MOLCHANOV'S DISCRETE SPECTRA CRITERION FOR A WEIGHTED OPERATOR

BY
DON B. HINTON

1. Introduction. We consider the second-order operator

$$
\begin{equation*}
\ell(y)=\frac{1}{w}\left\{-\left(p y^{\prime}\right)^{\prime}+q y\right\} \tag{1}
\end{equation*}
$$

where the coefficients are real continuous functions on an interval \mathscr{I} with w and p positive. The operator is assumed singular at only one endpoint which we take to be either 0 (finite singularity) or ∞ (infinite singularity). Let $\mathscr{L}_{w}^{2}(\mathscr{I})$ be the Hilbert space of all complex-valued, measurable functions f satisfying $\int_{\mathscr{S}} w|f|^{2}<\infty$. The operator ℓ determines a minimal closed symmetric operator L_{0} in $\mathscr{L}_{w}^{2}(\mathscr{I})$ with domain dense in $\mathscr{L}_{w}^{2}(\mathscr{I})$. Properties of ℓ and L_{0} are established in the texts $[1,4]$ for $w=1$; similar considerations apply for general w. Our concern here is with property BD which we define by: if L is a self-adjoint extension of L_{0}, then its spectrum is bounded below and discrete.
A. M. Molchanov gave in 1952 (cf. [2, p. 90]) a necessary and sufficient condition for property BD for the differential expression ($w=1$),

$$
\ell(y)=(-1)^{n} y^{(2 n)}+q(x) y, \quad A \leq x<\infty,
$$

when the function $q(x)$ is bounded below. This criterion is that:

$$
\operatorname{limit}_{x \rightarrow \infty} \int_{x}^{x+\varepsilon} q(\xi) d \xi=\infty \quad \text { for all } \quad \varepsilon>0
$$

In this note we show (for $n=1$) how Molchanov's criterion must be modified to allow for the functions p and w. Additional discussion of Molchanov's theorem is given in [2, p. 199].

As in [2], we employ oscillation theory. For [a,b] $\mathscr{\mathscr { L }}$, define $\mathscr{A}(a, b)$ to be the set of all real functions y on $[a, b]$ such that y is absolutely continuous, $y^{\prime} \in \mathscr{L}^{2}(a, b)$, and $y(a)=y(b)=0$. The operator ℓ is said to be oscillatory on [a, b] provided there is a nontrivial solution y of $\ell(y)=0$ and numbers c and d, $a \leq c<d \leq b$, such that $y(c)=y(d)=0$. The operator ℓ is said to be oscillatory at $\infty(0)$ provided that for each $N>0(\delta>0)$ there is an interval $[a, b] \subset(N, \infty)$ $([a, b] \subset(0, \delta))$ such that ℓ is oscillatory on $[a, b]$. Oscillation and property BD are connected by [2, Section 10]:

Theorem A. Property BD holds for $\mathscr{I}=[A, \infty)(\mathscr{I}=(0, A])$ if and only if for all real numbers $\lambda>0, \ell(y)-\lambda y$ is nonoscillatory at $\infty(0)$.

[^0]A classical result on oscillation is the following.
Theorem B. The operator ℓ is oscillatory on $[a, b]$ if and only if there is a $y \in \mathscr{A}(a, b), y \neq 0$, such that

$$
\int_{a}^{b}\left[p\left(y^{\prime}\right)^{2}+q y^{2}\right] d x \leq 0
$$

2. The infinite singularity case. We will make appropriate modifications of the proof given in [2].

Lemma 1. Suppose f is a positive, continuously differentiable function on $\mathscr{I}=[A, \infty)$ and $\left|f^{\prime}(x)\right| \leq M f(x)^{3 / 2}$ on \mathscr{I}. If $0<\varepsilon<\frac{1}{2}$ and $|x-s| \leq \varepsilon f(s)^{-1 / 2} / \theta M$ where $\theta=(3 / 2)^{3 / 2}$, then

$$
\begin{equation*}
\left|\frac{f(x)}{f(s)}-1\right|<\varepsilon \tag{2}
\end{equation*}
$$

Proof. For s fixed, let $g(x)=f(x) / f(s)$. If (2) does not hold for $|x-s| \leq$ $\varepsilon f(s)^{-1 / 2} / \theta M$, then there is an $x^{*},\left|x^{*}-s\right| \leq \varepsilon f(s)^{-1 / 2} / \theta M$ such that $\left|g\left(x^{*}\right)-1\right|=\varepsilon$ and $|g(x)-1|<\varepsilon$ for all x between s and x^{*}. By the mean value theorem, for some \tilde{x} between s and x^{*},

$$
\begin{aligned}
\varepsilon & =\left|g\left(x^{*}\right)-1\right|=\left|g^{\prime}(\tilde{x})\right|\left|x^{*}-s\right| \\
& =\frac{\left|f^{\prime}(\tilde{x})\right|}{f(s)}\left|x^{*}-s\right| \leq \frac{M f(\tilde{x})^{3 / 2}}{f(s)} \cdot \frac{\varepsilon}{\theta M f(s)^{1 / 2}} \\
& =\frac{\varepsilon}{\theta} g(\tilde{x})^{3 / 2}<\frac{\varepsilon(1+\varepsilon)^{3 / 2}}{\theta}<\varepsilon
\end{aligned}
$$

this contradiction establishes the lemma.
Note that the hypotheses of the lemma imply that

$$
f(x)^{-1 / 2}-f(A)^{-1 / 2} \leq M(x-A) / 2
$$

and consequently $\int_{A}^{\infty} f^{1 / 2}=\infty$.
Theorem 1. Suppose ℓ is given by (1) where p, q and w are real continuous functions on $\mathscr{I}=[A, \infty)$ with p and w positive and continuously differentiable. If
(i) q / w is bounded below on \mathscr{I},
(ii) There is a constant M such that on \mathscr{I},

$$
\left[\frac{p(x)}{w(x)}\right]^{1 / 2}\left[\frac{\left|w^{\prime}(x)\right|}{w(x)}+\frac{\left|p^{\prime}(x)\right|}{p(x)}\right] \leq M,
$$

then ℓ has property $\mathbf{B D}$ if and only if for all sufficiently small positive ε,

$$
\begin{equation*}
\operatorname{limit}_{x \rightarrow \infty}\left[\frac{w(x)}{p(x)}\right]^{1 / 2} \int_{x}^{x_{\varepsilon}} q(\xi) / w(\xi) d \xi=\infty, \tag{3}
\end{equation*}
$$

where $x_{\varepsilon}=x+\varepsilon(p(x) / w(x))^{1 / 2}$.

Proof. Since property BD is invariant under multiplication of w by a positive constant and under addition of a multiple of w to q, we assume without loss of generality that the lower bound for q / w is one.
(a) Sufficiency. Let $\lambda>0$ be given and choose ε such that

$$
\varepsilon<1 / 2 \theta M, 2 \varepsilon \lambda<1-2 \varepsilon(M+1),\left(\theta=(3 / 2)^{3 / 2}\right)
$$

and choose N such that for $x \geq N$,

$$
\begin{equation*}
\left(\frac{w(x)}{p(x)}\right)^{1 / 2} \int_{x}^{x_{e}}[q / w] \geq 1 . \tag{4}
\end{equation*}
$$

Suppose now $[a, b] \subset(N, \infty)$ and $y \in \mathscr{A}(a, b), y \neq 0$. Partition [$a, b]$ into subintervals $\Omega_{1}, \ldots, \Omega_{K}$ such that the length $\mu\left(\Omega_{k}\right)$ of Ω_{k} satisfies (extend [a, b] if necessary to make (5) an equality for $k=K$)

$$
\begin{equation*}
\mu\left(\Omega_{k}\right)=\varepsilon\left[p\left(s_{k}\right) / w\left(s_{k}\right)\right]^{1 / 2} \tag{5}
\end{equation*}
$$

where s_{k} is the left-hand endpoint of Ω_{k}. Define $x_{k} \in \Omega_{k}$ by

$$
\begin{equation*}
w\left(x_{k}\right) y\left(x_{k}\right)^{2}=\int_{\Omega_{k}} w(q / w) y^{2} / \int_{\Omega_{k}}(q / w) \tag{6}
\end{equation*}
$$

From

$$
\begin{aligned}
\left(w y^{2}\right)(x) & =\left(w y^{2}\right)\left(x_{k}\right)+\int_{x_{k}}^{x} 2\left(w^{1 / 2} y\right)\left(w^{1 / 2} y\right)^{\prime} \\
& =\left(w y^{2}\right)\left(x_{k}\right)+\int_{x_{k}}^{x}\left[2 w y y^{\prime}+w^{\prime} y^{2}\right],
\end{aligned}
$$

and

$$
\begin{aligned}
2 w y y^{\prime} & =2\left(w^{1 / 4} p^{1 / 4} y^{\prime}\right)\left(w^{3 / 4} p^{-1 / 4} y\right) \\
& \leq w^{1 / 2} p^{1 / 2}\left(y^{\prime}\right)^{2}+w^{3 / 2} p^{-1 / 2} y^{2},
\end{aligned}
$$

we have that
(7) $\int_{\Omega_{k}} w y^{2} \leq\left[\left(w y^{2}\right)\left(x_{k}\right)+\int_{\Omega_{k}}\left\{w^{1 / 2} p^{1 / 2}\left(y^{\prime}\right)^{2}+w^{3 / 2} p^{-1 / 2} y^{2}+\left|w^{\prime}\right| y^{2}\right\}\right] \mu\left(\Omega_{k}\right)$.

Application of (4), (5) and (6) to (7) yields that
(8) $\int_{\Omega_{k}} w y^{2} \leq \varepsilon \int_{\Omega_{k}} q y^{2}$

$$
+\varepsilon\left[p\left(s_{k}\right) / w\left(s_{k}\right)\right]^{1 / 2} \int_{\Omega_{k}}\left\{w^{1 / 2} p^{1 / 2}\left(y^{\prime}\right)^{2}+w^{3 / 2} p^{-1 / 2} y^{2}+\left|w^{\prime}\right| y^{2}\right\} .
$$

For $f=(w / p)$, condition (ii) gives that

$$
\left|f^{\prime} f^{-3 / 2}\right|=\left|\left(w^{\prime} / w-p^{\prime} / p\right)(p / w)^{1 / 2}\right| \leq M
$$

thus Lemma 1 gives for $x \in \Omega_{k}$,

$$
\begin{equation*}
\frac{1}{2} \leq 1-\varepsilon^{\prime} \leq \frac{(w / p)(x)}{(w / p)\left(s_{k}\right)} \leq 1+\varepsilon^{\prime} \leq 2 \quad\left(\varepsilon^{\prime}=\varepsilon \theta M\right) \tag{9}
\end{equation*}
$$

Applying (9) and (ii) to (8), we have

$$
\begin{aligned}
\int_{\Omega_{k}} w y^{2} & \leq \varepsilon \int_{\Omega_{k}} q y^{2}+\varepsilon \int_{\Omega_{k}} \sqrt{ } 2\left\{\left[p\left(y^{\prime}\right)^{2}+w y^{2}\right]+M w y^{2}\right\} \\
& \leq 2 \varepsilon \int_{\Omega_{k}}\left[p\left(y^{\prime}\right)^{2}+q y^{2}\right]+2 \varepsilon(M+1) \int_{\Omega_{k}} w y^{2}
\end{aligned}
$$

Summing this inequality over k yields for our choice of ε,

$$
\lambda \int_{a}^{b} w y^{2} \leq \frac{2 \varepsilon \lambda}{1-2 \varepsilon(M+1)} \int_{a}^{b}\left[p\left(y^{\prime}\right)^{2}+q y^{2}\right]<\int_{a}^{b}\left[p\left(y^{\prime}\right)^{2}+q y^{2}\right] .
$$

By Theorem B, $\ell(y)-\lambda y$ is nonoscillatory at ∞ and by Theorem A, ℓ has property BD.
(b). Necessity. Let $0<\varepsilon<\frac{1}{2} M \theta$ and for $k=1,2, \ldots$, define $\Omega_{k}=$ $\left[s_{k}, s_{k}+\varepsilon\left(p\left(s_{k}\right) / w\left(s_{k}\right)\right)^{1 / 2}\right]$ where $\left\{s_{k}\right\}$ is a sequence satisfying $s_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Define y_{k} on Ω_{k} by $y_{k}=w^{-1 / 2} u_{k}$ where $\left(1 / m=\varepsilon\left(p\left(s_{k}\right) / w\left(s_{k}\right)\right)^{1 / 2} / 4\right)$

$$
u_{k}(x)= \begin{cases}m\left(x-s_{k}\right), & s_{k} \leq x \leq s_{k}+1 / m \\ 1, & s_{k}+1 / m \leq x \leq s_{k}+3 / m \\ m\left(4 / m+s_{k}-x\right), & s_{k}+3 / m \leq x \leq s_{k}+4 / m\end{cases}
$$

Assuming BD holds, we have by Theorems A and B that for each $\lambda>0$ there corresponds an N_{λ} such that if $[a, b] \subset\left(N_{\lambda}, \infty\right)$ and $y \in \mathscr{A}(a, b), y \neq 0$, then

$$
\begin{equation*}
\lambda \int_{a}^{b} w y^{2}<\int_{a}^{b}\left[p\left(y^{\prime}\right)^{2}+q y^{2}\right] . \tag{10}
\end{equation*}
$$

For $\Omega_{k} \subset\left(N_{\lambda}, \infty\right)$,

$$
\begin{gather*}
\int_{\Omega_{k}} w y_{k}^{2}=\int_{\Omega_{k}} u_{k}^{2} \geq(\varepsilon / 2)\left(p\left(s_{k}\right) / w\left(s_{k}\right)\right)^{1 / 2}, \tag{11}\\
\int_{\Omega_{k}} q y_{k}^{2}=\int_{\Omega_{k}}(q / w) u_{k}^{2} \leq \int_{\Omega_{k}}(q / w), \tag{12}
\end{gather*}
$$

and

$$
\begin{align*}
\int_{\Omega_{k}} p\left(y_{k}^{\prime}\right)^{2} & =\int_{\Omega_{k}} p\left[\frac{-u_{k} w^{\prime}}{2 w^{3 / 2}}+\frac{u_{k}^{\prime}}{w^{1 / 2}}\right]^{2} \tag{13}\\
& \leq 2 \int_{\Omega_{k}} p\left[\frac{\left(w^{\prime}\right)^{2}}{4 w^{3}}+\frac{\left(u_{k}^{\prime}\right)^{2}}{w}\right]
\end{align*}
$$

$$
\begin{aligned}
& \leq 2 \int_{\Omega_{k}}\left[(p / w)\left(w^{\prime} / w\right)^{2}+(p / w)\left(w\left(s_{k}\right) / p\left(s_{k}\right)\left(16 / \varepsilon^{2}\right)\right]\right. \\
& \leq 2 \int_{\Omega_{k}}\left[M^{2}+32 / \varepsilon^{2}\right] \\
& =2\left[M^{2}+32 / \varepsilon^{2}\right] \mu\left(\Omega_{k}\right)
\end{aligned}
$$

where the last inequality is a consequence of (ii) and (9). Substitution of (11), (12), and (13) into (10) yields

$$
(\lambda \varepsilon / 2)<2\left(M^{2}+32 / \varepsilon^{2}\right) \varepsilon+\left(w\left(s_{k}\right) / p\left(s_{k}\right)\right)^{1 / 2} \int_{\Omega_{k}} q / w .
$$

Since λ is arbitrary, we conclude that $\left(s_{k, \varepsilon}=s_{k}+\varepsilon\left(p\left(s_{k}\right) / w\left(s_{k}\right)\right)^{1 / 2}\right)$

$$
\left[\frac{w\left(s_{k}\right)}{p\left(s_{k}\right)}\right]^{1 / 2} \int_{\Omega_{k}} q / w=\left[\frac{w\left(s_{k}\right)}{p\left(s_{k}\right)}\right]^{1 / 2} \int_{s_{k}}^{s_{k, k}}[q / w] \rightarrow \infty
$$

as $k \rightarrow \infty$; thus (3) holds since the s_{k} are arbitrary.
As an example, consider

$$
\begin{equation*}
\ell_{2}(x)=x^{-\alpha}\left[\left(-x^{\Delta} y^{\prime}\right)^{\prime}+q y\right], \quad 1 \leq x<\infty . \tag{14}
\end{equation*}
$$

Then (i)-(ii) of Theorem 1 are equivalent to $x^{-\alpha} q(x)$ bounded below and $\Delta-\alpha \leq 2$. Under these conditions, ℓ_{2} has property BD if and only if for all $\varepsilon>0$ (sufficiently small)

$$
\operatorname{limit}_{x \rightarrow \infty} x^{(\alpha-\Delta) / 2} \int_{x}^{x_{e}} \xi^{-\alpha} q(\xi) d \xi=\infty
$$

where $x_{\varepsilon}=x+\varepsilon x^{(\Delta-\alpha) / 2}$.
Molchanov's result gives that a certain average of q / w must tend to ∞ as a necessary and sufficient condition for property BD. Theorem 1 shows how the length of the averaging interval depends on p and w. Intervals of constant length occur in the special case p / w is a constant.
The conditions of Theorem 1 imply that $\int_{A}^{\infty}(w / p)^{1 / 2}=\infty$. In [3], criteria for property BD are given for $2 n$th order operators which satisfy $\int_{\mathscr{A}}(w / p)^{1 / 2 n}<\infty$. For the operator ℓ_{2} in (14), one of these criteria yields property BD if $\Delta-\alpha>2, \Delta \neq 1$, and q satisfies as $x \rightarrow \infty$,

$$
\begin{array}{cl}
\left|\int_{x}^{\infty} q(\xi) d \xi\right| \leq x^{\Delta-1}\left[\frac{\Delta-1}{4}+\frac{o(1)}{\ln ^{2} x}\right], & \Delta>1 \\
\left|\int_{x}^{\infty} \xi^{2-2 \Delta} q(\xi) d \xi\right| \leq x^{1-\Delta}\left[\frac{\Delta-1}{4}+\frac{o(1)}{\ln ^{2} x}\right], & \Delta<1
\end{array}
$$

As noted in [3], the constant $(\Delta-1) / 4$ is sharp by comparison with Euler equation. For equations of this type, property BD may hold even if $q / w \rightarrow-\infty$ as $x \rightarrow \infty$.
3. The finite singularity case. We consider here an operator k defined by $(\cdot=d / d t)$

$$
\begin{equation*}
k(Y)=-\frac{1}{W}(-(P \dot{Y})+Q Y), \quad 0<t \leq A \tag{15}
\end{equation*}
$$

where, W, P, and Q are continuous real functions with W and P positive and continuously differentiable. If we set

$$
y(x)=Y(t), \quad x=1 / t
$$

then calculations show the equation $k(Y)=\lambda Y$ is equivalent to $\ell(y)=\lambda y$ where

$$
\begin{equation*}
\ell(y)=\frac{1}{w}\left(-\left(p y^{\prime}\right)+q y\right), \tag{16}
\end{equation*}
$$

$p(x)=x^{2} P(1 / x), w(x)=W(1 / x) / x^{2}$, and $q(x)=Q(1 / x) / x^{2}$. By Theorems A and B, k has property $\mathbf{B D}$ at 0 if and only if ℓ has property $\mathbf{B D}$ at ∞.

Theorem 2. Let k be as above and assume

(i) Q / W is bounded below on $(0, \mathrm{~A}]$
(ii) There is a constant M such that for $0<t \leq A$,

$$
\left[\frac{P(t)}{W(t)}\right]^{1 / 2}\left[\frac{1}{t}+\frac{|\dot{W}(t)|}{W(t)}+\frac{|\dot{P}(t)|}{P(t)}\right] \leq M
$$

then k has property $\mathbf{B D}$ at 0 if and only if for all sufficiently small $\varepsilon>0$,

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left[\frac{W(t)}{P(t)}\right]^{1 / 2} \int_{t_{e}}^{t} Q(\tau) / W(\tau) d \tau=\infty \tag{17}
\end{equation*}
$$

where $t_{\varepsilon}=t-\varepsilon(P(t) / W(t))^{1 / 2}$.
Proof. Again we assume $Q / W \geq 1$. Conditions (i) and (ii) of Theorem 2 imply that conditions (i) and (ii) of Theorem 1 hold for (16); moreover $p(x) / x^{2} w(x)=0(1)$ as $x \rightarrow \infty$. With this latter condition an inspection of the proof of Theorem 1 shows that it may be repeated with intervals Ω_{k} of length

$$
\mu\left(\Omega_{k}\right)=\frac{x}{1-\frac{\varepsilon}{x}\left[\frac{p(x)}{w(x)}\right]^{1 / 2}}-x=\frac{\varepsilon\left[\frac{p(x)}{w(x)}\right]^{1 / 2}}{1-\frac{\varepsilon}{x}\left[\frac{p(x)}{w(x)}\right]^{1 / 2}} .
$$

By choosing the intervals Ω_{k} in this fashion equation (3) is replaced by

$$
\begin{equation*}
\operatorname{limit}_{x \rightarrow \infty}\left[\frac{w(x)}{p(x)}\right]^{1 / 2} \int_{x}^{x_{x}}(q / w)=\infty \tag{18}
\end{equation*}
$$

where $x_{\varepsilon}=x\left(1-\varepsilon x^{-1}(p(x) / w(x))^{1 / 2}\right)^{-1}$. However, the transformation above yields

$$
\left[\frac{w(x)}{p(x)}\right]^{1 / 2} \int_{x}^{x_{e}}(q / w)=t^{2}\left[\frac{W(t)}{P(t)}\right] \int_{t_{t}}^{t}\left[\frac{Q(\tau)}{W(\tau)}\right] \frac{d \tau}{\tau^{2}}
$$

where $t_{\varepsilon}=t-\varepsilon(P(t) / W(t))^{1 / 2}$. For $t_{\varepsilon}<\tau \leq t$, by (ii),

$$
1-\varepsilon M \leq \frac{\tau}{t} \leq 1
$$

hence (17) is equivalent to (18).
Added in proof. For $w=1$ in (1), averaging criteria for property BD may also be found on pp. 107-112 of the recent text by E. Müller-Pfeiffer, Spektraleigenschaften singulärer gewöhnlicher Differentialoperatoren. Leipzig: Teubner, 1977.

References

1. N. Dunford and J. T. Schwarz, Linear operators, II. New York: Interscience, 1963.
2. I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators. Jerusalem: I.P.S.T., 1965.
3. D. Hinton and R. Lewis, Singular differential operators with spectra discrete and bounded below, submitted to Proc. Royal Soc. Edinburgh.
4. M. A. Naimark, Linear differential operators: Part II. New York: Ungar, 1968.

Department of Mathematics
University of Tennessee
Knoxville, Tennessee 37916

[^0]: Received by the editors July 6, 1978 and, in revised form, November 9, 1978.

