The stellar populations of host galaxies of supernovae

X. Shao^{1,2,3,4}, Y. C. Liang^{1,3}, M. Dennefeld⁵, X. Y. Chen^{1,3}, G. H. Zhong^{1,3}, F. Hammer⁶, L. C. Deng^{1,3}, and B. Zhang^{1,4}

¹National Astronomical Observatories, CAS, 20A Datun Road, 100012, Beijing, PR China email: xshao@bao.ac.cn

²University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, PR China
 ³Key Laboratory of Optical Astronomy, NAOC, 20A Datun Rd. 100012, Beijing, China
 ⁴Department of Physicals, Hebei Normal University, Shijianzhuang 050016, China
 ⁵Institut d'Astrophysique de Paris, CNRS, 98bis Bd Arago, F-75014 Paris, France
 ⁶GEPI,Observatoire de Paris-Meudon, 92195 Meudon, France

Abstract. We study and compare the stellar populations of host galaxies of different types of supernovae (SNe): SN Ia and core collapse SN (SN II and SN Ibc) at the same time. The 234 sample galaxies are selected by cross-matching the Asiago Supernova Catalogue (ASC) and the SDSS-DR7 main galaxy sample (MGS). The STARLIGHT software is used to analyze their stellar populations by fitting the continua and absorption lines of the hosts.

Keywords. galaxies: evolution, galaxies: star formation, galaxies: starburst

We performed cross-matching on the ASC and the SDSS-DR7 MGS with 30 arcsec radius to select supernova host galaxies. We select galaxies for which the light-fraction (see details in Liang *et al.* 2010) of their SDSS spectral observations are > 0.15 to ensure that the 3 arcsec fiber can cover most of their global light. In total 234 SN host galaxies are selected, which are divided into two subsamples: emission-line galaxies and absorption-line galaxies. We fit the stellar continua and absorption lines of the hosts using Starlight (Cid Fernandes *et al.* 2005, Chen *et al.* 2009). The results are shown in Table 1. Among the 137 emission-line galaxies, the fraction of young stellar populations is higher in hosts of SN II than in hosts of SN Ia and Ibc. Mots of the 97 absorption-line galaxies host a SN Ia, and they have a large fraction of old stellar populations. The 137 hosts with emission lines contain much younger stellar populations.

I	emission-line	galaxies a	bsorption-lines galaxies
hosts of	SN Ia SN II	SN Ibc	SN Ia SN II SN Ibc
Young (<0.2 Gyr) Intermediate (0.2-2 Gyr) Old (>2 Gyr)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22.2 51.6 26.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Acknowledgements. The authors thank the symposium organizers for their invitation to this poster. This work was supported by the Natural Science Foundation of China (NSFC) Foundation under Nos.10933001, 11273026.

References

Chen, X. Y., Liang, Y. C., Hammer, F. et al. 2009, A&A, 495, 457
Cid Fernandes, R., Mateus, A., Sodre, L. et al. 2005, MNRAS, 358, 363
Liang, Y. C., Zhong, G. H., Hammer, F. et al. 2010, MNRAS, 409, 213

321