ON \mathfrak{Z}-HYPEREXCENTRIC MODULES FOR LIE ALGEBRAS

DONALD W. BARNES

(Received 23 November 2001; revised 4 February 2002)

Communicated by R. B. Howlett

Abstract

Let \mathfrak{Z} be a saturated formation of soluble Lie algebras over the field F, and let $L \in \mathfrak{Z}$. Let V and W be \mathfrak{Z}-hypercentral and \mathfrak{Z}-hyperexcentric L-modules respectively. Then $V \otimes_F W$ and $\text{Hom}_F(V, W)$ are \mathfrak{Z}-hyperexcentric and $H^n(L, W) = 0$ for all n.

Keywords and phrases: Soluble Lie algebras, cohomology.

1. Introduction

Let \mathfrak{Z} be a saturated formation of finite-dimensional soluble Lie algebras over the field F. Let $L \in \mathfrak{Z}$ and let W be an \mathfrak{Z}-excentric irreducible L-module. Results in Barnes and Gastineau-Hills [4] imply that $H^n(L, W) = 0$ for $n \leq 2$, and $H^n(L, W) = 0$ for all n was proved for some special cases, suggesting that this might be true in general. This was proved in Barnes [3] for fields F of characteristic 0. The proof involved a description of the saturated formations over an arbitrary field of characteristic 0. Over a field of non-zero characteristic, the saturated formations are much more complicated and no useful description is available. In this paper, we give a proof independent of the characteristic of the field. All algebras and modules considered are assumed finite-dimensional over F.

An irreducible L-module V is called \mathfrak{Z}-central if the split extension of V by $L/\mathfrak{Z}_L(V)$ is in \mathfrak{Z} and \mathfrak{Z}-excentric otherwise. An L-module V is called \mathfrak{Z}-hypercentral if every composition factor of V is \mathfrak{Z}-central and is called \mathfrak{Z}-hyperexcentric if ev-
very composition factor of V is \mathcal{F}-excentric. We need the following theorems from Barnes [2].

Theorem 1.1 ([2, Theorem 4.4]). Suppose $L \in \mathcal{F}$ and let V be an L-module. Then V is the direct sum of an \mathcal{F}-hypercentral L-module and an \mathcal{F}-hyperexcentric L-module.

Theorem 1.2 ([2, Theorem 2.1]). Let V and W be \mathcal{F}-hypercentral L-modules. Then $V \otimes_F W$ and $\text{Hom}_F(V, W)$ are \mathcal{F}-hypercentral.

Results showing that $H^n(L, V) = 0$ for \mathcal{F}-excentric irreducible L-modules V are easily extended to \mathcal{F}-hyperexcentric modules by using the cohomology exact sequence and induction over the composition length of the module.

2. \mathcal{F}-hyperexcentric modules

In this section, we obtain a cohomological characterisation of \mathcal{F}-hyperexcentric L-modules. The characterisation needs to use other algebras besides the algebra L from which we start.

Definition 2.1. Suppose $L \in \mathcal{F}$. The cone of L in \mathcal{F} is the class (\mathcal{F}/L) of all pairs (M, ϵ) where $M \in \mathcal{F}$ and $\epsilon : M \to L$ is an epimorphism. We usually omit ϵ from the notation, writing simply $M \in (\mathcal{F}/L)$.

Any L-module V is an M-module via ϵ for any $M \in (\mathcal{F}/L)$. Then V is \mathcal{F}-hypercentral as M-module if and only if it is \mathcal{F}-hypercentral as L-module. It follows that if V is an \mathcal{F}-hyperexcentric L-module, then $H^n(M, V) = 0$ for all $M \in (\mathcal{F}/L)$ and $n \leq 2$. We would like a converse to this.

Theorem 2.2. Let \mathcal{F} be a saturated formation and let $L \in \mathcal{F}$. Suppose V is an L-module such that for all $M \in (\mathcal{F}/L)$, $H^1(M, V) = 0$. Then V is \mathcal{F}-hyperexcentric.

Proof. V is the direct sum of an \mathcal{F}-hypercentral module and an \mathcal{F}-hyperexcentric module. Thus we may suppose without loss of generality, that V is \mathcal{F}-hypercentral, and we then have to prove $V = 0$. Suppose $V \neq 0$ and let W be a minimal submodule of V. We form the direct sum A of sufficiently many copies of W to ensure that $\dim \text{Hom}_L(A, V) > \dim H^2(L, V)$, and construct the split extension M of A by L. As W is \mathcal{F}-central, $M \in (\mathcal{F}/L)$. We use the Hochschild-Serre spectral sequence to calculate $H^1(M, V)$. We have

$$E_2^{20} = H^2(M/A, V^A) = H^2(L, V)$$
and
\[E_2^{01} = H^0(M/A, H^1(A, V)) = \text{Hom}_F(A, V)^L = \text{Hom}_L(A, V). \]
Thus \(\dim d_2^{01}(E_2^{01}) < \dim H^2(L, V) < \dim E_2^{01} \), so \(E_3^{01} = \ker d_2^{01} \neq 0 \) and so \(H^1(M, V) \neq 0 \) contrary to assumption.

Theorem 2.3. Let \(\mathcal{F} \) be a saturated formation and let \(L \in \mathcal{F} \). Suppose \(V \) is an \(\mathcal{F} \)-hypercentral \(L \)-module and let \(W \) be an \(\mathcal{F} \)-hyperexcentric \(L \)-module. Then \(V \otimes_F W \) and \(\text{Hom}_F(V, W) \) are \(\mathcal{F} \)-hyperexcentric.

Proof. Let \(M \in (\mathcal{F}/L) \). Then \(V \) and \(W \) are \(\mathcal{F} \)-hypercentral and \(\mathcal{F} \)-hyperexcentric respectively as \(M \)-modules, and every \(M \)-module extension \(X \) of \(W \) by \(V \) splits. Thus \(H^1(M, \text{Hom}_F(V, W)) = 0 \). By Theorem 2.2, \(\text{Hom}_F(V, W) \) is \(\mathcal{F} \)-hypercentral. By Theorem 1.2, the dual module \(V^* = \text{Hom}_F(V, F) \) is \(\mathcal{F} \)-hypercentral. As
\[V \otimes_F W \simeq V^{**} \otimes_F W \simeq \text{Hom}_F(V^*, W), \]
the result follows. \(\square \)

This suggests that we could have some sort of \(\mathbb{Z}_2 \)-grading on the class of all \(L \)-modules. However, the tensor product of two \(\mathcal{F} \)-hyperexcentric modules need not be \(\mathcal{F} \)-hypercentral. Anything can happen as is shown by the following examples. Here, \(\mathcal{N} \) denotes the saturated formation of all nilpotent algebras.

Example 2.4. Suppose the characteristic of \(F \) is not 2. Let \(L = \langle e \rangle \) be the 1-dimensional algebra, and let \(V = \langle v \rangle \) and \(W = \langle w \rangle \) be the modules with action given by \(ev = v \) and \(ew = w \). Then \(V \) and \(W \) are \(\mathcal{N} \)-excentric and \(V \otimes_F W \) is \(\mathcal{N} \)-excentric.

Example 2.5. Let \(L = \langle e \rangle \) be the 1-dimensional algebra, and let \(V = \langle v \rangle \) and \(W = \langle w \rangle \) be the modules with action given by \(ev = v \) and \(ew = -w \). Then \(V \) and \(W \) are \(\mathcal{N} \)-excentric and \(V \otimes_F W \) is \(\mathcal{N} \)-central.

Example 2.6. Suppose the characteristic of \(F \) is not 2. Let \(i \in \tilde{F} \) have minimum polynomial \(x^2 + 1 \). Let \(L = \langle e \rangle \) be the 1-dimensional algebra, and let \(V \) and \(W \) be 2-dimensional modules with the action given by the matrix \(A = \left(\begin{array}{rr} 0 & 1 \\ -1 & 0 \end{array} \right) \). The eigenvalues of the action of \(e \) on \(V \otimes_F W \) are the sums of the eigenvalues on \(V \) and \(W \), thus \(2i, 0, 0, -2i \). Thus \(V \otimes_F W \) is the direct sum of a 2-dimensional module on which the action is trivial, and a 2-dimensional module on which the action is given by the matrix \(2A \). It is thus the sum of an \(\mathcal{N} \)-hypercentral and an \(\mathcal{N} \)-excentric module.
3. Cohomology of \(\mathfrak{F} \)-hyperexcentric modules

We can now prove the desired theorem on the cohomology of \(\mathfrak{F} \)-hyperexcentric modules.

Theorem 3.1. Let \(\mathfrak{F} \) be a saturated formation and let \(L \in \mathfrak{F} \). Let \(V \) be an \(\mathfrak{F} \)-hyperexcentric \(L \)-module. Then \(H^n(L, V) = 0 \) for all \(n \).

Proof. By the cohomology exact sequence for a submodule \(W \)

\[
\cdots \rightarrow H^n(L, W) \rightarrow H^n(L, V) \rightarrow H^n(L, V/W) \rightarrow \cdots ,
\]

we need only consider the case in which \(V \) is irreducible. We use induction over \(\dim L \). The result holds if \(\dim L = 1 \), so suppose \(\dim L > 1 \). Let \(A \) be a minimal ideal of \(L \). We use the Hochschild-Serre spectral sequence. We have

\[
E_2^{rs} = H^r(L/A, H^s(A, V)).
\]

If \(A \) acts non-trivially on \(V \), then \(V_A = 0 \) and \(H^s(A, V) = 0 \) for all \(s \) by Barnes [1, Theorem 1]. If on the other hand, \(A \) acts trivially on \(V \), then \(H^s(A, V) = \text{Hom}_F(\Lambda^s A, V) \). Now \(\Lambda^s A \) is a submodule of the tensor power of \(A \), so is \(\mathfrak{F} \)-hypercentral by Theorem 1.2. By Theorem 2.3, \(\text{Hom}_F(\Lambda^s A, V) \) is \(\mathfrak{F} \)-hyperexcentric. By induction over \(\dim L \), we have \(H^r(L/A, H^s(A, V)) = 0 \) for all \(r, s \). In either case, we have \(H^r(L/A, H^s(A, V)) = 0 \) for all \(r, s \). By the Hochschild-Serre spectral sequence, \(H^n(L, V) = 0 \) for all \(n \). \(\square \)

References

1 Little Wonga Rd.
Cremorne NSW 2090
Australia
e-mail: donb@netspace.net.au