BULL. AUSTRAL. MATH. SOC. VOL. 18 (1978), 137-143.

An analogue of Banach's contraction principle for 2-metric spaces

S.N. Lal and A.K. Singh

In this paper we establish a fixed point theorem for 2-metric spaces. Some interesting particular cases of this theorem are also obtained.

1.

Just as a metric abstracts the properties of the length function, a 2-metric space has its topology given by a real function of point triples which abstracts the properties of the area function for euclidean triangles. Let X be a set consisting of at least three points. A 2-metric on X is a mapping ρ of $X \times X \times X$ into the set of real numbers R that satisfies the following conditions:

- (1.1) if at least two of a, b, c are equal, then $\rho(a, b, c) = 0$ and, for any $a \neq b$, there exists a point c such that $\rho(a, b, c) \neq 0$;
- (1.2) $\rho(a, b, c) = \rho(b, c, a) = \rho(c, a, b)$ for all a, b, c in X;
- (1.3) $\rho(a, b, c) \leq \rho(a, b, d) + \rho(a, d, c) + \rho(d, b, c)$ for all a, b, c, d in X.

The pair (X, ρ) is called a 2-metric space. A sequence $\langle x_n \rangle$ in (X, ρ) is said to be a Cauchy sequence if $\rho(x_m, x_n, a) \to 0$ as m and $n \to \infty$ for every $a \in X$. The sequence $\langle x_n \rangle$ is said to converge to the point $x \in X$ if $\lim \rho(x_n, x, a) = 0$ for every $a \in X$. A 2-metric

Received 9 December 1977.

space (X, ρ) is said to be complete if every Cauchy sequence in it is convergent. Further the 2-metric space (X, ρ) is said to be bounded if there exists a constant K such that $\rho(a, b, c) \leq K$ for all a, b, c in X ([2], [5]).

2.

As is well-known, there are a large number of generalisations of Banach's contraction principle and analogous results in the literature (see for example [1], [3], [6]). In this paper we establish the following analogue of Banach's contraction principle for 2-metric spaces.

THEOREM. Let (X, ρ) be a complete 2-metric space and Φ_1 and Φ_2 two self-maps on X such that for all x, y, a in X, (2.1) $\rho(\Phi_1(x), \Phi_2(y), a) \leq a_1 \rho(x, \Phi_1(x), a) + a_2 \rho(y, \Phi_2(y), a) + a_3 \rho(x, \Phi_2(y), a) + a_4 \rho(y, \Phi_1(x), a) + a_5 \rho(x, y, a)$,

where a_1, a_2, a_3, a_4 , and a_5 are non-negative numbers such that $\sum_{i=1}^{5} a_i < 1 \text{ and } (a_1 - a_2)(a_3 - a_4) \ge 0.$ Then Φ_1 and Φ_2 have a unique common fixed point.

3.

Proof of the theorem. Let [x] denote the integral part of x and write

$$\frac{a_1 + a_3 + a_5}{1 - a_2 - a_3} = \alpha \quad \text{and} \quad \frac{a_2 + a_4 + a_5}{1 - a_1 - a_4} = \beta .$$

Take any $x_0 \in X$ and define

$$x_{2n+1} = \Phi_1(x_{2n})$$
 and $x_{2n+2} = \Phi_2(x_{2n+1})$ (n = 0, 1, 2, ...).

For any non-negative integer n we have

$$\begin{split} \rho(x_{2n}, x_{2n+1}, x_{2n+2}) &= \rho(\Phi_1(x_{2n}), \Phi_2(x_{2n+1}), x_{2n}) \\ &\leq a_2 \rho(x_{2n+1}, x_{2n+2}, x_{2n}) \end{split}$$

using (1.1) and condition (2.1) of the theorem. As $a_2 < 1$, in view of

(1.2) the above inequality gives

(3.1)
$$\rho(x_{2n}, x_{2n+1}, x_{2n+2}) = 0$$
.

Similarly

(3.2)
$$\rho(x_{2n+1}, x_{2n+2}, x_{2n+3}) = 0$$
.

For any $a \in X$,

$$\begin{split} \rho(x_{2n+1}, \ x_{2n+2}, \ a) &\leq a_1 \rho(x_{2n}, \ x_{2n+1}, \ a) \ + \ a_2 \rho(x_{2n+1}, \ x_{2n+2}, \ a) \\ &+ \ a_3 \{ \rho(x_{2n}, \ x_{2n+1}, \ a) + \rho(x_{2n}, \ x_{2n+2}, \ x_{2n+1}) + \rho(x_{2n+1}, \ x_{2n+2}, \ a) \} \\ &+ \ a_4 \rho(x_{2n+1}, \ x_{2n+1}, \ a) \ + \ a_5 \rho(x_{2n}, \ x_{2n+1}, \ a) \ , \end{split}$$

and therefore, using (3.1), we get

$$\rho(x_{2n+1}, x_{2n+2}, a) \leq \alpha \rho(x_{2n}, x_{2n+1}, a)$$
.

Similarly, using (3.2), we get

$$\rho(x_{2n+2}, x_{2n+3}, a) \leq \beta \rho(x_{2n+1}, x_{2n+2}, a)$$
.

With the help of the above two inequalities it follows that

$$\rho(x_{2n+1}, x_{2n+2}, a) \leq (1+\alpha)(\alpha\beta)^{[(2n+1)/2]}\rho(x_0, x_1, a)$$

and

$$\rho(x_{2n+2}, x_{2n+3}, a) \leq (1+\alpha)(\alpha\beta)^{[(2n+2)/2]}\rho(x_0, x_1, a)$$
.

Hence

(3.3)
$$\rho(x_m, x_{m+1}, a) \leq (1+\alpha)(\alpha\beta)^{[m/2]}\rho(x_0, x_1, a)$$
.

Note that

(3.4)
$$\rho(x_0, x_1, x_m) = 0$$

for m = 0, 1, 2, ... This is true for m = 0 and m = 1. Suppose now that it holds for every m in $2 \le m \le k-1$. Using (1.3) we have

$$\begin{split} \rho(x_0, x_1, x_k) &\leq \rho(x_0, x_1, x_{k-1}) + \rho(x_0, x_{k-1}, x_k) + \rho(x_{k-1}, x_k, x_1) \\ &\leq (1+\alpha)(\alpha\beta)^{\lceil (k-1)/2 \rceil} [\rho(x_0, x_1, x_0) + \rho(x_0, x_1, x_1)] , \end{split}$$

and this proves (3.4).

Since

$$\rho(x_m, x_{m+1}, x_n) \leq (1+\alpha)(\alpha\beta)^{[m/2]}\rho(x_0, x_1, x_n)$$
,

it follows that

(3.5)
$$\rho(x_m, x_{m+1}, x_n) = 0$$
,

for all non-negative integers m and n.

Note that for any $\alpha \in X$ and m < n we have

$$\rho(x_m, x_n, a) \leq \rho(x_m, x_{m+1}, a) + \rho(x_m, x_{m+1}, x_n) + \rho(x_{m+1}, x_n, a)$$

and therefore in view of (3.5) and (3.3) we have

$$\begin{split} \rho(x_m, x_n, a) \\ &\leq \rho(x_m, x_{m+1}, a) + \rho(x_{m+1}, x_{m+2}, a) + \dots + \rho(x_{n-1}, x_n, a) \\ &\leq (1+\alpha) ((\alpha\beta)^{[m/2]} + (\alpha\beta)^{[(m+1)/2]} + \dots + (\alpha\beta)^{[(n-1)/2]}) \rho(x_0, x_1, a) \end{split}$$

As $\alpha\beta < 1$, the right hand side of the above inequality tends to zero as $m \to \infty$. Hence $\langle x_n \rangle$ is a Cauchy sequence and it converges to some $x \in X$.

Since

$$\begin{split} \rho(x, \Phi_1(x), a) &\leq \rho(x_{2n+2}, x, \Phi_1(x)) + \rho(x_{2n+2}, x, a) + a_1\rho(x, \Phi_1(x), a) \\ &+ a_2\rho(x_{2n+1}, x_{2n+2}, a) + a_3\rho(x_{2n+2}, x, a) \\ &+ a_4\{\rho(x_{2n+1}, \Phi_1(x), x) + \rho(x_{2n+1}, x, a) + \rho(x, \Phi_1(x), a)\} + a_5\rho(x_{2n+1}, x, a) \\ &\text{taking the limit as } n \to \infty , \text{ the above inequality gives} \end{split}$$

 $\rho(x, \Phi_{1}(x), a) \leq (a_{1}+a_{4})\rho(x, \Phi_{1}(x), a) ,$

and therefore

$$\rho(x, \Phi_1(x), a) = 0$$
,

for all $a \in X$. Axiom (1.1) now gives $\Phi_1(x) = x$. Similarly $\Phi_2(x) = x$. If y is a fixed point of Φ_2 , then using (2.1) we get $\rho(x, y, a) = 0$ for all $a \in X$. Hence x = y. This proves that x is a unique fixed

140

point of Φ_1 and similarly it is a unique fixed point of Φ_2 as well. Hence the theorem.

4.

A point is an unique fixed point of a map $\Phi : X \to X$ if and only if it is an unique fixed point of any positive power of Φ . This observation leads us to the following:

THEOREM A. Let (X, ρ) be a complete 2-metric space and Φ_1 and Φ_2 two self-maps on X such that for all x, y, a in X and positive integers p, q,

$$\begin{split} \rho \Big(\Phi_1^p(x), \ \Phi_2^q(y), \ a \Big) &\leq a_1 \rho \Big(x, \ \Phi_1^p(x), \ a \Big) + a_2 \rho \Big(y, \ \Phi_2^q(y), \ a \Big) \\ &+ a_3 \rho \Big(x, \ \Phi_2^q(y), \ a \Big) + a_4 \rho \Big(y, \ \Phi_1^p(x), \ a \Big) + a_5 \rho(x, \ y, \ a) \,, \end{split}$$

where a_1, a_2, a_3, a_4 , and a_5 are non-negative constants such that $\sum_{i=1}^{5} a_i < 1 \text{ and } (a_1 - a_2)(a_3 - a_4) \ge 0.$ Then Φ_1 and Φ_2 have a unique and common fixed point.

COROLLARY 1. Let (X, ρ) be a complete 2-metric space and f_i (i = 1, 2, 3, ...) a family of mappings of X into itself. Suppose there exists a sequence of positive integers $\langle m_i \rangle$ and non-negative numbers a_1, a_2, a_3, a_4, a_5 such that for all x, y, a in X and every pair i, j, $i \neq j$,

$$\begin{split} \rho \Big(f_i^{m_i}(x), \ f_j^{j}(y), \ a \Big) &\leq a_1 \rho \Big(x, \ f_i^{j}(x), \ a \Big) + a_2 \rho \Big(y, \ f_j^{j}(y), \ a \Big) \\ &+ a_3 \rho \Big(x, \ f_j^{j}(y), \ a \Big) + a_4 \rho \Big(y, \ f_i^{j}(x), \ a \Big) + a_5 \rho(x, \ y, \ a) \ , \end{split}$$

where $\sum_{i=1}^{5} a_i < 1$ and $(a_1 - a_2)(a_3 - a_4) \ge 0$. Then the sequence of mappings (f_i) has a unique common fixed point.

It is interesting to note that the particular case $a_1 = a_2 = \alpha$,

 $a_3 = a_4 = 0$ and $a_5 = \beta$ of this result has been recently established [4] with the additional assumption that the 2-metric space is bounded.

Proof. Take any pair $i \neq j$. Then, by Theorem A, f_i and f_j have an unique and common fixed point. Since i and j are arbitrary, the corollary follows.

COROLLARY 2. Let (X, ρ) be a complete 2-metric space and Φ_1 and Φ_2 two self maps on X satisfying the following conditions:

(a) there exist non-negative constants a_1, a_2 , and a_3 such that $2(a_1+a_2) + a_3 < 1$ and

$$\begin{split} \rho \Big(\Phi_1^p \Phi_2^q(x), \ \Phi_1^p \Phi_2^q(y), \ a \Big) &\leq a_1 \Big\{ \rho \Big(x, \ \Phi_1^p \Phi_2^q(x), \ a \Big) + \rho \Big(y, \ \Phi_1^p \Phi_2^q(y), \ a \Big) \Big\} \\ &+ a_2 \Big\{ \rho \Big(x, \ \Phi_1^p \Phi_2^q(y), \ a \Big) + \rho \Big(y, \ \Phi_1^p \Phi_2^q(x), \ a \Big) \Big\} + a_3 \rho(x, \ y, \ a) \ , \end{split}$$

for all x, y, a in X and any positive integers p and q;

(b)
$$\Phi_1$$
 and Φ_2 commute.

Then Φ_1 and Φ_2 have a unique common fixed point.

Proof. By our theorem of Section 2, the map $\Phi_1^p \Phi_2^q$ has a unique fixed point say u. Now

$$\Phi_{1}(u) = \Phi_{1}\left(\Phi_{1}^{p}\Phi_{2}^{q}(u)\right) = \Phi_{1}^{p}\Phi_{2}^{q}\left(\Phi_{1}(u)\right) ,$$

for Φ_1 and Φ_2 commute. Hence $\Phi_1(u)$ is a fixed point of $\Phi_1^p \Phi_2^q$ and so $\Phi_1(u) = u$. Similarly $\Phi_2(u) = u$. Observe that if x is a common fixed point of Φ_1 and Φ_2 then x is a fixed point of $\Phi_1^p \Phi_2^q$ and so x = u. Hence the result.

References

- A.T. Bharucha-Reid, "Fixed point theorems in probabilistic analysis", Bull. Amer. Math. Soc. 82 (1976), 641-657.
- [2] Siegfried Gähler, "2-metrische Räume und ihre topologische Struktur", Math. Nachr. 26 (1963/64), 115-148.
- [3] G.E. Hardy and T.D. Rogers, "A generalization of a fixed point theorem of Reich", Canad. Math. Bull. 16 (1973), 201-206.
- [4] K. Iseki, P.L. Sharma and B.K. Sharma, "Contraction type mapping on 2-metric space", Math. Japon. 21 (1976), 67-70.
- [5] Albert George White, Jr., "2-Banach spaces", Math. Nachr. 42 (1969), 43-60.
- [6] Chi Song Wong, "Common fixed points for two mappings", Pacific J. Math. 48 (1973), 299-312.

Department of Mathematics, Banaras Hindu University, Varanasi, India.