the assumptions, Θ∗ is an interpolant

for Φ and Ψ w.r.t. Γ, and by Theorem 9.2 it is stable under extensions of I by new
models.

For the “only if” part, if there is an interpolant for Φ and Ψ w.r.t. Γ in every
extension of I by models then, reasoning similarly as in the proof of Lemma 5.3,
there must be an interpolant Θ ⊆ Sen(Σi) for Φ and Ψ w.r.t. Γ in I that is stable
under extensions of I by models. Therefore, by Theorem 9.2:

• Ψ ⊆ [(�pu(Φ) ∪ �cu(Γ))
Σu
�
Σc
�cu(Ψ)](�ic(Θ) ∪ Γ), and

• �ip(Θ) ⊆ [(�pu(Φ) ∪ �cu(Γ))
Σu
�
Σp
�cu(Ψ)](Φ).

Together with Φ |= �ip(Θ), the latter implies Θ ⊆ Θ∗. Hence �ic(Θ) ⊆ �ic(Θ∗), and

so Ψ ⊆ [(�pu(Φ) ∪ �cu(Γ))
Σu
�
Σc
�cu(Ψ)](�ic(Θ∗) ∪ Γ). Since �ic(Θ) ∪ Γ |= Ψ, we also

have �ic(Θ∗) ∪ Γ |= Ψ—which completes the proof. �
Theorem 9.4. There is an extension I+ of I by new sentences in which the diagram

(∗) does not admit Craig–Robinson interpolation if and only if there are classes of
models M ⊆ Mod(Σp) and G,N ⊆ Mod(Σc) such that:

1. M –1
�pu ∩ G –1

�cu ⊆ N –1
�cu and

2. no class of models K ⊆ Mod(Σi) such that M �ip ⊆ K and K –1
�ic

∩ G ⊆ N is
definable in I from {〈Σp,M〉, 〈Σc ,G〉, 〈Σc ,N〉}.

Proof. Following the pattern of the proof of Theorem 6.3:
For the “if” part, let I+ be an extension of I by a new Σp-sentence ϕ

and new Σc-sentences � and � (and their formal translations) such that
Mod+(ϕ) = M, Mod+(�) = G and Mod+(�) = N . Then, by assumption 1, we
have {�pu(ϕ), �cu(�)} |= �cu(�). However, if there was an interpolant Θ+ ⊆ Sen+(Σi)
for ϕ and � w.r.t. � then the class Mod+(Θ+) ⊆ Mod(Σi) would be definable in
I from {〈Σp,M〉, 〈Σc ,G〉, 〈Σc ,N〉} and would satisfy M �ip ⊆Mod

+(Θ+) and

Mod+(Θ+) –1
�ic

∩ G ⊆ N , contradicting assumption 2.
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For the “only if” part: consider any extension I+ of I by new sentences with
Φ ⊆ Sen+(Σp) and Γ,Ψ ⊆ Sen+(Σc) such that �pu(Φ) ∪ �cu(Γ) |=+ �cu(Ψ) but there
is no interpolant for Φ and Ψ w.r.t. Γ in I+. Put M =Mod+(Φ), G =Mod+(Γ)
and N =Mod+(Ψ). Clearly, condition 1 holds.

Suppose there is a class of models K ⊆ Mod(Σi) such that M �ip ⊆ K and

K –1
�ic

∩ G ⊆ N that is definable in I from {〈Σp,M〉, 〈Σc ,G〉, 〈Σc ,N〉}. This means
that there are Σi -sentences Θ ⊆ Sen(Σi) and signature morphisms �l : Σp → Σi ,
l ∈ Lp, �l : Σc → Σi , l ∈ L′

c , and �l : Σc → Σi , l ∈ Lc , such that K =
⋂
l∈Lp M

–1
�l
∩⋂

l∈L′
c
G –1
�l
∩

⋂
l∈Lc N

–1
�l
∩Mod (Θ).

Put Θ+ = Θ ∪
⋃
l∈Lp �l (Φ) ∪

⋃
l∈L′

c
�l (Γ) ∪

⋃
l∈Lc �l (Ψ) ⊆ Sen+(Σi). Then

Mod+(Θ+) = K, and Θ+ is an interpolant for Φ and Ψ w.r.t. Γ in I+—which
yields a contradiction, proving condition 2. �

Perhaps surprisingly, Theorem 7.1, Lemma 3.2, and Corollary 3.3 do not quite
carry over. These results hint at a nice symmetry between the role of the premise and
conclusion signatures the classical Craig interpolation in fact bears, in spite of its
apparently asymmetrical formulation (this is also visible in the classical model theory
through the equivalence between the Craig interpolation and Robinson consistency
theorems, with the explicit symmetry in the formulation of the latter). This is
lost for the Craig–Robinson interpolation: Example 9.1 shows that condition 2
in Lemma 3.2 does not entail Craig–Robinson interpolation property, and similarly
in Corollary 3.3. However:

Lemma 9.5. If �ip : Σi → Σp is such that Sen(�ip) : Sen(Σi) → Sen(Σp) is surjective
and �cu : Σc → Σu is conservative then (∗) admits Craig–Robinson interpolation.

Proof. Let Φ ⊆ Sen(Σc) and Γ,Ψ ∈ Sen(Σc) be such that �pu(Φ) ∪ �cu(Γ) |=
�cu(Ψ).

Consider Θ = �–1
ip (Φ) ⊆ Sen(Σi). First, since Sen(�ip) : Sen(Σi) → Sen(Σp)

is surjective, Φ = �ip(Θ), and so Φ |=Σp �ip(Θ). Then, since (∗) commutes,
�pu(Φ) = �pu(�ip(Θ)) = �cu(�ic(Θ)), and so �cu(�ic(Θ)) ∪ �cu(Γ) |= �cu(Ψ). Hence
�ic(Θ) ∪ Γ |= Ψ by conservativity of �cu . Thus Θ is an interpolant for Φ and Ψ
w.r.t. Γ. �

Corollary 9.6. If �ip : Σi → Σp is a retraction and �cu : Σc → Σu is a coretraction
then (∗) admits Craig–Robinson interpolation.

Proof. Follows by Lemma 9.5, as in the proof of Corollary 3.3. �

Let’s have a look at the opposite implication:

Lemma 9.7. If the diagram (∗) admits Craig–Robinson interpolation in all
extensions of I by new sentences and models then �ip : Σi → Σp is a retraction.

Proof. Suppose that�ip : Σi → Σp is not a retraction, that is, there is no �pi : Σp →
Σi such that �pi ;�ip = idΣp .

Let I+ be the extension of I by a new Σp-model M and a new Σc-model N (and
their formal reducts) such that M and N do not satisfy any I-sentences. Let then
I++ be the extension of I+ by a new Σp-sentence ϕ and new Σc-sentences � and
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� (and their formal translations) such thatMod++(ϕ) = {M},Mod++(�) = {N},
Mod++(�) = ∅.

SinceMod++({�pu(ϕ), �cu(�)}) = ∅, we have {�pu(ϕ, �cu(�)} |=++ �cu(�).
Suppose there is an interpolant Θ ⊆ Sen++(Σi) for ϕ and � w.r.t. �. Then ϕ |=++

�ip(Θ), henceM |=++ �ip(Θ), and so:

• no I-sentences are in Θ;
• for �pi : Σp → Σi , 	�pi (ϕ)
 �∈ Θ since �pi ;�ip �= idΣp , hence 	M �pi ;�ip
 �∈
Mod++(ϕ), and soM �|=++ �ip(	�pi (ϕ)
);

• for �ci : Σc → Σi , 	�ci (�)
 �∈ Θ and 	�ci (�)
 �∈ Θ, since 	M �ci ;�ip
 �∈Mod++(�)

and 	M �ci ;�ip
 �∈Mod++(�), hence M �|=++ �ip(	�ci (�)
) and M �|=++

�ip(	�ci (�)
).

Therefore Θ = ∅. But � �|=++ �—which contradicts the assumption that Θ is an
interpolant for ϕ and � w.r.t. �. �

Lemma 9.8. If the diagram (∗) admits Craig–Robinson interpolation in all
extensions of I by new sentences and models then �cu : Σc → Σu is a coretraction.

Proof. Suppose that �cu : Σc → Σu is not a coretraction, that is, there is no
�uc : Σu → Σc such that �cu ;�uc = idΣc .

Let I+ be the extension of I by a new Σp-model M and a new Σc-model N (and
their formal reducts) such that M and N do not satisfy any I-sentences. Let then I++

be the extension of I+ by a new Σp-sentence ϕ and new Σc-sentences � and � (and
their formal translations) such that:

• Mod++(ϕ) = {M} ∪ {	N �pi ;�ic 
 | �pi : Σp → Σi , �pi ;�ip = idΣp},

• Mod++(�) = {N},
• Mod++(�) = {	N �cc 
 | �cc �= idΣc}.

We haveMod++(�cu(�)) = {	N �uc 
 | �cu ;�uc = idΣc} = ∅ since�cu : Σc → Σu is not
a coretraction. Hence {�pu(ϕ, �cu(�)} |=++ �cu(�).

Suppose there is an interpolant Θ ⊆ Sen++(Σi) for ϕ and � w.r.t. �. Then ϕ |=++

�ip(Θ), henceM |=++
Σp
�ip(Θ), and so:

• no I-sentences are in Θ;
• for �pi : Σp → Σi , if 	�pi (ϕ)
 ∈ Θ then M |=++ �ip(	�pi (ϕ)
), hence �pi ;�ip =
idΣp , which implies 	N �pi ;�ic 
 |=++ ϕ and thus N |=++ �ic(	�pi (ϕ)
);

• for �ci : Σc → Σi , 	�ci (�)
 �∈ Θ and 	�ci (�)
 �∈ Θ, since 	M �ci ;�ip
 �∈Mod++(�)

and 	M �ci ;�ip
 �∈Mod++(�), hence M �|=++ �ip(	�ci (�)
) and M �|=++

�ip(	�ci (�)
).

Therefore N |=++ �ic(Θ), but since we also have N |=++ � and N �|=++ �, �ic(Θ) ∪
{�} �|=++ �—which contradicts the assumption that Θ is an interpolant for ϕ and �
w.r.t. �. �

Summing up:

Theorem 9.9. The diagram (∗) admits Craig–Robinson interpolation in all
extensions of I by new sentences and models if and only if �ip : Σi → Σp is a retraction
and �cu : Σc → Σu is a coretraction.
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Proof. The “if” part is Corollary 9.6, and the “only if” part follows by Lemmas
9.7 and 9.8. �

§10. Final remarks. In this paper we deal with a general interpolation property,
recalling its formulation for an arbitrary logical system formalised as an institution.
We study behaviour of interpolation properties over an arbitrary commutative
square of signature morphisms under extensions of the institution by new models
and sentences. We give an exact characterisation of the situations when a particular
interpolant for a premise and a conclusion remains stable under institution
extensions by new models (Theorem 4.6), or looking at this from the other side, when
a particular interpolant for a premise and a conclusion is spoiled in some extension
of the institution by new models. Another result (Theorem 5.5) gives sufficient and
necessary conditions under which no interpolant for a given premise and conclusion
may survive all extensions of the institution by new models, or turning to the positive
view, when no extension by new models may spoil the interpolation property for
a given premise and conclusion. Then we turn to institution extensions by new
sentences, and give an exact characterisation of commutative squares of signature
morphisms where adding new sentences may lead to the lack of interpolation
(Theorem 6.3). Incidentally, we clarify here the role of the weak amalgamation
property as a necessary condition without which interpolation fails if adding new
sentences is permitted (Corollary 6.8). Finally, we give exact characterisation of
commutative squares of signature morphisms where interpolation is ensured for any
extension of the institution by new models and sentences (Theorem 7.1).

Then in Section 8 we argue that analogous characterisations hold for the stability
under institution extensions by new models, by new sentences, and by new models
and sentences, respectively, of bounded interpolation, where the size of the sets of
sentences considered is bounded by some appropriate cardinal. We also show here
that the weak amalgamation property makes it possible to extend the institution by
new sentences so that the bounded interpolation property is ensured (Theorem 8.3).
In particular, the results here cover finitary interpolation, where the interpolant sets
of sentences are required to be finite (for finite sets of premises and conclusions).

Finally, in Section 9 we turn to the practically important Craig–Robinson (or
parameterised) interpolation, where the conclusion is required to follow only when
an additional “parameter” set of sentences over the signature of the conclusion
is added to the premise and, respectively, to the interpolant. While the results
concerning institution extensions by new models and institution extensions by new
sentences carry over rather straightforwardly to this case, the final result concerning
the stability of interpolation under institution extensions by new models and
sentences differs and seems even stronger than the corresponding characterisation
result for the standard Craig interpolation.

To avoid repetition, we refrain from studying in any detail a bounded version
of Craig–Robinson interpolation—similar remarks and results as spelled out in
Section 8 for bounded (Craig) interpolation would carry over.

In many applications, the class of signature morphisms and of their commutative
squares for which the interpolation property is required does not cover all the
possible morphisms. Typically, signature pushouts are of the utmost importance,
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with further restrictions on the classes of morphisms used. In fact, this is necessary in
many contexts, as many institutions involved (including the many-sorted first-order
logic FO and equational logic EQ) simply do not admit interpolation for arbitrary
signature pushouts. It would be interesting to check how such extra requirements
on the signature morphisms involved interact with our characterisation theorems.
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[27] J. A. Goguen and G. Roşu, Institution morphisms. Formal Aspects of Computing, vol. 13 (2002),
nos. 3–5, pp. 274–307.

[28] T. S. E. Maibaum, M. R. Sadler, and P. A. S. Veloso, Logical specification and implementation,
Foundations of Software Technology and Theoretical Computer Science (M. Joseph and R. Shyamasundar,
editors), Springer, Berlin, 1984, pp. 13–30.

[29] J. Meseguer, General logics, Logic Colloquium ’87 (H.-D. Ebbinghaus, editor), North-Holland,
Amsterdam, 1989, pp. 275–329.

[30] R. Milner, M. Tofte, R. Harper, and D. MacQueen, The Definition of Standard ML (Revised),
MIT Press, Cambridge, 1997.

[31] T. Mossakowski, W. PawŁowski, D. Sannella, and A. Tarlecki, Parchments for CafeOBJ
logics, Specification, Algebra, and Software - Essays Dedicated to Kokichi Futatsugi (S. Iida, J. Meseguer,
and K. Ogata, editors), Lecture Notes in Computer Science, 8373, Springer, Berlin, 2014, pp. 66–91.

[32] T. Mossakowski, A. Tarlecki, and W. PawŁowski, Combining and representing logical systems
using model-theoretic parchments, Recent Trends in Data Type Specification. Selected Papers from the
12th International Workshop on Specification of Abstract Data Types (F. Parisi-Presicce, editor), Lecture
Notes in Computer Science, 1376, Springer, Berlin, 1998, pp. 349–364.

[33] nLab, Regular cardinal, 2022. Available at https://ncatlab.org/nlab/show/regular+cardinal
(accessed 15 August 2023].
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