A CLASS OF PRIME RINGS

Kwangil Koh and A.C. Mewborn

(received July 20, 1965)

1. Introduction. If R is a ring and I is a right ideal of R then I is called faithful if R - I is a faithful right R-module, i. e. if $\{r \in R: Rr \subseteq I\} = (0)$. I is called irreducible [1] provided that if J_1 and J_2 are right ideals such that $J_1 \cap J_2 = I$, then $J_1 = I$ or $J_2 = I$. Let $N(I) = \{r \in R: rI \subseteq I\}$ and [I: a] = $\{r \in R: ar \in I\}$ for $a \in R$. We write (a)^r for [(0): a].

DEFINITION 1.1 If I is a proper right ideal of R, then I is almost maximal provided that I is irreducible and

i) if $a \in R$ and $[I:a] \supset I$, then $a \in I$,

ii) if J is a right ideal of R, $J \supset I$, then $N(I) \cap J \supset I$, and if $a \in \mathbb{R}$ such that $[J:a] \supset I$, then $[J:a] \supset I$.

In a ring with unity a maximal proper right ideal of R is almost maximal. However, an almost maximal right ideal of Rneed not be maximal; for example, the zero ideal is almost maximal in the ring of integers.

DEFINITION 1.2 Let V be a (left) vector space over a division ring D and let R be a ring of linear transformations of V. Then R is weakly transitive provided there is a right order K in D and a (K, R)-submodule M of V such that M is uniform [1] as R-module, DM = V, and such that if $\{m_i\}_{i=1}^{n}$ is a finite D-linearly independent subset of M and if $\{y_i\}_{i=1}^{n}$ is a sequence from M, then there exists $r \in R$, $k \in K$, $k \neq 0$, such that $m_i r = ky_i$, $1 \le i \le n$.

Canad. Math. Bull. vol. 9, no. 1, 1966

Each primitive ring is isomorphic to a weakly transitive ring since a transitive ring is obviously weakly transitive. In [6] it was proved that a prime ring with zero (right) <u>singular</u> ideal [3] and containing a uniform right ideal is isomorphic to a weakly transitive ring. A prime ring with zero (right) singular ideal and uniform right ideal has a maximal annihilator right ideal which is faithful and almost maximal. The main result of this paper is that a ring is isomorphic to a weakly transitive ring if and only if it has a faithful, almost maximal right ideal.

2. Let C be the class of rings R such that R has a faithful, almost maximal right ideal.

THEOREM 2.1 If $R \in C_{\alpha}$ and I is a faithful, almost maximal right ideal of R, then I is a prime right ideal [4] of R.

<u>Proof.</u> Let A, B be right ideals of R with $B \neq (0)$ such that $AB \subseteq I$. Suppose $A \not \subseteq I$. Since I is almost maximal, by 1.1 (ii), we can choose $x \in N(I) \cap (A + I)$ such that $x \notin I$. x = a + i for some $a \in A$, $i \in I$, $a \notin I$. Since I is faithful, $RB \not \subseteq I$. Thus $RB + I \supset I$. $a(RB + I) \subseteq AB + I \subseteq I$, since $aI = (i - x)I \subseteq I$. This contradicts 1.1 (i).

COROLLARY. If $R \in C$ then R is a prime ring.

Proof. This follows from Theorem 2.1 and [4: p. 800].

THEOREM 2.2 If R is a semi-prime ring such that the (right) singular ideal R_r^{Δ} of R is zero and R contains a uniform right ideal U then for each $u \in U$ such that $uU \neq 0$, $(u)^r$ is almost maximal.

<u>Proof.</u> Let A be a complement of $(u)^{r}$. Then A is a uniform right ideal of R and A \bigoplus $(u)^{r}$ is a large right ideal of R. By [7: 4.2 p.8], a complement of A containing $(u)^{r}$ is $(u)^{r}$. Let $a \in R$ such that $(a)^{r} \supset (u)^{r}$. Then $(a)^{r} \cap A \neq (0)$ and $(a)^{r} \supseteq (u)^{r} \oplus A$. Hence a is a singular

element of R. Since $\mathbf{a} \in \mathbb{R}_{r}^{\Delta} = (0)$, $\mathbf{a} = 0$. Let J be a right ideal of R such that $\mathbf{J} \supset (\mathbf{u})^{\mathbf{r}}$. If $\mathbf{x} \in \mathbb{R}$ such that $\mathbf{uxJ} = (0)$, then $(\mathbf{ux})^{\mathbf{r}} \supset (\mathbf{u})^{\mathbf{r}}$. Hence, $\mathbf{ux} = 0$. Notice that $(\mathbf{uJ})(\mathbf{uJ}) \neq (0)$ since R is semi-prime. Choose $\mathbf{j} \in \mathbf{J}$ such that $\mathbf{uju} \neq 0$. Then $(\mathbf{ju})^{\mathbf{r}} = (\mathbf{u})^{\mathbf{r}}$ and $\mathbf{ju} \in \mathbb{N}((\mathbf{u})^{\mathbf{r}}) \cap \mathbf{J}$. Thus $\mathbb{N}((\mathbf{u})^{\mathbf{r}}) \cap \mathbf{J} \supset (\mathbf{u})^{\mathbf{r}}$ Now if J is a right ideal such that $\mathbf{J} \supset (\mathbf{u})^{\mathbf{r}}$, then J is a large right ideal. Hence, if $[\mathbf{J}: \mathbf{a}] \supseteq (\mathbf{u})^{\mathbf{r}}$ for some $\mathbf{a} \in \mathbb{R}$ then $[\mathbf{J}: \mathbf{a}] \supset (\mathbf{u})^{\mathbf{r}}$ since $[\mathbf{J}: \mathbf{a}]$ is large and $(\mathbf{u})^{\mathbf{r}}$ is not large.

THEOREM 2.3 If R is a prime ring and I is an almost maximal right ideal of R which is not large, then I is a maximal annihilator right ideal of R.

<u>Proof.</u> Since I is not large, there exists a right ideal $A \neq (0)$ in R such that $I \cap A = (0)$. Let $J = I \bigoplus A$. Let $x \in N(I) \cap J$ such that $x \notin I$. This choice of x is possible since I is almost maximal. x = i + a for some $i \in I$ and $a \in A$, $a \neq 0$. $(i + a)I \subseteq I$. Thus $aI' \in A \cap I = (0)$. Hence $I \subseteq (a)^r$. Suppose there is $b \in R$, $b \neq 0$, such that $(b)^r \supseteq I$. Then $(b)^r$ is large since I is irreducible. Thus $R \stackrel{\Delta}{r} \neq (0)$. Let $L = R \stackrel{\Delta}{r} \cap I^f$ where $I^f = \{r \in R : rI = (0)\}$. Then $L \neq (0)$ since R is prime. If $y \in L$ then $(y)^r \supseteq I$ for if $(y)^r = I$ then $y \notin R \stackrel{\Delta}{r}$. Then $y \cdot (y)^r \subseteq I$ implies that $y \in I$; thus $L \subseteq I$. This is impossible since R is prime. Hence $I = (a)^r$ is a maximal annihilator right ideal.

COROLLARY. Let R be a prime ring. R contains a non-large, almost maximal right ideal if and only if $R_r^{\Delta} = (0)$ and R contains a uniform right ideal.

<u>Proof.</u> Sufficiency follows from Theorem 2.2 and necessity follows from Theorem 2.3.

REMARK 2.4 By Theorem 2.1, in a prime ring an

almost maximal right ideal which is faithful is a prime right ideal. However, a prime right ideal of a ring is not necessarily almost maximal. For example, if R is an integral domain which is not a right Ore-domain, then (0) is a prime right ideal, which is not almost maximal.

3. THEOREM 3.1 If R is a ring and I is an almost maximal right ideal of R then:

i) N(I)/I is a right Ore-domain;

ii) N(I)/I is isomorphic to a subring of the centralizer $Hom_{D}(R - I, R - I)$ of the R-module R - I;

iii) ${\rm Hom}_R^{}(R$ - I, R - I) is a right quotient ring of $\,N(I)/I\,$ in the sense of [3] ;

iv) In case R has a unity, $N(I)/I = Hom_{R}(R - I, R - I)$.

Proof.

i) Let x_1, x_2 be non-zero elements of N(I)/I. Suppose $x_1 \cdot x_2 = 0$. $x_1 = n_1 + I$ and $x_2 = n_2 + I$ for some $n_1 \in N(I)$, $n_1 \notin I$, i = 1, 2. Since $n_1 \cdot n_2 \in I$, $[I: n_1] \supset I$. Hence by 1.1 i), $n_1 \in I$ which is absurd. Now $(n_1 + I) R \cap (n_2 + I) R = M$ is a non-zero submodule of R - Isince I is irreducible. Let M = J - I for some right ideal J of R. Then $J \supset I$. Hence there is an element $a \in N(I) \cap J$ such that $a \notin I$. $a + I = n_1 r_1 + I = n_2 r_2 + I$ for some r_1 and r_2 in R. $a - n_1 r_1 \in I$ for i = 1, 2. Hence $n_1 r_1 \in N(I)$ for i = 1, 2. If $r_1 I \oplus I$ for i = 1 or i = 2, then $r_1 I + I \supset I$ and $n_1(r_1 I + I) \subseteq I$ implies that $n_1 \in I$. This is impossible. Thus $r_1 I \subseteq I$ for i = 1, 2; hence $r_1 \in N(I)$. This implies that $(0) \notin (n_1 + I)(r_1 + I) = (n_2 + I)(r_2 + I)$ and N(I)/I is an (right) Ore-domain. ii) Let X be an element of N(I)/I. Then X = n + Ifor some $n \in N(I)$. Define $f_{\chi}(r + I) = n \cdot r + I$ for all $r \in \mathbb{R}$. Then f_{χ} is an R-homomorphism of R - I into R - I. It is easy to see $\chi \rightarrow f_{\chi}$ is an isomorphism of N(I)/I into Hom_R(R - I, R - I).

iii) Let g be a non-zero element of $\operatorname{Hom}_{\mathcal{R}}(\mathbb{R} - I, \mathbb{R} - I)$. Then $g(\mathbb{R} - I) = J - I$ for some right ideal J of R such that $J \supseteq I$. Let $n \in N(I) \cap J$ such that $n \notin I$. There is $r \in \mathbb{R}$ such that $g(r_0 + I) = n + I$. Let the kernel of g = K - I for some right ideal K of R. If the kernel of g is zero then $r_0 \in I$ for all $i \in I$ since $ni \in I$ for all $i \in I$. Hence $gf_{r_0 + I} = f_{n+I} \neq 0$. We claim that the kernel of g is zero. Suppose the kernel of g is not zero. Then $K \supseteq I$ and $[K: r_0] \supseteq I$ by 1.1 ii). Let $a \in [K: r_0]$ such that $a \notin I$. Then $g(r_0 + I)a = g(r_0 a + I) = 0 = na + I$, and $[I: n] \supseteq I$. By 1.1 i), $n \in I$, which is absurd. Thus the kernel of g must be zero.

iv) In case R has a unity 1, the module R - I is strictly cyclic, and since $(1 + I)^{r} = I$ and $I = \{ k \in N(I) : kR \subseteq (1 + I)^{r} \}$, by [2: p. 25] N(I)/I is Hom_R(R - I, R - I).

THEOREM 3.2 If I is an almost maximal right ideal of R then the extended centralizer [3] of the R-module M = R - I exists and is a division ring.

Proof. Let f be a non-zero semi-endomorphism [3] of M and let J', J be right ideals of R such that J' - I is the domain of f and J - I is the kernel of f. Also let K be the right ideal such that f(J' - I) = K - I. Then $K \supset I$, because $f \neq 0$. Suppose the kernel of f is non-zero, i.e. $J \supset I$. Let $k \in N(I) \cap K$, $k \notin I$. Let $b \in J'$ such that f(b + I) = k + I. Since $k \in N(I)$, $bI \subset J$. By 1.1 (ii), $[J:b] \supset I$. Let $r \in [J:b]$, $r \notin I$, (0) = f(br + I) = kr + I implies $kr \in I$. This contradicts 1.1 (i). Thus the kernel of f is (0). It follows that each semi-endomorphism of R - I has a unique maximal extension. Therefore the extended centralizer exists. The extended centralizer is a division ring because R - I is a uniform module, [see 3].

In the sequel, we let I be an almost maximal right ideal of a ring R, M = R - I, and D the extended centralizer of M.

LEMMA 3.3 There exists a (D, R)-module V which is a <u>quasi-injective</u> [5] extension of M as R-module and such that DM = V.

<u>Proof.</u> Let \widehat{M} be the minimal injective extension of M. Let $Q = \operatorname{Hom}_{R}(\widehat{M}, \widehat{M})$, and V = QM. If $f \in Q$, then $M_{\widehat{f}} = \{m \in M: f(m) \in M\}$ is a large submodule of M and the contraction of f to $M_{\widehat{f}}$ is a semi-endomorphism. If ker $f \neq (0)$, then ker $f \cap M_{\widehat{f}} \neq (0)$. In the proof of Theorem 3.2 it was shown that a non-zero semi-endomorphism has zero kernel. Therefore either ker f = (0) or ker $f \supset M$.

Now suppose $g \in \operatorname{Hom}_{R}(V, V)$, $g \neq 0$. We wish to show that ker g = (0). Let $f \in Q$, $m \in M$, such that $g(f(m)) \neq (0)$. Since ker $gf \oiint M$, ker gf = (0). Now $f(M) \cap M \neq (0)$; hence $M \oiint ker g$. Then ker g = (0). It follows that each element d of D has a unique extension to an element \overline{d} of $\operatorname{Hom}_{R}(V, V)$. The mapping $d \rightarrow \overline{d}$ is an isomorphism of D <u>onto</u> $\operatorname{Hom}_{R}(V, V)$. Each semi-endomorphism α of V has an extension $\overline{\alpha}$ in $\operatorname{Hom}_{R}(\widehat{M}, \widehat{M})$ and the contraction of $\overline{\alpha}$ to V is an extension of α in $\operatorname{Hom}_{R}(V, V)$. Thus V is quasi-injective. Clearly DM = QM = V.

LEMMA 3.4 Let K = N(I)/I. Let J be any non-zero right ideal of R. If x, y \in M such that $x \cdot J \neq (0)$ and $K \cdot y \neq (0)$, then $x \cdot J \cap K \cdot y \neq (0)$.

Proof. Let x = r(x) + I, y = r(y) + I for some r(x),

r(y) $\in \mathbb{R}$. Since $x \cdot J \neq 0$, $r(x) \cdot J \not\subseteq I$. Thus (r(x) $\cdot J + I$) $\cap \mathbb{N}(I) \supset I$. Let $a \in (r(x) \cdot J + I) \cap \mathbb{N}(I)$ such that $a \notin I$. Then $a = r(x) \cdot j + i$ for some $j \in J$, $i \in I$ such that r(x) $\cdot j \in \mathbb{N}(I)$ and $r(x) \cdot j \notin I$. Let $k \in K$, $k \neq 0$. Then k = b + I for some $b \in \mathbb{N}(I)$ and $b \notin I$. $k(r(y) + I) = br(y) + I \neq (0)$. (r(x)j + I)(br(y) + I) = r(x)j \cdot br(y) + I \neq (0). $r(x)j \cdot br(y) + I \in x$ J and since $(r(x) \cdot j \cdot b + I)(r(y) + I) = (r(x) \cdot j \cdot b \cdot r(y) + I)$ and $r(x) \cdot j \cdot b + I \in K$, $r(x) \cdot j \cdot b \cdot r(y) + I \in K \cdot y$. Thus $x \cdot J \cap K \cdot y \neq (0)$.

LEMMA 3.5 If $\{x_i\}_{i=1}^n$ is a finite linearly independent subset of V contained in M and y is an element of M, then y is a D-linear combination of $\{x_i\}_{i=1}^n$ if and only if

 $\bigcap_{i=1}^{n} (x_i)^r \subseteq (y)^r .$

Proof. This is an immediate consequence of [5: 2.2].

LEMMA 3.6 Let K = N(I)/I. Then K is a right order in D.

 $\begin{array}{l} \underline{\operatorname{Proof.}} & \text{Let } d \in D, \ d \neq 0. \\ \text{Let } U = \{ \ m \in M: \ dm \in M \} \end{array} \\ \begin{array}{l} \text{Then } \overline{U \neq (0)}, \ \text{and } U = J - I \ \text{for some right ideal } J \supset I. \\ \text{Since } I \ \text{is almost maximal, } N(I) \cap J \supset I. \\ \text{Choose } j \in N(I) \cap J \ \text{such } that \ j \notin I. \\ \begin{array}{l} \text{Then } j \neq I \in K, \ \text{and } (j \neq I)m \in U \ \text{for all } m \in M. \\ \end{array} \\ \begin{array}{l} \text{Thus } 0 \neq d[(j \neq I)] \in K. \end{array}$

THEOREM 3.7 A ring R has a faithful almost maximal right ideal if and only if R is weakly transitive.

Proof. Let I be a faithful almost maximal right ideal of R and let M = R - I. Let D be the extended centralizer of M. Then D is a division ring by Theorem 3.2. By Corollary to Lemma 3.3, $V = D \cdot M$ is a left vector space over D. Let K = N(I)/I. Then K is a right order in D by Lemma 3.6 and $KM \subseteq M$. Let $\{x_i\}_{i=1}^{n}$ be a finite linearly independent subset of V contained in M. Let $\{y_i\}_{i=1}^{n}$ be a finite sequence in M.

Let $I_j = \bigcap_{i=1}^{r} (x_i)^r$. Then $x_j I_j \neq (0)$, by Lemma 3.5, for any $1 \le j \le n$. $x_{jj} \cap Ky_{j} \ne (0)$ for any $y_{j} \ne 0$, $1 \le j \le n$ by Lemma 3.4. Hence $x_{j} = k_{j} \neq 0$ for some $a_{j} \in I_{j}, y_{j} \neq 0$, $1 \leq j \leq n$. If $y_j = 0$, for some $1 \leq j \leq n$, then we let $a_j = 0$. $\bigcap_{j=1}^{k} k_j R = A$ is a non-zero submodule of M since M is uniform, where $y_j \neq 0$, $1 \leq j \leq m \leq n$. Let $k_j = n_j + I$, where $j_j = j$ $n_j \in N(I)$ and $y_j = r(y_j) + I$ for some $r(y_j) \in R$, $1 \le j \le m$. Let A = E - I for some right ideal E of R. Let $b_0 \in (E + I) \cap N(I)$ such that $b \notin I$. Then $b - n_j r(y_j) \cdot r_j \in I$ for some $n_i r(y_i) \cdot r_i + I \in k_i y_i \cdot R$. Let $x_i = r(x_i) + I$ for some $r(x_i) \in R$, for each $1 \le j \le n$. Let $r = \sum_{j=1}^{\infty} a_j r_j r(y_j)$ and $k = b_0 + I$. Then $x_i r = ky_i$ for all $1 \le j \le n$, since $x_i \cdot r = x_i a_i r_j \cdot r(y_i) = k_j y_i r_j r(y_i) = n_j r(y_i) r_j \cdot r(y_j) + I$ $= (n_j r(y_j) r_j + I) \cdot (r(y_j) + I)$

 $= k \cdot y_j, \quad 1 \leq j \leq n$.

Conversely, assume V, M, D and K are given as in Definition 1.2. Let $0 \neq v \in M$ and let $I = (v_0)^r$. First we prove that I is faithful. Suppose S is a two sided ideal of R which is contained in I. If $v \in M$ then there exist $r \in R$ and $k \in K$, $k \neq 0$, such that v = kv. If $S \neq (0)$ then there is $s_1 \in S$, $s_1 \neq 0$ such that $0 = v_0 rs_1 = kvs_1$. Since $v_0 Rs_1 = (0)$, and $kvs_1 = 0$ for any $k \in K$ implies that $vs_1 = 0$, $M \cdot s_1 = (0)$. Since $V = D \cdot M$, $V \cdot s_1 = (0)$ and $s_1 = 0$. To prove I is irreducible, we note that $v_0 R \cong R - I$ and $v_0 R$ is a uniform R-module. Hence I is irreducible. Let J be a right ideal of R such that $J \supset I$ and let $a \in R$ such that $aJ \subseteq I$. Then $(v_{o}a)^{r} \supset I$. If $v_{o}a \neq 0$, then $\{v_{o}, v_{o}a\}$ is a linearly independent set; for otherwise $dv_{o} = v_{o}a$ and $v_{o} = d^{-1}v_{o}a$ for some $d \in D$, and $(v_{o})^{r} = (v_{o}a)^{r}$. Since $\{v_{o}, v_{o}a\}$ is a linearly independent subset of M, there is $r \in R$, $r \neq o$, such that $v_{o}r = 0$ and $(v_{o}a)r \neq 0$. This implies that $I \supseteq (v_{o}a)^{r}$. Thus $v_{o}a = 0$.

Let J be a right ideal of R such that $J \supset I$. Then $v_0 \neq 0$ for some $j \in J$. There exist r in R, k in K, $k \neq 0$, such that $v_0 j r = kv_0 \neq 0$. Hence $v_0 (jr)I = 0$ and $jr \in N(I) \cap J$ and $jr \notin I$. Now let a be an element of R such that $a \cdot I \subseteq J$. If $a \in I$ then [J:a] = R. Suppose $a \notin I$. If $\{v_0 a, v_0\}$ is a linearly dependent set then $(v_0 a)^r = (v_0)^r$ and $a \in N(I)$. Hence $J \cap (a \cdot J + I) \cap N(I) \supset I$. Pick $x \in J \cap (a \cdot J + I) \cap N(I)$ such that $x \notin I$. Then x = aj + i for some $j \in J$, $j \notin I$ and $i \in I$. $aj = i - x \notin I$ and $aj \in J$. Thus $[J:a] \supset I$ since $j \notin I$. If $\{v_0 a, v_0\}$ is a linearly independent set, then by the weak transitivity property we may find $r \in R$, $k \in K$, $k \neq 0$ such that $v_0 ar = 0$ and $v_1 r = kv_0 \neq 0$. Thus, $[J:a] \supset I$.

REFERENCES

- A. W. Goldie, Semi-prime Rings with Maximum Condition, Proc. London Math. Soc., 10 (1960), 201-220.
- N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Publ., vol. 37, Providence 1956.
- 3. R.E. Johnson, The Extended Centralizer of a Ring over a Module, Proc. Amer. Math. Soc. 2 (1951), 891-895.
- 4. _____, Prime Rings, Duke Math. J., 18 (1951), 799-809.

- 5. and E.T. Wong, Quasi-injective Modules and Irreducible Rings, J. London Math. Soc. 36 (1961), 260-268.
- K. Koh and A.C. Mewborn, Prime Rings with Maximal Annihilator and Maximal Complement Right Ideals, Proc. Amer. Math. Soc. 16 (1965), 1073-1076.
- Y. Utumi, On Quotient Rings, Osaka Math. J., 8 (1956), 1-18.

North Carolina State University at Raleigh and the University of North Carolina at Chapel Hill.