Note on the Inequality Theorem that

$$
\begin{gathered}
m x^{m-1}(x-1)>x^{m}-1>m(x-1) \text { unless when } 0<m<1, \\
\text { when } m x^{m-1}(x-1)<x^{m}-1<m(x-1),
\end{gathered}
$$

where x is any positive quantity other than unity.

By H. S. Carslaw.

The proof given in Chrystal's Algebra, II., pp. 42-5, of this very important theorem is deduced from elementary algebraical principles : and, though somewhat involved, is of great value, as it establishes what must be considered a fundamental theorem in the Calculus.

In this note I give a proof, in a few lines, which depends upon the First Theorem of Mean Value in Definite Integrals.

Consider the integral

$$
\int_{1}^{x} x^{m-1} d x
$$

where x is any positive quantity.
Then

$$
\xi^{m-1}(x-1)=\frac{\left(x^{m}-1\right)}{m}
$$

where ξ is some value of x in the range of integration.
Now when we take the curve
and note that

$$
y=x^{m-1} \quad(x>0)
$$

$$
y^{\prime}=(m-1) x^{m-2},
$$

we see that as x increases the curve continually ascends or descends, according as $m \geqslant 1$.

Therefore, when $m>1$,

$$
x^{m-1} \geqslant \xi^{m-1} \geqslant 1,
$$

according as $x \geqslant 1$.

Hence, when $m>1$,

$$
m x^{m-1}(x-1)>x^{m}-1>m(x-1)
$$

in each case, since the negative multiplier $(x-1)$ reverses the signs of inequality which occur for $x<1$.

When $m<1$, the curve descends as x increases.

Hence

according as $x \geqslant 1$.
Therefore the former result is reversed when m is positive, i.e., when $0<m<1$; and it remains as before when m is negative, as we now multiply by a negative quantity when $x>1$, and a positive when $x<1$.

