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The dynamics of wall-mounted flexible structures, such as aquatic vegetation, is essential
for analysing collective behaviours, flow distributions and vortex formation across
different scales. To accurately model these structures under various flow conditions, we
develop a novel numerical method that couples the immersed boundary method (IBM)
with the vector form intrinsic finite element (VFIFE) method, referred to as the IBM–
VFIFE method. We simulate both flexible and rigid stems, each with a constant aspect
ratio of 10, mounted on an impermeable bottom in uniform flow with the Reynolds number
ranging from 200 to 1000. In the rigid case, we identify three distinct flow regimes
based on the vortex dynamics and lift spectral characteristics. Due to the influences
of downwash flow at the free end and upwash flow near the junction, vortex shedding
varies significantly along the vertical direction. For the flexible case, we examine a wide
range of stem stiffness values to explore potential dynamic responses. The results reveal
that stiffness plays a key role in stem behaviour, leading to three distinct classifications
based on amplitude magnitude and displacement spectra respectively. Notably, the vortex
dynamics of a flexible stem differs significantly from that of a rigid stem due to shape
deformation and stem oscillation. A flexible stem with relatively high stiffness experiences
greater hydrodynamic loads compared with its rigid counterpart. This study highlights
the unique stem behaviours and vortex dynamics associated with flexible stems. We find
that stem oscillation, combined with a near-wake base vortex, contributes to an upwash
flow near the stem bottom, which significantly weakens (or, in some cases, eliminates) the
downwash flow. Additionally, low-frequency oscillations in the streamwise and vertical
directions are observed, while the transverse oscillation exhibits a dominant frequency one
order of magnitude higher. Overall, this study provides valuable insights into the response
and vortex dynamics of a single stem in uniform flow.
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1. Introduction
Flow over the finite wall-mounted cylinder (FWMC) exhibits complex flow structures and
vortex–vortex interactions due to geometric modifications at the free end and the cylinder–
wall junction (Finnigan 2000; Krajnovic 2011; Nepf 2012). This phenomenon is widely
observed in engineering applications, such as high-rise buildings and aquatic vegetation.
Understanding the emergence, development and interaction of vortical structures with
different rotations is crucial for advancing the fundamental theory of FWMC flow (Wang
& Zhou 2009; Zhu et al. 2017; Yauwenas et al. 2019; Cao et al. 2022). Over the past
few decades, significant progress has been made in uncovering the underlying physics of
FWMC flow (Adaramola et al. 2006; Wang & Zhou 2009; Luhar & Nepf 2011; Li &
Fuhrman 2022; Hu & Li 2023; Hu, Huang & Li 2023). A comprehensive review of these
findings is essential to establish a foundational understanding before addressing more
multifaceted configurations, such as fluid–structure interaction (FSI) of wall-mounted
flexible structures with varying flexibility (or stiffness).

1.1. Flow over the finite wall-mounted rigid structure
Based on cross-sectional shape, structures can be classified into three categories
(Derakhshandeh & Alam 2019). The first structure consists of a continuous and finite
curvature shape, such as a circular or elliptical cylinder (e.g. most of the stems), while
the second one is sharp edged with an infinitely large curvature, for example, a square
or triangular cylinder (e.g. plates or walls). The third one is a hybrid of the two, and a
typical case is a semi-circular cylinder (e.g. breakwater structures). Studies of FWMC
have primarily focused on the first two categories, as they are more prevalent in natural
and engineered environments. We start with these two types of wall-mounted structures,
providing a detailed discussion of the flow structures of a rigid FWMC. Differences arising
from cross-sectional shape are highlighted when relevant.

Flow structures around a circular FWMC are strongly influenced by the aspect ratio
(AR = l/D, where l is the height of the structure and D is the diameter or side
length), Reynolds number (Re = U∞D/ν, where U∞ is incoming flow velocity and ν

is the fluid kinematic viscosity), boundary layer thickness (δ/D), and turbulent intensity
(Ti = u′/U∞, where u′ is the root-mean-square (r.m.s.) of the turbulent velocity
fluctuation), among other factors (Sakamoto & Arie 1983; Bourgeois, Sattari & Martinuzzi
2011; Porteous, Moreau & Doolan 2014; Hearst, Gomit & Ganapathisubramani 2016).
Based on the time-averaged distribution of vortical structures, the wake of an FWMC
can be divided into three types (Zhang et al. 2017), i.e. dipole type (i.e. one pair of the
streamwise vortices at the upper part), quadrupole type (i.e. two pairs of the streamwise
vortices at the upper and lower parts) and six-vortex type (i.e. transitional structures
involved). Particular vortical structures of the FWMC with a height over the critical
value are presented in figure 1. The transition from dipole to quadrupole is marked by a
critical aspect ratio (Sumner, Heseltine & Dansereau 2004; Wang & Zhou 2009; Hosseini,
Bourgeois & Martinuzzi 2013; Sumner 2013). When the height exceeds this critical value,
a tip vortex pair and a base vortex pair appear at the free end and junction, respectively
(Bourgeois et al. 2011; Hajimirzaie, Wojcik & Buchholz 2012; Porteous et al. 2014). The
appearance of these vortex pairs is highly dependent on the AR. A sufficiently thick
boundary layer and AR above the critical value promote the formation of the tip vortex
pair at the free end (Sumner et al. 2004; Adaramola et al. 2006; Sumner & Heseltine
2008; Bourgeois et al. 2011, 2012; Sumner 2013). The origin of the tip vortex differs
depending on the cross-sectional shape. In a square FWMC, streamwise vorticity near
the free end arises from the reorientation of vertical vorticity in the sidewall shear layers
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Figure 1. The sketch of the vortical structures for flow over a wall-mounted rigid circular cylinder. The sketch
is based on the models proposed by Pattenden et al. (2005), Frederich et al. (2007), Krajnovic (2011), Zhu et al.
(2017) and Essel, Tachie & Balachandar (2021). Note that only part of the shear layer and spanwise vortex are
shown.

due to lateral vorticity of the free-end shear layer (Bourgeois et al. 2011). Here, the tip
vortex is essentially a deformed Kármán vortex. In contrast, for a circular FWMC, the tip
vortex originates from the leading or trailing edge of the free end and is not associated
with the Kármán vortex (Hunt et al. 1978; Kawamura et al. 1984; Hwang & Yang 2004;
Pattenden, Turnock & Zhang 2005; Hain, Kahler & Michaelis 2008; Palau-Salvador et al.
2010; Krajnovic 2011; Saeedi, LePoudre & Wang 2014). This highlights the pivotal role of
cross-sectional shape in the tip vortex generation.

When AR > 3, the base vortex pair forms at the junction (Sumner et al. 2004;
Adaramola et al. 2006), developing behind the cylinder and inducing an upwash flow
(Etzold & Fiedler 1976; Hajimirzaie et al. 2012). Its formation is strongly influenced by
δ/D (Wang et al. 2006). Compared with the tip vortex pair, the base vortex pair is weaker
and dissipates more quickly downstream.

The trailing vortex (not shown in figure 1), which is typically located far from the
free end, is not a continuation of the tip vortex pair. According to Frederich, Wassen &
Thiele (2008) and Palau-Salvador et al. (2010), it arises from strong downwash effects and
associated upwash motion away from the wake centreline, triggered by the finite cylinder
width. Initially believed to be visible only in the mean flow field (Fröhlich & Rodi 2004),
tomographic particle image velocimetry results from Zhu et al. (2017) suggest that this
structure can also be observed in the instantaneous flow field where AR is low.

Vortex shedding from FWMC sidewalls is influenced by the AR and boundary layer
conditions, primarily due to variations in downwash flow and near-wake base vortices
(Fröhlich and Rodi, 2004; Pattenden et al. 2005; Wang et al. 2006; Palau-Salvador et al.
2010; Tsutsui 2012). A thick boundary layer could enhance the base vortex and induce
upwash flow. Spanwise vortices can adopt antisymmetric and/or symmetric patterns
depending on upwash and downwash flow (Wang et al. 2006; Wang & Zhou 2009). For
FWMC with larger AR, both types of vortex shedding may coexist. Wang, Cao & Zhou
(2014) found that vortex shedding near the free end is predominantly symmetric, whereas
alternating vortex shedding dominates the wake near the centre and lower regions. The
separation line (shown in figure 1), corresponding to points where the shear layers detach
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from the side surface, indicates that separation occurs earlier around the centre than near
the free end or lower part due to the influences of downwash and upwash flow.

The free-end arch vortex appears in the mean wake field when AR < 3 (Lee 1997;
Krajnovic 2011). This vortex takes on a reversed U-shape (Fröhlich and Rodi, 2004). The
legs of the mean arch vortex are inclined in the streamwise direction at a relatively constant
angle (Krajnovic 2011). For low AR cases, the dominant downwash effect increases the
likelihood of symmetric vortex shedding (Wang et al. 2014). This symmetric shedding
may induce instantaneous arch vortex formation in short cylinders (Zhu et al. 2017).

In front of the arch vortex, the leading-edge vortex forms at the forward half of the
free end surface (Kawamura et al. 1984; Krajnovic 2011). This vortex is attributed to the
reverse flow along the centre of the free end surface, which is entrained by the separated
flow from the leading edge (Kawamura et al. 1984; Pattenden et al. 2005; Palau-Salvador
et al. 2010; Krajnovic 2011). The attachment length of this vortex is strongly affected by
both AR and Re (Sumner 2013). Downstream of the surface, the forward free-end flow
interacts with the wake behind the FWMC, leading to the emergence of the upper near-
wake cross-stream vortex (as shown in figure 1). Additional vortices may also form, such
as the horseshoe vortex at the junction. The horseshoe vortex may interact with the vortices
behind the FWMC, significantly influencing the overall wake dynamics.

The flow structures around the FWMC are highly complex, with their formation,
development and dissipation closely tied to the vortex interactions, including rotational
effects, upwash and downwash flows. The FWMC height and boundary layer conditions
play crucial roles in this dynamics. In this study, we focus on the hydrodynamic forces and
vortex dynamics of a circular FWMC across a wide range of Re. Specific flow behaviours
are analysed, and distinctive vortex structures are reported.

1.2. Flow over the finite wall-mounted flexible structure
When the structure is flexible, FSI becomes significant. In nature, wall-mounted structures
appear in various forms, such as flexible plate, blade, filament, aquatic plant and stem.
Research on these structures is essential for understanding their behaviours under different
flow conditions. However, most studies have focused on predicting drag, wave attenuation,
flow profiles and structural reconfiguration, with relatively few investigations into their
vortex dynamics. Furthermore, the parameters considered in these studies are scattered,
making it difficult to establish a comprehensive understanding of FSI of wall-mounted
flexible structures.

Zeller et al. (2014) proposed a novel formulation of the Keulegan–Carpenter number
(K C = Um T/D, where Um is the maximum flow velocity and T is the oscillatory
period) for predicting drag coefficients and developed a model for wave attenuation. They
estimated the averaged turbulence production over the wave period using the maximum
flow velocity and the relative velocity between the current and waves. Mullarney et al.
(2010) demonstrated that stem stiffness significantly affects its motion relative to the wave
under wave forcing. A highly flexible stem moves with the surrounding water, whereas a
stiff stem exhibits minimal motion, leading the surrounding water by 90◦. They developed
an analytical model to describe the wave-forced motion of a single stem and derived an
equation to predict frequency-dependent wave dissipation. Luhar & Nepf (2016) observed
that blade motion is governed mainly by two dimensionless parameters: (i) the Cauchy
number (Ca) and (ii) the ratio of the blade length to wave orbital excursion. Here, Ca is
defined as Ca = 0.5ρ f Dl3U 2

re f /E I , where ρ f is the fluid density, D is the side length
or stem diameter, l is the stem height, E is Young’s modulus, I is the cross-sectional
momentum of inertia and Uref is the incoming flow velocity. When Ca � 1, drag on
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the flexible blade is lower. However, when Ca ∼O(1), drag is higher than that of a rigid
blade. Hu et al. (2021) developed a theoretical model to predict the motion of rigid
and flexible stems under wave conditions, identifying a phase lag between flow motion
and stem response. Zhang & Nepf (2022) developed a scaling equation to predict the
reconfiguration of flexible plants with leaves due to the hydrodynamic drag using water
channel experiments and numerical simulations.

In terms of flexible filaments, Silva-Leon & Cioncolini (2020) experimentally
investigated their motions and identified different filament responses, including static
reconfiguration, small-amplitude vibration, large-amplitude periodic vibration and
large-amplitude aperiodic vibration. These behaviours were found to be influenced by Re
and the filament length (l). Huang, Shin & Sung (2007) numerically observed bistability
in flexible filaments by varying their length. Revstedt (2013) studied the deformation
of a flexible cantilever at Re = 400 and a reduced velocity range of π/4 − 2π . In the
desynchronisation regime, the stem motion has negligible effects on vortical structures,
whereas in the synchronisation regime, the stem significantly alters the mean flow field,
frequencies and vortical structures. Zhang, He & Zhang (2020) explored the dynamics of
a wall-mounted flexible filament by varying the bending rigidity, mass ratio (m∗ = m/m f ,
where m is the structure mass and m f is the displaced fluid mass) and Re. They observed
three distinct dynamic modes, referred to as lodging, regular vortex-induced vibration
(VIV) and static reconfiguration. In regular VIV, the filament frequency locks onto the
second natural frequency. However, when the filament is with a nearly upright orientation,
the vortex shedding is weak and no lock-in is observed. At higher Re, vortex shedding
intensifies, leading to first-mode frequency lock-in, as reported in Py, De Langre &
Moulia (2006) and Jin et al. (2018). Rota et al. (2024) observed two flapping states of
a wall-mounted flexible filament in turbulent wall flow by direct numerical simulations.
One state is with a more flexible filament which oscillates at the frequency of the largest
eddies, and the other is with a more rigid filament which is governed by the structural
natural frequency.

For a single stem, Jacobsen et al. (2019) experimentally studied its motion subjected to
regular waves, focusing on several critical aspects: (i) predicting the stem motion and static
shape, (ii) force reduction due to flexibility, (iii) hydrodynamic forces on the flexible stem,
(iv) estimating external hydrodynamic loading and internal shear forces and (v) examining
the relationship between phase lags and internal shear forces. They found that when the
stem is stiffer, the phase lags remain nearly uniform along its length, whereas in more
flexible stem, phase lags vary. The drag force shows better overall coherence with varying
K C . Toward the stem base, shear force increases monotonically for certain stems; however,
it reaches local maximum near the stem tip. Zhu et al. (2020) developed a consistent-
mass cable model to solve the flow and flexible stem interaction. They observed that, even
under symmetric waves, the blade can experience asymmetric motion, with asymmetry
of the tip motion growing with wave height and blade length but reducing as flexural
rigidity increases. Using numerical simulations, O’Connor & Revell (2019) investigated
the dynamic behaviours of a two-dimensional (2-D) flexible flap in channel flow. They
identified four different response modes: static, flapping, period doubling and chaotic
motion. Additionally, they discussed the stabilising and destabilising effects of the bending
stiffness and mass ratio. Leclercq & de Langre (2018) observed four kinematic regimes,
referred to as the fully static, large-amplitude, convective and modal regimes, based on
the flow oscillation amplitude and frequency relative to the blade dimensions and natural
frequency. Jin et al. (2019) experimentally examined the unsteady dynamics of individual
wall-mounted flexible plates with varying rigidities. They identified three dominant modes
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of tip oscillation: flutter, twisting and orbital modes. Neshamar et al. (2022) experimen-
tally investigated the flow-induced oscillation of a cantilevered cylinder. They found that,
depending on the reduced velocity, the dominant response could manifest as in-line vibra-
tion, figure-eight vibration or transverse vibration, each with distinct features. They further
developed an empirical model to reasonably predict the amplitude of in-line vibration.

Although significant progress has been made in recent years, several key questions
remain unsolved, which are critical for both engineering applications and theoretical
advancements. (i) Amongst existing studies, the three-dimensional (3-D) vortical
structures, particularly their spatial evolution, remain largely unexplored, despite their
central role in flow physics. (ii) The complex dynamics of a flexible stem is closely
associated with unsteady vortex shedding events (Lunar and Nepf, 2016), and these
interactions play a crucial role in regulating the system’s behaviour. (iii) Most
theoretical and experimental studies have overlooked motion-induced forces, despite their
demonstrated significance in force amplification (Triantafyllou et al. 2016). Among the
different motion components, transverse motion makes the greatest contribution to force
amplification, exceeding the streamwise and vertical motion effects. (iv) The tip motion
and dynamic distributions along the vertical direction need to be clarified.

1.3. The objective of the present study
In this study, we introduce, for the first time, a coupled immersed boundary method
(IBM)–vector form intrinsic finite element (VFIFE) method to simulate wall-mounted
structures. This novel approach enables us to address several unexplored aspects of
uniform flow over a circular FWMC. We start with a wall-mounted rigid stem to provide
a foundational understanding of the vortex dynamics and to facilitate comparisons with
flexible stems. We then shift our focus to the FSI of a wall-mounted flexible stem. The
remains of this study are structured as follows. In § 2, we provide the details of the
numerical methodology adopted in this study. In § 3, we validate the developed model
through a comparison with theoretical and experimental results. In § 4, we present the
details of the parameters applied in the simulation of the wall-mounted stem. In § 5, we
present the flow over the rigid stem and discuss the evolution of the 3-D vortical structures.
Additionally, we analyse the development of upwash and downwash flows and inherent
3-D wake instabilities. In § 6, the FSI response and vortex dynamics of a flexible stem are
presented. In § 7, we further discuss several phenomena in the flexible case. In § 8, the
main findings of this study are summarised.

2. Methodology
In this section, we present the adopted numerical method for simulating the wall-mounted
structure. In § 2.1, the filtered Navier–Stokes (N-S) and continuity equations in the large-
eddy simulation are presented. In §§ 2.2 and 2.3, the details of VFIFE and IBM are
introduced. In § 2.4, information on the coupling between the fluid and structure is
provided.

2.1. Large-eddy simulation (LES)
The governing equations for the incompressible flow are the filtered N-S and continuity
equations expressed as follows:

∂ ūi

∂t
+ ū j

∂ ūi

∂xj
= − 1

ρ f

∂ p̄

∂xi
+ v

∂2ūi

∂xj∂xj
− ∂τi j

∂xj
+ fi

∂ ūi

∂xi
= 0.

⎫⎪⎪⎬
⎪⎪⎭ (2.1)
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Here, ui (i = 1, 2, 3) is the flow velocity of three directions in the Cartesian coordinate
system, an overbar stands for the filtering procedure, p is the pressure, t is the time, ρ f
is the fluid density, ν is the kinematic viscosity of the fluid, fi is the extra force that
represents the action of immersed objects on the fluid and τi j is the subgrid-scale stress,
representing the influences of the filtered small-scale turbulent structures on the flow field
(Smagorinsky 1963). To ensure the closure of (2.1), the Smagorinsky eddy viscosity model
is applied, which is given as

τi j = 2 (CsΔ)2 |S̄|S̄i j + 1
3
τkkδi j , (2.2)

where Cs is the Smagorinsky constant. In the present study, Cs = 0.1 (Deardorff 1970).
The filter width Δ is adopted as Δ = 3

√
	x	y	z with 	x , 	y, and 	z as the grid sizes

in the three directions. Here, |S̄| = (2S̄i j S̄i j )
1/2 is the magnitude of large-scale strain rate

tensor, where S̄i j = (1/2)((∂ ūi/∂xj ) + (∂ ū j/∂xi )).

2.2. Vector form intrinsic finite element
The VFIFE method was first introduced by Ting, Shih & Wang (2004a,b, 2012), Ting &
Wang (2008) and Shih, Wang & Ting (2004). It is an analytical and numerical method in
structural mechanics based on point value description and vector form theory. The point
value description in the VFIFE method relies on a lumped mass matrix, meaning that
external force on one spatial point does not influence the motion dynamics of other spatial
points. As a result, the method eliminates the need to construct complex rigidity matrix or
solve large-scale nonlinear equations. Compared with conventional methods, the VFIFE
method effectively avoids certain nonlinear issue that arise when structures undergo large
deformations, dislocations, collisions or elastoplastic behaviours, such as iteration non-
convergence and matrix singularity. Additionally, by appropriately discretising path ele-
ments, the characteristics between two path elements can be adjusted, allowing the method
to handle structural discontinuities. Consequently, the VFIFE method has been widely
applied to address challenging nonlinear and discontinuous scenarios (Duan et al. 2014; Xu
et al. 2015; Xu & Lin 2017; Hou, Fang & Zhang 2018; Li, Wei & Bai 2020; Wu et al. 2020).

The foundation of the VFIFE lies in its spatial and temporal structural point value
description. In the spatial point value description, the structural mass is concentrated at
a series of discretised spatial points. The motion and deformation of structure can be
determined through the positions of these spatial points, which are interconnected by
linear beam elements, see figure 2(a). It is assumed that the cross-sectional profiles of the
elements remain identical and perpendicular to the principal axis at any position. Unlike
conventional methods, the beam elements in the VFIFE are responsible solely for internal
structural force and are independent of the governing equations. For cases involving
multiple internal forces between two spatial points, multiple beam elements are used.
These elements are positioned between the two spatial points to represent the internal force
without needing to define it across the entire structural range (Ting, Duan & Wu 2012).

In the temporal point value description, the structure’s dynamics is represented by
a series of path elements that follow the principle of ‘large dislocation and small
deformation’. Within each path element, the shift of a spatial point comes from the two
components: rigid body motion and pure deformation. The displacement due to rigid
body motion is determined using Newton’s second law and the rotational equation, while
the displacement caused by pure deformation is described by Hooke’s law through the
introduction of a virtual reverse motion. Ensuring consistency of the structural properties
and motion trajectories is crucial for accurately calculating pure deformation within each
path unit via reverse motion. In the VFIFE, reverse motion is introduced to distinguish
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Figure 2. (a) The beam elements, (b) reverse translation and (c) reverse rotation in the VFIFE.

dislocations caused by rigid body movement from those caused by pure structural
deformation, see figure 2(b,c). The processing steps are as follows. (i) The calculation
of structural internal force is based on the state at the initial instant ta . (ii) Due to the
consistency of structural properties and motion trajectories within each path element,
a virtual structural state at any instant t is generated through a virtual reverse motion,
which includes reverse translational and rotational motions for the spatial position at that
instant. Subsequently, minor dislocations and deformations are identified by comparing
the reference and virtual structural states. (iii) These small deformations and dislocations
are then resolved using the structural deformation–internal force relationship. Finally, the
structural state at tb is obtained through a forward rigid body motion.

The dynamics of a wall-mounted flexible stem is simulated using VFIFE method. Based
on the point value description, the stem is discretised into a set of spatial nodes that
connect to each other by beam elements. The motion of each node is applied to describe
the movement and deformation of the stem and satisfies Newton’s second law

mV̇ + ζmV + Fint = Fext

I ω̇ + ζ Iω + M int = Mext

}
, (2.3)

where m and I are the mass and momentum of inertia matrix of the node, respectively.
Here, V̇ , V , ω̇ and ω are the acceleration, velocity, angular acceleration and angular
velocity of the node, respectively, Fint , Fext , M int and Mext are the internal force,
external force, internal momentum and external momentum, respectively, and ζ is the
structural damping coefficient, which is zero in the present study. An explicit iterative
scheme based on the central difference is adopted to solve equation (2.3) as follows:

xn+1 = 	t2
s

Fext−Fint

m + 2xn − xn−1

αn+1 = 	t2
s

Mext−M int

I + 2αn − αn−1

V n+1 = xn+1−xn

	ts
, ωn+1 = αn+1−αn

	ts

⎫⎪⎬
⎪⎭ , (2.4)

where x, α and 	ts represent the node position, rotation angle of the node and the
structural time step, respectively. The temporal trajectory of any node on the stem is
described by a set of spatial points, and the process between the spatial points is defined as
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Figure 3. The layout of the immersed boundary method. The discrete volumes (Vi ) of the immersed boundary
points (IBPs), marked by the dashed region, form a thin shell of thickness equal to one mesh width around
each IBP.

the path element. Proper division of the path element allows the properties of each node
to vary between two elements.

2.3. Immersed boundary method
The IBM was first introduced by Peskin (1972) for simulating blood flow around the
flexible leaflet of a human heart. Compared with conventional numerical methods, IBM
offers key advantages, particularly in FSI simulations involving topological changes.
Another significant advantage is its parameterised and fast implementation, enabling
the rapid simulation of numerous cases with different geometric configurations, unlike
conventional methods that rely on body-conformal grids. In the IBM framework, the
flow motion equations are discretised on a fixed Cartesian grid, while the structure is
represented by a series of IBPs on a Lagrangian grid, which is curvilinear and free to move,
see figure 3. The Cartesian grid does not conform to the geometry of a moving structure.
As a result, the boundary conditions on the fluid–body interface cannot be imposed
directly. Instead, an extra body force is incorporated into the fluid momentum equation
to account for this interaction. This body force is updated during pressure iterations
(Ji, Munjiza & Williams 2012), ensuring that it is solved simultaneously with pressure and
that the boundary condition on the immersed boundary is fully satisfied. In the current
simulation, the stem is discretised into 160 elements along its height, resulting in 161
circular slices. Each slice is represented as a circle, further discretised into 256 IBPs
uniformly distributed along its circumferences, as illustrated in figure 4(c). This ensures
that at least one IBP is present in each grid cell, maintaining accurate spatial resolution.
Given an aspect ratio of AR = 10, the resolution is 1/16 . Notably, when the stem deforms,
the plane of each layer, composed of 256 IBPs, remains perpendicular to the tangent line
at the corresponding node. As the structure’s surface is formed by these IBPs, the internal
fluid remains entirely isolated from the external fluid, inherently satisfying the condition
of a zero normal pressure gradient on the surface.

To discretise equation (2.1), the second-order Adams–Bashforth time scheme and
the second-order central difference scheme are applied, which lead to the following
conservation form:

un+1 = un + δt
(

3
2 hn − 1

2 hn−1 − 3
2∇ pn + 1

2∇ pn−1
)

+ f n+ 1
2 δt

∇ · un+1 = 0,

}
(2.5)
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Figure 4. (a,b,c) The wall-mounted flexible stem model in the present simulation and (d) the numerical
set-up of the computational domain (not to scale). Part of the IBPs on the top surface are marked by the
red dots in (c).

where h = ∇ · (−uu + (v + vt )(∇u + ∇uT )) is composed of the convective and diffusive
terms, in which the superscript T is the transpose of a matrix and νt is the turbulence eddy
viscosity. Superscripts n+1, n+1/2, n and n–1 indicate the time steps. The extra force
f is determined by setting the velocity consistent condition U n+1 = V n+1 on the fluid–
structure interface, where U n+1 is the interpolated fluid velocity and V n+1 is the update
structure velocity. Extra force f is formally evaluated at the time step n + 1/2

f n+ 1
2 δt = D

(
Fn+ 1

2
) = D

(
vn+1 − I

(
un + δt

(
3
2

hn − 1
2

hn−1 − 3
2
∇ pn + 1

2
∇ pn−1

)))
,

(2.6)

where F is the extra body force on the structure and vn+1 = V n+1 + r × ωn+1 is
the desired velocity on the IBPs obtained by solving equation (2.3), in which r is a
vector from a node to an IBP. The interpolation and distribution functions, I and D,
suggested in Peskin (1972) are applied, which are responsible for data transfer between
the non-conforming Eulerian and Lagrangian grids.

2.4. Coupling between the fluid and structures
As mentioned earlier, in the present method, the wall-mounted flexible stem is materialised
by the IBPs on the solid surface, see figure 4(a–c). However, as the stem’s motion is
defined by spatial points with concentrated mass, an appropriate approach is needed to
effectively transfer the fluid force from the surface IBPs to these spatial points. During
each iteration of fluid-structure coupling, the solid surface surrounding these mass points
is reconstructed using IBPs, see figure 4(c). The fluid force on these reconstructed
solid surface IBPs is then applied to the corresponding mass points as external forces.
Consequently, the motion of each node is determined using (2.3). Simultaneously, the flow
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Figure 5. Model for the deformation of a flexible stem under uniform loading.

velocity and pressure are updated, and the velocity on the immersed boundary is corrected,
thereby establishing the coupling between the fluid and the structure. It is important to note
that the critical time step for solid motion is significantly smaller than that for the fluid.
Therefore, within each fluid time step, the solid motion must be iterated multiple times
under the assumption that the fluid forces remain unchanged.

3. Validation

3.1. The deformation of a cantilever plate under uniform loading
First, we verify the codes for pure deformation of a wall-mounted flexible stem with a
rectangular cross-section under uniform loading. As modelled in figure 5, the cantilever
plate is wall mounted under uniform loading. The geometric parameters for the plate are
the length (l) of 5 cm, the width (b) of 1 cm and the thickness (h) of 0.2 cm. The plate
density is 0.678 g cm–3, the elastic modulus is 5 × 105 Pa and Poisson’s ratio is 0.4. The
uniform loading varies in the range of q = 0.0001–0.0008 N cm–1. The plate is divided
into elements, i.e. 10, 25 and 50. The corresponding grid in the vertical direction (along
the length) is dxs . For different situations, the time step is controlled to be smaller than
the critical time step dt0

s calculated using the equation of dt0
s = dxs/

√
E/ρs , where E is

Young’s modulus, and ρs is the plate density. The structural damping is set as ζ = 0.
Based on the deformation theory of a plate under uniform loading (q), the final

deformation curve follows the equation

v(x) = − qx2

24E I

(
x2 − 4xl + 6l2

)
, (3.1)

where x is the distance of one point to the fixed end (positive in the x direction), v(x) is
the final deformation of the plate and I = bh3/12 is the cross-sectional inertial moment of
the plate.

Figure 6 shows the comparison of the simulated results and theoretical results. It is seen
that the model for the plate motion can accurately predict the deformation of the plate.
Further, the number of elements in the simulation is also essential. The difference (in
percentage) between the simulation and the theoretical value becomes higher as it gets
closer to the free end of the plate, which is related to the deformation growing smaller.
Thus, it requires a higher number of elements. As shown in figure 7, after the element
number exceeds 25, the simulated deformation and vibration frequency match very well
the theoretical results. The relative difference generally gets smaller when the loading
is higher. Here, the relative differences for the deformation and vibration frequency are
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Figure 6. Comparison of the transverse shift of the tip with the theoretical value for a plate under uniform
loading. Here, Case_n10q1 represents the case of the plate divided into 10 elements and under the loading of
q = 0.0001N cm–1. The naming scheme is applied for other cases. For example, Case_n25q8 denotes the case
of the plate divided into 25 elements and under the loading of q = 0.0008 N cm−1.

defined as 	vti p = (vti p − v0
ti p)/v

0
ti p and 	 f1 = ( f1 − f 0

1 )/ f 0
1 , respectively, where vti p is

the simulated deformation, v0
ti p is the theoretical solution, f1 is the simulated vibration

frequency and f 0
1 is the theoretical value.

3.2. Flexible plate in uniform channel flow
In this section, we validate the codes through a benchmark case of a wall-mounted flexible
plate in uniform channel flow. Interactions between the fluid and plate are considered.
Luhar & Nepf (2011) carried out a series of model experiments in the channel flow on
a flexible plate, widely used to compare numerical or experimental results. To check the
fidelity of our present numerical methodology, we compare our numerical results with
those of Luhar & Nepf (2011).

In our present simulation, the setting of the computational domain is very similar to
the water flume experiment in Luhar & Nepf (2011), see their figure 3. Based on this, the
computational domain is 40 cm × 16 cm × 16 cm in length, width and height, respectively.
The water depth in the channel is 16 cm. In the inlet, the incoming flow is a uniform
velocity U∞, while the velocity condition is applied in the outlet. For the top and lateral
walls, free-slip boundaries are adopted. The bottom is a no-slip boundary and the wall
function developed by Werner & Wengle (1993) was used. The geometric parameters for
the flexible plate are the length (l) of 5 cm, width (b) of 1 cm and thickness (h) of 0.2 cm,
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Figure 7. (a) The relative difference of the deformation at the free plate end versus the dimensions of the
uniform loading, and (b) the relative difference of the vibration frequency of the plate with different elements
versus the uniform loading.

respectively. The density of the flexible plate is 0.678 g cm–3, the elastic modulus is
5 × 105 Pa and the Poisson ratio is 0.4.

Before the validation, we first carry out a convergence test. A uniform mesh is applied
around the flexible plate, and a large region is adopted to cover the possible motion of
the plate. Outside this region, the stretched mesh with the constant ratio (not larger than
1.02) is adopted. Therefore, the total meshes is affordable in the present simulations.
Four uniform meshes are selected, i.e. 	h/b = 0.2, 0.1, 0.0625 and 0.05. Here, h is the
minimum mesh. The dimension (dxs) of the solid element is the same as the minimum
mesh adopted. The fluid time step (dt f ) for each situation is smaller than the critical time
step (dt0

f ) calculated through the equation below

dt0
f = min

(
dx f , dxs

)
√

E/ρs + 2U∞
, (3.2)

where dx f is the fluid mesh, dxs is the dimension of the solid element, E is Young’s
modulus, ρs is the solid (or structure) density and U∞ is the incoming flow velocity.
The Reynolds number is Reb = 1600 when the width (b) of the plate is used as the
characteristic length.

Figure 8(a) compares the simulation results and those (Dx/b = 2.14, Dz/b = 0.59 and
Cd = 1.03) of model experiments in Luhar & Nepf (2011) under different mesh spacings.
Here, Dx is the deflection of the plate at the free end in the streamwise direction, Dz is the
height reduction of the plate at the free end and Cd is the drag force because of the flow
around the vegetation. It is seen that the relative difference between the present simulation
and the experiments of Luhar & Nepf (2011) becomes lower as the mesh is finer. When
the mesh is no larger than 	h/b = 0.0625, the relative errors for Dx/b and Cd are lower
than 1 % and smaller than 6 % for Dz/b. Thus, our numerical results agree well with the
experiments of Luhar & Nepf (2011), suggesting a high fidelity of the present numerical
methodology. Further, the mesh with h/b smaller than 0.0625 is an appropriate choice for
our following simulations.

The incoming flow velocities, including U∞ = 3.6, 11.0, 16.0 and 27.0 cm s–1, are
simulated and compared with the experiments in Luhar & Nepf (2011) for further
validation. The mesh with 	h/b = 0.0625 is adopted. Figure 8(b) compares the drag
force (Fd ) acting on the plate of the present simulation with both model predictions and
experiment results. It is seen that the present simulation results are well matched with those
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Figure 8. (a) The relative errors in hydrodynamic forces with different b/h values and (b) comparison of the
drag force with prediction values and experimental results in Luhar & Nepf (2011).

in the experiments. This again indicates that our present methodology has high fidelity in
simulating flexible plates in uniform channel flow.

3.3. Flexible stem under uniform loading
In this section, the deformation, including the tip position in the x and z directions and
inclination angle of the chord line (i.e. between the tip and root) and horizontal line
of a wall-mounted stem under uniform loading, is investigated and verified against the
theoretical value, see figure 9(a). The aspect ratio is AR = 10 and the uniform loading
q is given according to the drag coefficient on the rigid stem. Figure 9(b–d) compares
our simulation results with the theoretical value. It shows a good agreement for all three
deformation quantities, thus suggesting a high fidelity.

As shown in figure 9(b,c), the tip position in either direction is dominated by stem
stiffness while it is independent of Re. With increasing K , xtip/ l decreases while htip/ l
increases gradually, corresponding to the state changing from upright to lodging. However,
when lg(K ) > 0, htip/ l remains almost constant while xtip/ l decreases approximately
linearly when the log–log coordinate is used. When lg(K ) < –3, htip/ l follows the
relationship htip/ l ∼ K 1/3. This relationship was reported in Luhar & Nepf (2011).

As shown in figure 9(d), the inclination angle θ grows with K , following the theoretical
line. When K is large, the stem maintains upright, thus θ ≈ 90◦; while K is extremely
small, the stem maintains nearly parallel to the wall, θ approaches 0◦, indicating a lodging
state.

3.4. Dynamics of a flexible filament in uniform flow
In this section, we validate the dynamics of a flexible filament by comparing our simulation
results with those in Zhang et al. (2020). The computation domain and parameter
settings are the same as those in Zhang et al. (2020). Two cases are selected: one is at
γ = 0.008 and the other is at γ = 0.004, with β and Re being constant at 1.0 and 400,
respectively. Here, Re = U∞L/v, β = ρsδ1/ρ f L and γ = B/ρ f U 2∞L3, where B is the
bending rigidity, L is the length of the filament, ρs is the filament density and δ1 is the
thickness of the filament.

The time history of the inclination angle (θ ) is plotted to check the consistency of the
filament dynamics. Figure 10(a,c) shows the comparison of our simulation results with
those in Zhang et al. (2020). Note that the results in figure 10(a,c) are using the mesh

1013 A17-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
19

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10199


Journal of Fluid Mechanics

10–110–210–310–4
0

30

K

θ
(d

eg
.)

60

Simulation, Re = 200

Simulation, Re = 800

Theoretical value

x t
ip

 /
l

y t
ip

 /
l

90

(a) (b)

(c) (d)

z

x

htip

xtipq

10210–110–2

1/3

10–310–4
10–2

10–1

100

10–2

10–1

100

K

10–1 101100

101100
101100

10–210–310–4

θ

–1

Figure 9. (a) Schematic of a wall-mounted flexible stem and deformation quantities, (b,c) the tip position in
the x and z directions with K , and (d) the inclination angle θ with K . The theoretical value is superimposed
for comparison.

resolution of 1/8. It is seen that our present simulation agrees well with those in Zhang
et al. (2020) for the two cases. However, differences are also observed. For the first case
(i.e. γ = 0.008), the dominant frequency of the angular oscillation is slightly smaller than
that in Zhang et al. (2020). For the second case (i.e. γ = 0.004), the filament is much
closer to the wall and the dynamics of the filament is influenced by the mesh resolution
near the wall. The slight difference is at the smaller peaks of the angular oscillation.
The mesh convergence is also shown in figure 10(b,d). For the first case, the angular
oscillations for the meshes of 1/16 and 1/32 are well matched. This indicates that the
mesh of 1/16 is appropriate for the present simulation. However, for the second case, the
angular oscillation is convergent when the mesh is not coarser than 1/32, see figure 10(d).
This means that the latter case requires a finer mesh. For a more flexible filament, its
tip goes much closer to the wall, and accordingly, it requires a finer mesh to deal well
with the collision process. We also check the influence of the non-dimensional time step
(not shown here). To achieve a convergent result, in our present simulation significantly
small time steps are adopted. The difference observed on halving the adopted time step is
insignificant.

3.5. The non-dimensional time step for a wall-mounted stem in uniform flow
In this section, we check the influence of the non-dimensional time step in the simulation
of a wall-mounted flexible stem. The aspect ratio is constant at AR = 10 and the Reynolds
number is Re = 400. As shown in table 1, by reducing the non-dimensional time step by
half, the largest difference for Ax is only 3.2 %.
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Figure 10. (a,c) Comparison of the time history of the inclination angle (θ ) of the present study with Zhang
et al. (2020), and (b,d) time history of the inclination angle (θ ) at different grid spacings. (a,b) Are for the case
of Re = 400 and γ = 0.008, and (c,d) are for the case of Re = 400 and γ = 0.004.

	tU∞/D Ax Ay Az f

1.6 × 10−4 0.064 0.962 0.031 0.132
8 × 10−5 0.062 0.984 0.032 0.128
Difference (%) 3.2 3.1 3.1 3.1

Table 1. Comparison of the oscillation amplitudes in three directions and dominant frequency in the
transverse direction at different non-dimensional time steps for a wall-mounted flexible stem at Re = 400 and
lg(K ) = −0.5.

3.6. Other validation
Another validation, such as flow over a rigid circular cylinder in unbounded flow with
the Re up to 1000, has been provided in our previous work (Chen et al. 2022). The mesh
settings in the present study are approximately the same as those adopted in the direct
numerical simulation. The convergence analysis of the grid spacing and non-dimensional
time step has been conducted in our previous work.
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4. Numerical set-up for a wall-mounted stem in uniform flow
In this section, we present the numerical set-up employed in this study and explain the
practical rationale behind its design. It is noted that only dimensionless quantities are
employed in our numerical simulations of a wall-mounted stem.

(i) Cross-section of the wall-mounted stem: numerous natural applications feature a
wall-mounted configuration, such as trees in a forest, seaweed on the seafloor,
cilia on membranes and bivalves inhabiting riverbeds. These structures exhibit a
variety of shapes, including circular, rectangular, plate-like and thin filamentous
forms. In this study, we aim at the 3-D flow characteristics and dynamic response
of a wall-mounted stem. The circular cross-sectional shape is chosen as it is
more representative and rotational symmetry and thus insensitive to incoming flow
directions.

(ii) Aspect ratio: the aquatic plants generally have large aspect ratios (ARs), ranging
from 10 to 100 (Ghisalberti & Nepf 2002; Luhar et al. 2010; Luhar & Nepf 2011).
To save computational resources and conduct more simulation cases, a lower end of
AR (= 10) is adopted in this study.

(iii) Reynolds number: the flow velocity at the location of the aquatic plants is strongly
influenced by factors such as the topography, ocean currents, tides and geographical
location. Near the coast, tides play a significant role, with flow velocity typically
ranging from 0.1 to 1 m s–1. In contrast, plants in the deep sea are primarily affected
by ocean currents, where the flow velocity is generally more stable, typically within
the range of 0.01–0.2 m s–1. The characteristic width of these plants is of the order of
1 cm (Luhar et al. 2010; Luhar & Nepf 2011). Accordingly, the Reynolds number Re
(= U∞D/ν) based on the width (or diameter) is in the range of 102–104. In a coastal
system, a condition with Re � 200 is common (Munson, Young & Okiishi 1990;
Leonard & Luther 1995). However, in a freshwater system not exposed to strong
tides, a condition with Re � 200 is more typical. For Re � 200, the wake production
is negligible and turbulent components are greatly reduced (Ghisalberti 2000).
A moderate Re range is selected, i.e. Re = 200–1000, covering the conditions from
river to coast, which is obtained by setting different initial U∞.

(iv) Stiffness ratio: for flexible stems, the stiffness ratio, representing the ratio of the
elastic force and inertia force, is introduced, defined as K = 1/Ca. Here, the Cauchy
number Ca is defined as Ca = 0.5ρ f Dl3U 2

re f /E I , where ρ f is the fluid density, l is
the stem length, D is the stem diameter, E is Young’s modulus, I is the cross-section
moment of inertia, defined as I = π D4/64 for the circular cross-section, and Uref
is the incoming flow velocity. For a single stem, Uref = U∞. For aquatic plant, the
stiffness ratio is in the range of K = 2.0 × 10−4 − 3.0 × 102 (Luhar & Nepf 2011),
corresponding to lg(K ) = −3.59 − 2.48. Our simulation indicates that, when lg(K )
> 0, the dynamic response is insignificant. In this study, eight different stiffness
ratios, i.e. lg(K ) = −3.5, 3.0, . . .. . ., 0 with an increment of 0.5, are applied for
each Re.

(v) Density of the stem: the density ρs = 1.0 is applied, which is a typical density of
aquatic plants (Gaylord & Denny 1997; Bradley & Houser 2009; Luhar & Nepf
2011; Vettori & Nikora 2018; O’Connor & Revell 2019).

(vi) Structural damping: in this study, the structural damping coefficient (ζ ) is set as
zero. Thus, the flexible stem experiences the strongest oscillation.

(vii) Computational domain: as shown in figure 4(d), the distance is 10D from the stem
centre to the inlet and 30D to the outlet. The stem to each side of the lateral
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Figure 11. Dependence of (a) mean drag (C̄d ), (b) fluctuating (r.m.s.) drag (C ′
d ) and (c) fluctuating (r.m.s.)

lift (C ′
l ) coefficients on Re (= 200 − 1000). The triangle symbols in (a,c) represent the results of flow over an

infinite circular cylinder from Jiang and Cheng (2021). The results in (b) are provided by H. Jiang (personal
communication). Here, R1, R2 and R3 denote different regimes based on the features of lift spectra and the
vortex dynamics.

boundary is 8D and the height in the z-direction is 16D. The value 	z/ l = 1/16
is applied. At the stem position, the boundary layer thickness (δ/D) is low, varying
from 1.1 to 0.5 within Re = 200–1000. The computational domain is discretised by
a non-uniform Cartesian grid with a resolution of 1536 × 512. The non-dimensional
grid spacing in the x−y plane is 1/32. A total of 160 points are applied in the VFIFE
method.

(viii) Boundary conditions: a Dirichlet-type boundary is adopted at the inflow, and a
Neumann-type boundary is employed at the outflow. The top and bottom walls are
free slip and no slip, respectively, and the free-slip boundary condition is adopted at
two lateral boundaries.

(ix) Non-dimensional time step and time span: in our present simulation, both the time
span and time step depend strongly on Re and K . To provide a convergent result, the
non-dimensional time step is of the order of 10−4 or 10−5, and the corresponding
Courant–Friedrichs–Lewy number is of the order of 0.01 or 0.001. It is found that
the non-dimensional time span is closely associated with the response type. For
periodic or regular response, the time span may reach ∼ 1000, while for chaotic
response it may reach ∼ 3000. It should be pointed out here that, although the time
span is already long, some cases are still unstable, such as the case at Re = 200 and
lg(K = −2.0) where slow flapping behaviour occurs.

5. Wall-mounted rigid stem in uniform flow
This section reports the characteristics of the hydrodynamic forces, vortex shedding
frequency and flow structures of a wall-mounted rigid stem to provide some primary
understanding and to facilitate further comparison with the flexible stem.

5.1. Statistics of fluid forces and vortex shedding frequency
Figure 11 shows the vertically averaged fluid forces on the rigid stem at Re =
200 − 1000. Here, the drag and lift coefficients are defined as Cd = 2Fd/ρU 2∞Dl and
Cl = 2Fl/ρU 2∞Dl, respectively. As shown in figure 11(a), the mean drag coefficient (C̄d )
is 1.12 at Re = 200 and gradually decreases as Re increases. The C̄d values for a circular
cylinder in an unbounded flow (represented by triangular symbols) are slightly higher than
those for the wall-mounted case. This discrepancy arises because, in the wall-mounted
case: (i) the oscillating shear layers near the junction are suppressed by the wall, and
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Figure 12. Power spectral density (PSD) of the vertically averaged lift coefficient of a wall-mounted rigid
stem within Re = 200 − 1000. Panels show (a) Re = 200, (b) Re = 400, (c) Re = 600, (d) Re = 800 and (e)
Re = 1000. The inset in (b) shows the spectrum of the lift coefficient of an infinite circular cylinder at Re = 400.

(ii) the free end delays flow separation, resulting in a less negative wake pressure (Luo,
Gan & Chew 1996). As discussed later, the downwash flow from the free end pushes the
shear layers away from the stem base, contributing to the reduction in C̄d .

The r.m.s. drag coefficient (C ′
d ), shown in figure 11(b), exhibits a different behaviour

with Re. At Re = 200, C ′
d is approximately zero (0.001). For higher Re values, C ′

d
stabilises around 0.08, which is significantly higher than at Re = 200. This suggests a
fundamental difference in the vortical structures between Re = 200 and Re > 200. The
C ′

d values for an infinite circular cylinder at the corresponding Re are also plotted in
figure 11(b). It is seen that the C ′

d values in triangular symbols are much higher than
those for the wall-mounted case, implying that the vortical structures near the free end and
junction supress shear layer fluctuations (Baban, So & Otugen 1989; Wang & Zhou 2009;
Kumar & Tiwari 2019).

Due to the rotational symmetry of circular cross-section, the time-averaged lift
coefficient (C̄l ) is zero and will not be discussed further. As shown in figure 11(c),
the r.m.s. lift coefficient (C ′

l ) for the wall-mounted stem is relatively large at Re = 200,
with a value of 0.023. However, at higher Re, C ′

l stabilises at approximately 0.005. The
transitions for C ′

d and C ′
l from Re = 200 to Re > 200 exhibit contrasting behaviours,

highlighting the influence of different vortical structures in these two Re clusters. These
two Re clusters will be analysed further to explore the roles of different flow structures
in the transition. The C ′

l values for the infinite circular cylinder, represented by triangular
symbols in figure 11(c), are much higher due to the reduced fluctuations in the shear layers
of the wall-mounted stem.

The vortex shedding frequency is a key indicator of flow physics and is significantly
influenced by the vortex dynamics at both the free end and the junction (Liu, So &
Cui 2005; Yauwenas et al. 2019). Figure 12 shows the spectra of the vertical-averaged
lift coefficient at Re = 200 − 1000, representing the vortex shedding frequency. As Re
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Tip vortex
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Figure 13. Three-dimensional vortical structures behind the wall-mounted rigid stem at (a) Re = 200,
(b) Re = 400, (c) Re = 600, (d) Re = 800 and (e) Re = 1000. The Q-criterion is adopted to visualise the
vortex structures (Hunt et al. 1988), i.e. Q = 5, 20, 45, 80 and 125 for panels (a–e). The arrow indicates the
flow direction (i.e. from left to right).

increases, the spectral characteristics exhibit three distinct patterns. At Re = 200, three
frequencies are observed, but two have trivial magnitudes, as shown in figure 12(a).
The dominant frequency is f ∗(= fD/U∞) = 0.285. However, at Re = 400, the dominant
frequency decreases to f ∗ = 0.182, significantly lower than at Re = 200. Compared with
the unbounded case, the dominant frequency is slightly lower, see the inset in figure 12(b).
A secondary frequency, f ∗ = 0.012, is approximately one order of magnitude lower than
the dominant one. At Re = 600, only one low frequency is detected at f ∗ = 0.021, as
shown in figure 12(c). For Re = 800 − 1000, no dominant frequency is observed, as
multiple low-frequency components below 0.03 exhibit comparable but weak magnitudes,
see figure 12(d,e).

Based on the features of hydrodynamic forces and vortex shedding frequencies, the
investigated Re can be categorised into three regimes. The first regime (R1) corresponds
to Re = 200, where vortex shedding is periodic, and correspondingly, a regular lift
spectrum appears. The second regime (R2) occurs at Re = 400, where both low and high
frequencies appear due to different vortical structures. The third regime (R3) spans at
Re = 600 − 1000, where only low-frequency components are present. A slight distinction
exists between Re = 600 and Re = 800 − 1000 in that the lift spectrum becomes chaotic at
higher Re. These variations are linked to the evolution of different 3-D vortical structures.

5.2. Details of the 3-D vortical structures
The vortical structures in the studied Re range are shown in figure 13. Since the AR
exceeds the critical value (Bourgeois et al. 2011, 2012), the shear layer from the front
side is reattached onto the free-end surface due to flow reversal (Pattenden et al. 2005;
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Figure 14. The vorticity field of a wall-mounted stem at the vertical position of z/D = 0.1. (a–c) For a rigid
stem and (d, e) for a flexible stem. Panels show (a) Re = 200, (b) Re = 400, (c) Re = 600, (d) Re = 200 and
lg(K ) = −0.5 and (e) Re = 600 and lg(K ) = −2.0. The HV in each plot is marked; (i) and (ii) at different
instants. The legs of the HV system, visualised by the x-vorticity at x/D = 0, are marked in the subplot.

Krajnovic 2011; Essel et al. 2021). The leading-edge vortex emerges at the free end surface,
while near the bottom, horseshoe vortices form upstream of the stem, wrapping around
its sides and trailing behind it (Hussein & Martinuzzi 1996; Simpson 2001; Wang &
Zhou 2009; Chang et al. 2017, 2020) due to the adverse pressure gradient. These vortices
tend to drive the flow downward inside its vortical trails. Figure 14 shows the horseshoe
vortex (HV) system circling the stem base at a vertical position of z/D = 0.1. Within
the studied Re, the HV system is characterised by a single necklace vortex, as marked
in figure 14. In the current simulation, both Re and δ/D increase simultaneously as the
incoming flow velocity rises. As expected, the HV grows with increasing Re, exhibiting
greater strength and a longer extension into the wake. This suggests that the dynamics of
the HV system is affected by Re, the characteristics of the upstream boundary layer and
the shape of the cylinder (Baker 1979; Seal et al. 1995). As shown in figure 14(a), the
HV at Re = 200 remains nearly constant, with weak interactions with the two side shear
layers and no noticeable amalgamation. However, at higher Re (= 400 − 600), the HV
legs extend further downstream, see figure 14(b,c). At Re = 400, the HV system encircles
the two side shear layers, and their interactions intensify. In the wake, vortices shed from
the HV system and the two side shear layers mix together, and amalgamation occurs. At
Re = 600, the interactions between the HV system, the shear layers on either side of
the stem and the resulting vortices become more pronounced. The conditions at Re =
800 − 1000 are very similar to those at Re = 600 and are therefore not shown. The
HV system could be either laminar or turbulent. The laminar type is typically classified
into five, transiting from steady to periodic by increasing Re and/or δ/D (Greco 1990;
Seal et al. 1997; Wei, Chen & Du 2001; Kirkil & Constantinescu 2012). In the present
simulation, the HV system remains laminar, with a steady necklace vortex persisting at
Re = 200 − 1000 due to the combined effects of lower Re and a thin δ/D (Wei et al. 2001).
In Kirkil & Constantinescu (2012), where the boundary layer thickness is δ/D ∼= 0.6, the
laminar HV system transitions from steady to periodic oscillating and then to periodic
breakaway as Re increases. In the flexible case, the HV system also remains steady but is
significantly influenced by the redistribution of vortical structures. As will be shown later,
the flexible stem experiences stronger vortex shedding near the tip due to larger amplitudes
and significant deformation. At Re = 200, the HV system remains stable but its vortex
legs extend a shorter distance downstream compared with the rigid stem, see figure 14(d).
A similar behaviour is noticed at Re = 600, see figure 14(e). It should be noted that as
the stem becomes more flexible, the HV system is strongly affected because the two side
shear layers (or separated vortices) move closer to the wall, influencing the HV system’s
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development. More details of the interactions between different vortex structures will be
discussed later.

The evolution of 3-D vortical structures at Re = 200 is shown in figure 13(a). Due to the
high AR, the shear layers are allowed to develop and separate from the stem (Fröhlich and
Rodi, 2004; Pattenden et al. 2005; Tsutsui 2012). The spanwise vortices exhibit a slanted
arrangement with an inclination angle of roughly 32.6◦ (measured between the vertical
axis and the slanted shear layer line) due to the influences of downwash flow from the
free end (Lee 1997; Fröhlich and Rodi, 2004). In the near wake, the spanwise vortices
are significantly bent and stretched. Upwash and downwash flow entrain free-stream flow
into the wake, pushing the spanwise vortices away from the centreline. Meanwhile, the
streamwise vortices gradually develop. As a result of vortex twisting and interaction,
the deformation of the spanwise and streamwise vortices becomes more evident further
downstream. However, the interactions between these vortices weaken as they move apart.
Compared with Re = 200, the 3-D vortical structures at Re = 400 are more complex,
featuring finer-scale vortices. Despite these differences, similarities remain, such as the
presence of downwash flow, see figure 13(b). At this Re, the spanwise vortices take over a
longer length, but their formation region is larger near the wall. Near the free end, spanwise
vortices are absent, while streamwise vortices develop more quickly due to increased flow
velocity. As a result, vortex interactions intensify, leading to faster dissipation.

At Re = 600–1000, the vortex dynamics is characterised by finer-scale vortices. As
shown in figure 13(c–e), spanwise vortices separate from the stem simultaneously and
remain approximately parallel. Compared with the lower Re cases (200–400), the finer-
scale spanwise vortices exhibit more irregular behaviour in the near wake, as indicated by
significantly low dominant frequencies. Similarly, the streamwise vortices are smaller in
scale and mix with the spanwise vortices (Zhang et al. 2021), leading to faster dissipation.
Although the downwash flow persists, it is considerably weaker, as indicated by the
formation of spanwise vortices closer to the free end.

Figure 15 shows the z-vorticity contours at different vertical positions. It is evident that
vortex shedding varies significantly along the length within the studied Re range. At
Re = 200, vortex shedding is regular near the junction. As shown in figure 15(a-i),
the vortex shedding in this region (i.e. z/D = 0.5) is characterised by the formation of
horseshoe and hairpin vortices in the wake. The hairpin vortex comes from disturbances
in the stretched vortices affecting the boundary layer over the stationary wall, a behaviour
similar to the bypass transition observed over a circular cylinder (He et al. 2017). The
shear layers on both sides extend further downstream, and the separated vortices gradually
dissipate in the far wake. At the middle plane (i.e. z/D = 5.0), vortices shed alternately
from both sides of the stem. In the near wake, they appear nearly identical, apart from
their opposite rotation directions, see figure 15(a-ii). Further downstream, these vortices
become increasingly irregular due to the bending and twisting of spanwise vortices and
the emergence of stretched streamwise vortices, leading to a broader wake. Higher up,
i.e. z/D = 7.5, the shear layers weaken, and fluctuations of shear layers occur farther
downstream, with dissipation occurring more rapidly than at the middle plane, see
figure 15(a-iii). Near the free end, i.e. z/D = 9.5, the shear layers on both sides remain
stable, with no visible vortices in the wake, forming a symmetric wake, see figure 15(a-iv).

At Re = 400, vortex strength increases compared with Re = 200. As shown in
figure 15(b-i), the HV near the junction is more intense and extends farther downstream.
Compared with Re = 200, the shear layers on both sides of the stem extend further
downstream. The hairpin vortex appears in the near wake but exhibits greater irregularity.
Interaction between the hairpin vortex and spanwise vortices occurs where the spanwise
vortices separate. At the midspan (i.e. z/D = 5.0), the vortex shedding pattern is similar to
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Figure 15. The vorticity contours (ω∗
z = (D/2U∞)((∂v/∂x) − (∂u/∂y)) of a single stem at several vertical

positions. Panels show (a) Re = 200, (b) Re = 400, (c) Re = 600, (d) Re = 800 and (e) Re = 1000.

that at Re = 200, although the vortices are slightly smaller, see figure 15(b-ii). In the near
wake, vortices become finer and more irregular before the wake widens. At z/D = 7.5,
weak fluctuations in the shear layers are observed, see figure 15(b-iii). Further downstream,
the shear layers thin out due to dissipation. Near the free end, i.e. z/D = 9.5, the shear lay-
ers remain stable, with no vortices shed into the wake, see figure 15(b-iv). Compared with
Re = 200, the downwash flow at Re = 400 is stronger but extends over a shorter length.

As shown in figure 15(c–e), the vortex shedding patterns at the same vertical position
remain similar for Re = 600 − 1000. As Re increases, vortices become stronger but
more irregular. As shown in figure 15(c-i,d-i,e-i), the HV intensifies, and its legs extend
further downstream. Vortex shedding occurs at a relatively shorter downstream position
with increasing Re. The formed vortices subsequently interact with the HV. Further
downstream, the vortices become finer and dissipate more quickly, leading to a wider
wake. At midspan, vortex formation shifts further downstream compared with the low
Re case, see figure 15(c-ii,d-ii,e-ii). At higher vertical position, i.e. z/D = 7.5, the wake
narrows significantly. Near the free end, the shear layers are slightly unstable with small
vortices formed in the wake for Re = 800–1000, see figure 15(c-iv,d-iv,e-iv).

5.3. The downwash and upwash flow
In §§ 5.1 and 5.2 , we discussed the effects of downwash and upwash flow on the vortex
dynamics. Figure 16 shows side views of these flows. For each Re, the separated flow
from the free end enters the near wake at a nearly constant angle relative to the streamwise
direction (Krajnovic 2011). As shown in figure 16(a), at Re = 200, the flow from the
free end moves downward directly along the bottom (i.e. x/D = 1.0), indicating that the
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Figure 16. Instantaneous vertical velocity (w∗) at the y (= 8D) plane for Re = 200−600. Panels show
(a) Re = 200, (b) Re = 400, (c) Re = 600 and (d) Re = 1000. Flow is from left to right. The rectangle in
each plot indicates the stem position.

downwash flow initiates immediately behind the stem but weakens gradually. Beyond
x/D � 4.0, the downwash flow becomes nearly negligible.

At Re = 400, the downwash flow extends slightly farther downstream. As shown in
figure 16(b), downwash begins just past the free end but primarily affects the lower part
of the stem at x/D = 1.0. A slight upward flow is observed at the upper part, indicating
the presence of upwash flow. The downwash flow weakens quickly and disappears around
x/D = 8.0.

At Re = 600, the downwash flow behaves similarly, as shown in figure 16(c). Behind
the stem, an upward flow is observed, pushing the downwash flow further downstream.
Between x/D = 4.0 and 8.0, the downwash flow weakens but spreads toward the wall. In
contrast, at Re = 800 − 1000, the downwash flow reaches the wall, whereas at Re = 600,
it does not, see figure 16(c,d).

Upwash flow appears at Re = 400−1000, where it coexists with downwash flow. At
Re = 600, the upwash flow originates from the junction and is associated with the
development of the near-wake base vortex (Etzold & Fiedler 1976; Essel et al. 2021).
As indicated in figure 1, the base vortex consists of a pair of streamwise counter-rotating
vortices near the base of the stem, influenced by Re and δ/D (Sumner et al. 2004; Wang
et al. 2006; Wang & Zhou 2009). As shown in figure 16(c,d), the upwash flow intensifies
with increasing Re. However, at Re = 400, the upwash flow is only present in the upper
region (see figure 16b), exhibiting a different behaviour from higher Re cases.

5.4. Three-dimensional wake instability comparison with the infinite cylinder case
In this section, we compare the 3-D wake instability of a wall-mounted cylinder with that
of an infinite cylinder to deepen our understanding of the effects of the impermeable wall
and free end. For flow past an infinite circular cylinder, the wake exhibits distinct patterns
due to the presence of inherent 3-D wake instabilities (i.e. modes A and B) as Re increases
from approximately 190 to 300 (Williamson 1996; Jiang et al. 2016). The transition from
mode A to mode B has been well documented. Notably, mode A remains stable only for
a short period before transitioning into a more stable pattern, mode A∗, which exhibits
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significant dislocation. At Re � 220, mode A∗ dominates, while modes A∗ and B coexist
in the range of 230 � Re � 265. When Re � 270, mode A∗ disappears, and mode B
becomes the dominant instability. Modes A∗ and B exhibit distinct characteristics. Mode
A∗, induced by an elliptic instability of the primary vortex cores, features streamwise
vortices that are out of phase between neighbouring braids. Due to spanwise waviness, the
primary vortex cores become significantly stretched. In contrast, mode B, caused by the
hyperbolic instability of the braid shear layer, exhibits an in-phase pattern. Compared with
mode A, the primary vortices in mode B are more stable, with no noticeable spanwise
waviness.

As discussed in § 5.2, the vortex dynamics of a wall-mounted cylinder is significantly
altered by the presence of the impermeable wall and free end. A key feature of this
configuration is the suppression of vortex formation near both the cylinder base and the
free end. Consequently, the separation of the spanwise shear layers typically occurs in a
slanted manner, see figure 13(a,b). Compared with the infinite cylinder case, the wake
transition of the wall-mounted cylinder is influenced by additional factors, including Re,
AR and δ/D. Kumar & Tiwari (2019) found that, at AR = 5, no vortex shedding occurs
when Re � 100, indicating a symmetric wake structure. When Re � 150, spanwise vortex
shedding emerges, with vortices transitioning into hairpin-like structures. The critical Re
for the onset of vortex shedding increases as AR decreases (Saha 2013). It is expected
that if the wall-mounted cylinder has a much larger AR, modes A∗ (or A) and B would
likely emerge. However, for a short cylinder, the wake structures are primarily governed
by downwash and upwash flows (Zhu et al. 2017), resulting in a distinctly different flow
behaviour.

In the present simulation, we observe two patterns of 3-D wake instabilities. As shown
in figure 13(a), the streamwise vortices primarily result from the suppression of shear
layer separation. In the near wake, the separated vortices undergo significant stretching
before transitioning into the hairpin-like structures. At higher Re (= 400), the formation
of streamwise vortices resembles mode A∗. As shown in figure 13(b), streamwise
vortices appear after the spanwise vortices separate from the shear layers, exhibiting
large dislocations. The emergence of mode-A∗-like instability is closely associated with
slanted vortex shedding. However, in the near wake, the formed streamwise vortices
undergo significant stretching, preventing the mode-A∗-like vortices from persisting
farther downstream. Additionally, mode B, which typically appears in an in-phase pattern,
is absent in the wall-mounted case. This absence may be attributed to the slanted nature of
vortex shedding.

It is important to note that the 3-D wake instabilities observed in this study apply
specifically to the simulated conditions. Further investigation in needed to explore these
phenomena in great detail.

6. Fluid–structure interaction of a wall-mounted flexible stem in uniform flow
In this section, we examine the behaviour of a wall-mounted flexible stem in uniform flow,
focusing on shape deformation, stem response, vortex dynamics, hydrodynamic forces
and the spectral characteristics of displacement. Key aspects are analysed, including the
evolution of 3-D vortical structures, wake topologies and tip movements under varying
stiffnesses. The aspect ratio is set at AR = 10, the Reynolds number ranges from Re = 200
to 1000 and the stiffness ratio is lg(K ) = −3.5–0 with an increment of 0.5. As discussed in
§ 4, no structural damping is applied. In total, 40 LES are carried out. Notably, in certain
cases, the stem response is highly chaotic, and no convergent state is reached even over a
longer non-dimensional time span, i.e. tU∞/D ∼ O(103).
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Figure 17. Statistics of the stem response with different stiffness ratios at Re = 200–1000. (a, b) The mean
position shift, (c) the transverse amplitude and (d) dominant frequency of the transverse displacement. The
solid lines in (a) and (b) denote the fitted equations and the correlation coefficients (R2) are both 0.997.
The solid lines in (d) represent the first natural frequency ( fn,1) at different Re values. The arrow indicates
the increase of Re from 200 to 1000.

6.1. Characteristics of shape deformation and stem response
The mean position of the stem tip in different directions serves as a crucial indicator
of hydrodynamic loading. Figure 17 shows the mean position, vibration amplitude
and frequency of the stem tip in different directions. The mean position shifts are
defined as 	x∗ = (x̄t − x̄t,0)/D, 	y∗ = (ȳt − ȳt,0)/D and 	z∗ = (l̄t − l̄t,0)/D, where
the subscript 0 denotes initial values. Due to the circular cross-section’s rotational
symmetry, transverse shifts remain zero in most simulations and are not further discussed.
As shown in figure 17(a), for Re = 200–1000, the streamwise shift (	x∗) follows a
consistent trend. Excluding divergent cases, the best-fit nonlinear equation is 	x∗ =
9.4/(1 + e1.96(lg(K )+1.88)) with a correlation coefficient (R2 > 0.99), see figure 17(a).
This suggests that the streamwise deformation is independent of Re. Similarly, the vertical
shift (	z∗) follows a similar equation: 	z∗ = 8.1/(1 + e2.42(lg(K )+2.54)), see figure 17(b).
Luhar & Nepf (2011) proposed a scaling law for the effective length of the blade under
uniform flow. The effective length could be scaled as le/ l ∼ K 1/3. Here, the effective
length (le) is defined as the length of a rigid vertical blade that generates the same drag as
the flexible blade of total length (l). In the present study, the deflected length (ld ) is scaled
as ld/ l ∼ K 1.05. The exponent is higher than that in Luhar & Nepf (2011). We assume
the difference is likely caused by three factors: (i) the stem in the present study is circular
cross-sectional, (ii) the consistently higher deflected height compared with effective height
(Luhar & Nepf 2011; Luhar 2012) and (iii) for a circular stem, the transverse vibration leads
to stronger spanwise vortices, contributing to higher mean drag (Sarpkaya 2004).

Despite significant deformation in streamwise and vertical directions, vibrations in these
directions remain negligible. No further discussion on them is presented. The transverse
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Figure 18. The regimes of the response are defined based on (a) the transverse amplitude and (b) the spectral
features of the displacement. Here, the minor vibration is defined as A∗ < 0.2, medium vibration is defined
as 0.2 � A∗ � 0.6 and substantial vibration is defined as A∗ > 0.6. The phase portrait of the transverse
displacement is applied to identify the types.

amplitude is defined as A∗ = √
2yrms/D, where yrms is the r.m.s. transverse displacement.

Figure 17(c) shows that the transverse response does not exhibit a clear dependence on
lg(K ), suggesting that vortex shedding is not persistently locked to the natural frequency.
The i th natural frequency of the flexible stem is given by

fn,i = k2
i

2π

√
E I

m + ma
, (6.1)

where i is the mode number, m is the structure mass, ma is the added mass of the fluid
defined as ma = π D2ρ f l/4 and ki is the dimensionless frequency parameter of the i th
mode. The first and second modal parameters are k1 = 1.875 and k2 = 4.694 (Blevins
2016). For conciseness, only the first natural frequency (i.e. fn,1) is shown in figure 17(d).
At specific lg(K ) values, the dominant frequency aligns with fn,1, with locking to fn,2
observed at Re = 200 (not shown).

The highest amplitude occurs at lg(K ) = −0.5. At the lowest lg(K ), transverse
amplitude is tiny as the stem yields more readily to the incoming flow, exhibiting ‘high
flexibility-induced rigidity’ (He, Liu & Shen 2022). The dominant frequency (i.e. f ∗) of
transverse displacement is shown in figure 17(d). At Re = 200, the dominant frequency
grows roughly with lg(K ). However, for Re = 400–1000, dominant frequencies are
irregular, mostly clustering around f ∗ = 0.1. As discussed in § 5, more complex vortical
structures at the higher Re influence displacement. Unlike an infinite cylinder experiencing
VIV, where f ∗ > 0.2 for Re > 200 (Wang, Xiao & Incecik 2017; Gsell, Bourguet & Braza
2019; Yu et al. 2024), vortex shedding in a wall-mounted flexible cylinder is significantly
slower due to junction-induced vortex retardation.

Based on transverse amplitude and displacement characteristics, responses are
categorised into three types, see figure 18. Based on the amplitude, the three types are
minor vibration (i.e. A∗ < 0.2), medium vibration (i.e. 0.2 � A∗ � 0.6) and substantial
vibration (i.e. A∗ > 0.6), see figure 18(a). Minor vibration primarily occurs in three
regions: lg(K ) = 0, lg(K ) = –1.0–1.5, and lg(K ) = –2.5–3.5 (for Re = 200 only).
In the first region, the stem is relatively rigid, with small transverse amplitude, and vortex
shedding dominates vibration ( f ∗ = 0.205), see figure 19(a-i). With the same K but at a
higher Re, stronger vortex shedding increases the hydrodynamic loads, slightly amplifying
the vibration while still remaining in the minor vibration category. In the second region,
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Figure 19. Time histories (left column), power spectral density (middle column) and phase portraits of the
transverse displacement (right column) at the stem tip at different Re and lg(K ). Panels show (a) Re = 200
and lg(K ) = 0, (b) Re = 800 and lg(K ) = –1.5, (c) Re = 400 and lg(K ) = –3.0, (d) Re = 600 and
lg(K ) = –0.5, (e) Re = 600 and lg(K ) = –2.5 and ( f ) Re = 600 and lg(K ) = –3.5. Note that the discrete
points are used in the phase portraits.
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the vortex shedding frequency deviates from the stem’s first natural frequency. As shown
in figure 19(b-i,b-ii), the dominant frequency ( f ∗ = 0.047) in this region is much lower
and significantly differs from the natural frequency. Unlike the first region, multiple
comparable low frequencies are observed, even though the transverse amplitude is higher.
The third region occurs at lg(K ) < –2.0 and Re = 200, where the stem approaches a
lodging state, and the vortical structures remain regular, as discussed in § 6.3.

Medium vibration mainly appears at lg(K ) � –2.0, see figure 18(a). As shown
in figure 19(c-i), although the transverse amplitude is slightly above A∗ = 0.2, the
displacement remains regular. The dominant frequency is f ∗ = 0.115, with a magnitude
significantly higher than those of other frequency components, see figure 19(c-ii). Due to
substantial deformation, the vortex shedding frequency in this case is lower.

Substantial vibration occurs in two regions: lg(K ) = –0.5–1.0 with Re = 200–1000 and
g(K ) = –2.0–3.0 with Re = 600–800, see figure 18(a). In the first region, the transverse
amplitude is larger than in the second region, which may indicator better synchronisation
between stem vibration and vortex shedding. In the first region, the displacement is
periodic, and the stem vibration is dominated by a single frequency ( f ∗ = 0.137), see
figure 19(d-i,d-ii). In contrast, in the second region, the displacement is chaotic, and multi-
ple low-frequency components dominate stem vibration, see figure 19(e-i,e-ii). The domi-
nant frequency is f ∗ = 0.04, which is significantly lower than the stem’s natural frequency.

The phase portrait provides a geometric representation of a dynamical system’s
trajectories in the phase plane and is used to confirm the system dynamics (Jordan & Smith
2007). In this study, phase portraits of displacement are employed to illustrate the system
dynamics (Chang & Modarres-Sadeghi 2014). Based on the characteristics of transverse
displacement portraits, the response is classified into three categories, i.e. periodic, regular
(quasiperiodic) and chaotic. The distribution of these categories is shown in figure 18(b).
The spectral content of the displacement serves as a supplementary indicator. Periodic
vibration is characterised by a dominant frequency with a significantly higher magnitude
than other frequencies, see figure 19(d-ii,d-iii). Synchronisation between vortex shedding
and stem vibration is observed. Comparing figures 18(a) and 18(b), the first periodic region
coincides with the first substantial vibration region, suggesting that higher amplitudes fa-
cilitate periodic vortex shedding. The second periodic region appears at lg(K ) = –2.0–3.0
but only for Re = 200. In this region, the transverse amplitude is moderate, and vortex
shedding remains periodic. Beyond Re = 200 finer vortices emerge, and low-frequency
components appear. A more flexible stem is more susceptible to turbulent fluctuation,
making periodic vibration nearly impossible when lg(K ) < –1.0.

Regular vibration is observed in three regions, see figure 18(b). The first region
occurs at lg(K ) = 0 with Re = 200–1000, where the stem is relatively rigid, and its
vibration is regulated by vortex shedding, maintaining a steady rhythm, see figure 19(a-ii).
The phase portrait in figure 19(a-iii) indicates that stem vibration follows a nearly
constant trajectory. The second region, at lg(K ) = –1.0–2.0 with Re = 600–1000, exhibits
transverse amplitude ranging from minor to substantial. As shown in figure 19(c-ii), the
dominant frequency is f ∗ = 0.115, while other frequency components are insignificant
in magnitude. The phase portrait in figure 19(c-iii) is highly regular. The third region,
at lg(K ) = –3.0–3.5 with Re = 400–800, shows an intermediate stem amplitude with a
single frequency, f ∗ = 0.129, see figure 19( f -ii).

The chaotic regime spans lg(K ) = −1.0 − 3.5 and Re = 200 − 1000, see figure 18(b).
A comparison of figures 18(a) and 18(b) reveals that chaotic vibration can occur regardless
of whether the transverse amplitude is small, medium or substantial. At moderate
lg(K ) (= −1.0 − 1.5), the transverse amplitude is small, but multiple low frequencies
appear, see figure 19(b-i,b-ii). The phase portrait in figure 19(b-iii) further confirms
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Figure 20. Hydrodynamic forces on a wall-mounted flexible stem with lg(K ) at Re = 200–1000. (a) Mean
drag (C̄d ), (b) r.m.s. drag (C ′

d ) and (c) r.m.s. lift (C ′
l ). In each plot, the horizontal lines (with the same colours

as the flexible case) denote the corresponding forces on the rigid stem.

this chaotic behaviour. At lower lg(K ) (= −2.0 − 3.5), the transverse amplitude may be
medium or substantial, but stem vibration is strongly influenced by turbulent structures,
leading to chaotic behaviour, see figure 19(e-i,e-ii). The dominant frequency ( f ∗ = 0.04)
is significantly low, with several comparable low-frequency component. The phase portrait
in figure 19(e-iii) indicates no fixed trajectory for the stem to follow.

6.2. Hydrodynamic forces and comparison with the rigid stem
The hydrodynamic forces on the flexible stem are key factors influencing stem oscillation
and shape deformation. Figure 20 shows the variation of hydrodynamic forces on the
flexible stem as a function of Re and lg(K ). For comparison, results of a rigid stem
are superimposed. As shown in figure 20(a), the mean drag coefficient (C̄d ) generally
decreases as lg(K ) decreases, indicating that C̄d is primarily affected by stem deformation.
As mentioned in § 6.1, when stiffness is significantly low, the deflected height of the stem
decreases, resulting in a more streamlined shape and a corresponding reduction in C̄d
drops. For the two cases with the highest stiffnesses, i.e. lg(K ) = 0 and −0.5, the C̄d of
the flexible stem is higher than that of the rigid stem. In these cases, shape deformation is
minimal, but stem oscillation develops, particularly for lg(K ) = –0.5. This suggests that
transverse oscillation has a significant impact on C̄d when the stem is relatively rigid.

The r.m.s. drag and lift coefficients vary significantly with lg(K ). As shown in
figure 20(b), the r.m.s. drag coefficient (C ′

d ) increases gradually with increasing lg(K ).
However, it is slightly lower for the cases with lg(K ) = 0 and −1 due to weak transverse
oscillation. For a flexible stem with identical deformation, stronger transverse oscillation
enhances vortex shedding, leading to higher C ′

d . As shown in figure 20(c), in most cases,
the r.m.s. lift coefficient (C ′

l ) on the flexible stem is comparable to that of the rigid
stem. However, it is significantly higher for lg(K ) = 0, −0.5 and −2.0, where transverse
amplitude is larger. This suggests that C ′

l is strongly influenced by transverse oscillation.

6.3. Characteristics of the 3-D vortical structures at different regimes
The 3-D vortical structures provide valuable insights into the physics of different responses
and hydrodynamic loads acting on the flexible stem. Figure 21 shows the detailed 3-D
vortical structures at Re = 200 with lg(K ) = 0–3.5. The vortex dynamics of the flexible
stem, including vortex arrangement and shedding behaviour, differs significantly from the
rigid case. At the highest lg(K ), the stem experiences minimal deformation and behaves
similarly to a rigid stem (Luhar & Nepf 2011, 2016; Jacobsen et al. 2019). As shown
in figure 21(a), at lg(K ) = 0, the wake resembles that of a rigid stem, although some
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Figure 21. The 3-D vortical structures of a wall-mounted flexible stem at Re = 200 and different K values.
Panels show (a) lg(K ) = 0, (b) lg(K ) = –0.5, (c) lg(K ) = –1.0, (d) lg(K ) = –1.5, (e) lg(K ) = –2.0 and
( f ) lg(K ) = –3.0. Flow is from left to right. Here, Q = 5. The plot in (b) is the corresponding vertical velocity
field at the midplane of the y-direction.

alterations occur due to stem vibration. The spanwise vortex shedding occurs at an angle
of approximately 6◦ relative to the wall surface, which is considerably lower than the ≈ 21◦
observed in the rigid case. The downwash flow in the flexible case has a weaker effect on
vortex formation, and similar to the rigid case, the spanwise vortices mainly appear around
the midspan. At lg(K ) = –0.5, the stem oscillates with a large transverse amplitude (A∗ =
0.79), leading to significant changes in vortical structures. The shift in vortex shedding
is associated with the increased transverse amplitude, which enhances vortex formation
near the tip despite minor deformation. Consequently, the downwash flow effect becomes
negligible. As shown in figure 21(b), vortex shedding initiates at the free end and weakens
closer to the wall, ceasing at approximately 2.8D from the wall.

As lg(K ) decreases further, stem deformation becomes pronounced, altering the 3-D
vortex distribution. As shown in figure 21(c), deformation leads to a more evenly
distributed flow along the stem length. Near the free end, vortex shedding remains
approximately parallel, but further downstream, the separated vortices stretch into hairpin-
vortex like structures (Robinson 1991). Additionally, vortices from both sides of the
stem initially connect during the formation, as marked in figure 21(c), although these
connections disappear downstream due to increased vortex head velocity. In the far wake,
the vortices are fully hairpin-vortex like.

At lg(K ) � –1.5, significant stem deformation results in spanwise vortex shedding
along the entire stem length, although this is weaker than in less deformed cases,
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Figure 22. The 3-D vortical structures of a wall-mounted flexible stem at Re = 400 and different K values.
Panels show (a) lg(K ) = 0, (b) lg(K ) = –0.5, (c) lg(K ) = –1.0, (d) lg(K ) = –1.5, (e) lg(K ) = –2.0
and ( f ) lg(K ) = –3.0. Flow is from left to right. Here, Q = 20. The inset in (a) is the corresponding vertical
velocity field at the midplane of the y-direction.

see figure 21(d–f ). As lg(K ) drops, vortices form progressively closer to the free end. At
lg(K ) = –1.5 and –3.0, transverse amplitudes are smaller, and vortical structures are weak-
er compared with lg(K ) = –2.0, where the transverse amplitude is higher (A∗ = 0.55).
Comparing figures 21(d) and 21(e), despite a slightly stronger stem oscillation at
lg(K ) = –3.0 than at lg(K ) = –1.5, the vortical structures at lg(K ) = –3.0 are weaker due
to greater deformation. A common feature across these cases is the slow upward movement
of vortices, see the inset in figure 21(d). For significantly deformed stems, separation of the
attached shear layer at the free-end surface occurs, forming a leading-edge vortex and/or
free-end arch vortex (observed in high Re flow, e.g. Re � 4 × 103, see figure 1). As shown
in the inset of figure 21(e), the reattached shear layer at the free-end surface separates,
alternately aligned with the vortex shedding. This behaviour is absent in the rigid case.
Large deformation makes the attached shear layer more prone to detachment.

Figure 22 shows the organisation of 3-D vortical structures at Re = 400. As in the
rigid case, vortices behind the flexible stem at Re = 400 are stronger than at Re = 200.
As lg(K ) decreases, stem deformation intensifies, altering the vortical structures. At
lg(K ) = 0, deformation is negligible, and vortex shedding remains similar to the rigid
case, see figures 13(b) and 22(a). The downwash flow near the free end impacts a shorter
span in the flexible case. As shown in figure 22(a), vortex shedding remains approximately
parallel but occurs in two phases, potentially influenced by free-end downwash flow and
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Figure 23. The 3-D vortical structures of a wall-mounted flexible stem at Re = 600 − 1000 and K values.
Panels show (a) Re = 600 and lg(K ) = –0.5, (b) Re = 600 and lg(K ) = –2.0, (c) Re = 800 and lg(K )
= –1.5, (d) Re = 800 and lg(K ) = –2.0, (e) Re = 1000 and lg(K ) = –0.5, and ( f ) Re = 1000 and
lg(K ) = –2.0. Flow is from left to right. Here, Q = 45, 80 and 125 for the cases at Re = 600, 800 and 1000,
respectively.

junction upwash flow. At lg(K ) = –0.5, vortex shedding changes drastically, as in the
case of Re = 200. Shedding occurs near the free end, with spanwise vortices forming
earlier than those closer to the wall, see figure 22(b). In the near wake, spanwise vortices
undergo considerable stretching and slowly move toward the wall. The hairpin vortex on
the wall develops and directly interacts with the lower-side vortices from the stem. At
lg(K ) = –0.5, stem oscillation is stronger, and vortex strength is higher than at lg(K ) = 0.

For lower lg(K ), deformation increase significantly. As shown in figure 22(c–f ), the
vortex dynamics is considerably different as the stem tip nears the wall. Similar to
Re = 200, vortex shedding shifts toward the free end as deformation increases, with vortex
intensity generally weakening. However, transverse oscillation impacts both formation
position and vortex strength. At lg(K ) = –2.0, transverse amplitude is larger than at lg(K )
= –1.0 and –1.5, leading to stronger vortices, see figure 22(c,d,e). At lg(K ) = –3.0,
the stem is nearly lodged against the wall, producing a distinct vortex dynamics, see
figure 22( f ). Here, spanwise vortices shed only from the stem base and free end. In the
near wake, vortices from these positions interact.

Figure 23 shows the arrangement of 3-D vortical structures at Re = 600−1000. At
these higher Re, vortex shedding occurs along nearly the entire stem length, forming
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(a) (b)
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Figure 24. The non-dimensional vertical velocity (w∗) of a wall-mounted flexible stem at Re = 400 and
lg(K ) = –0.5. (a,b) instantaneous flow field and (c) time-averaged flow field. The stem position in (a,b) is
roughly denoted by the solid lines.

finer vortices. Due to increased instability from lower-part vortices, the wall-developing
hairpin vortex strengthens compared with lower Re (= 200−400) cases. As shown in
figure 23(a,b), at Re = 600, vortex shedding extends from top to bottom but is suppressed
at the junction due to the presence of a HV. At Re = 800, vortex strength increases
further, see figure 23(c,d). At lg(K ) = –1.5, upper-part vortex shedding aligns closely
with the deformed stem, while lower-part vortex shedding occurs but dissipates quickly,
see figure 23(c). Compared with lg(K ) = –1.5, transverse oscillation at lg(K ) = –2.0
is stronger, significantly influencing vortex shedding. As shown in figure 23(d), upper-
part vortex shedding remains nearly parallel, but lower-part vortex shedding is not
synchronised, leading to vortices gradually shifting upward downstream. Consequently,
interactions between hairpin and spanwise vortices weaken. The stem exhibits a low-
frequency back-and-forth motion, resembling a slow wave, as indicated in figure 23(d). At
Re = 1000, vortex strength intensifies further. At high lg(K ), vortex shedding near the tip
experiences minor influence from downwash flow, see figure 23(e). The upper and lower
parts of the stem shed vortices at different frequencies. In the near wake, separated vortices
are significantly stretched and finer than those at the lower Re. As lg(K ) = –2.0, stem
deformation is pronounced, with upper-part vortex shedding nearly parallel, see
figure 23( f ). Lower-part vortices interact with the hairpin vortex but dissipate quickly
downstream.

7. Discussion
In this section, we discuss particular flow dynamics and the stem response in the
flexible case, such as significantly weakened downwash flow and physics of low-frequency
oscillation in the streamwise and vertical directions.

7.1. Significantly weakened downwash flow
As discussed in § 6.3, stem oscillation and shape deformation can significantly modify the
vortex dynamics. In this section, we concentrate on the significantly weakened downwash
flow through the case of Re = 400 and lg(K ) = –0.5. In the rigid case, the flow through
the free end moves downward, as shown in figures 13(b) and 16(b). Due to the downwash
flow, spanwise vortex shedding occurs in the lower part of the stem. Near the junction,
the downwash flow also appears. However, in the flexible case, the vortex dynamics
differs significantly. As shown in figure 22(b), spanwise vortex shedding appears in the
upper part of the stem, with a leading phase closer to the stem tip. The vortex strength
also increases due to the larger oscillation amplitude near the tip. Figure 24 shows
the vertical velocity field around and behind the stem at Re = 400 and lg(K ) = –0.5.
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Figure 25. Time histories of the displacement of stem tip at the streamwise, transverse, and spanwise
directions for Re = 400 and lg(K ) = −3.5. (a) for the displacement in the transverse direction and (b) for
the displacements in the streamwise and spanwise directions. (c) The PSD of the displacements in the three
directions.

The vertical velocity along the stem base remains almost entirely positive, indicating that
the flow moves upward starting from the junction. This contrasts with the rigid case, where
no upwash flow occurs at the same position, see figures 16(b) and 24(a,b). As shown in
figures 16(b) and 24(c), the downwash flow near the free end is much weaker compared
with the rigid case, suggesting that downwash flow in the flexible case is greatly reduced.

To further illustrate the development of positive transverse velocity, we analyse the
streamlines of the instantaneous flow field corresponding to figure 24(a,b) (not shown here
for brevity). We see that the arriving flow near the wall surface goes downstream through
both sides of the stem. However, due to the emergence of the near-wake base vortex at
the stem base, the flow gradually moves upward along the stem bottom. In the near wake,
upwash flow partially appears above the growing hairpin vortices on the wall surface,
see figure 24(a,b), significantly promoting the upward motion of lower-part vortices shed
from the stem sidewalls. In the far wake, this upward motion slows down. The variations
in oscillation amplitude at different vertical positions also play a crucial role. The stem
oscillation is expected to be stronger near the free end, causing spanwise vortices to shed
earlier, thereby enhancing the upward flow dynamics. On the other hand, as the spanwise
vortices form closer to the stem bottom, the recirculation region narrows, reducing the
amount of upward-moving flow, as indicated by figure 24(c). In the time-averaged flow
field, spanwise vortices at the free end shed alternately and subsequently move downward.
as a result, only a very weak downwash flow is observed near the free end, significantly
weaker than in the rigid case.

7.2. Low-frequency oscillation in the streamwise and vertical directions
A unique low-frequency oscillation phenomenon is observed in the present study. As
shown in figure 25(a,c), transverse oscillation is relatively strong, with a dominant
frequency of f ∗ = 0.133. However, oscillations in the streamwise and vertical directions
are much weaker and dominated by a significantly low frequency of f ∗ = 0.033, see
figure 25(b,c). This suggests that the oscillations in these two directions are governed
by flow structures with a very low frequency. In the transverse direction, a secondary
frequency of f ∗ = 0.266 is observed, which corresponds to the second harmonic of
the dominant frequency. This is an intrinsic feature of VIV of a circular cylinder
(Sarpkaya 2004). The secondary frequency in the streamwise and vertical directions also
matches this second harmonic frequency, see figure 25(c). Furthermore, the low-frequency
displacement in the vertical direction has a greater magnitude than in the streamwise
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direction, indicating that the associated vortical structures have a higher impact in the
vertical direction.

As indicated by figure 17(a–c), when the stiffness is notably lower, i.e. lg(K ) �−3.0,
the deflected height (ld ) of the stem is very small, and the stem aligns almost
parallel to the wall. Unsurprisingly, vortex development and subsequent interactions at
lg(K ) = –3.0 and –3.5 are similar. Because of significant shape deformation, vortex
shedding from the stem can be classified into two regimes, similar to the condition shown
in figure 22( f ). Near the stem base (i.e. the lower part), spanwise vortex shedding appears,
with separated vortices travelling downstream. At the formation position, these vortices
have negligible influences on displacement at the stem tip in the streamwise and vertical
directions. Meanwhile, the upper part of the stem undergoes significant deformation,
becoming nearly parallel to the wall. The incoming flow moves smoothly along the
stem length, and the vortex shedding dynamics contrasts with that at the base. Vortex
shedding at the stem tip occurs at a high frequency ( f ∗ ≈ 0.13, estimated based on the
average velocity and streamwise distance between consecutive vortices) and primarily
drives transverse oscillation. Interactions between lower-part vortices and shear layers
from the upper part are also witnessed. As vortices from the lower part expand, shear
layer development around the upper part, particularly near the lower side, is significantly
influenced. Near the stem tip, these interactions reach their strongest, affecting the local
pressure distribution. This interaction is responsible for the low-frequency components of
displacement in the streamwise and vertical directions.

8. Conclusions
In this study, we simulated the wall-mounted stem in uniform flow using a newly coupled
method – the IBM–VFIFE method. The 3-D flow characteristics and stem dynamics were
analysed in detail. In the rigid case, we identified three flow regimes based on force
spectra and the vortex dynamics. The first regime (R1, at Re = 200) features periodic
hydrodynamic forces and a single vortex shedding frequency. The second regime (R2, at
Re = 400) is characterised by higher forces and two vortex shedding frequencies, one of
which is significantly lower than the other. The third regime (R3, at Re = 600–1000) is
dominated by one low frequency. Distinctive 3-D vortex structures were observed in these
regimes. In R1, the vortex structures are regular but slant-arranged in the near wake. In
R2, the vortex structures become irregular while take over a longer length. In R3, vortex
sheddings at different vertical positions are nearly synchronised. As Re increases, the
streamwise vortices become finer in scale.

The dynamics of a flexible stem at Re = 200–1000 was thoroughly explored. It
demonstrated that stem oscillation and shape deformation are closely correlated with
stiffness (K ). Transverse oscillation is much stronger than oscillation in the other two
directions, playing a more prominent role in vortex shedding. Within the studied Re, the
highest amplitude is observed at lg(K ) = −0.5. Stem deformation is well approximated
by a nonlinear equation. The deflected length is scaled as ld/ l ∼ K 1.05, with a higher
exponent compared with that reported for a blade in Luhar & Nepf (2011), likely due
to differences in cross-section, greater deflected height and stronger spanwise vortex
shedding. Hydrodynamic forces are influenced by both stem oscillation and shape
deformation: oscillation dominates at high K , while deformation has a stronger effect at
low K .

We identified three oscillation regimes in terms of the transverse amplitude: minor
vibration for A∗ < 0.2, medium vibration for 0.2 � A∗ � 0.6 and substantial vibration
for A∗ > 0.6. Minor vibration occurs when the stem is either highly rigid or highly
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flexible, or when there is a frequency mismatch between vortex shedding and stem’s
natural frequency. Medium vibration is mostly observed at lg(K ) � –2.0. Substantial
vibration occurs in two regions: one at lg(K ) = –0.5–1.0 for Re = 600–800 and the other at
lg(K ) = –2.0–3.0 for all studied Re. In terms of transverse displacement characteristics,
the response can be classified into three regimes: regular, periodic and chaotic regimes.
Periodic vibration is observed in two regions: one corresponding to the first substantial
vibration region and the other at lg(K ) = –2.0∼–3.0 but only Re = 200. The regular
regime is assigned to three parts: the first at lg(K ) = 0 within the studied Re, the second
at lg(K ) = –1.0∼–2.0 and Re = 600–1000, and the third at lg(K ) = –3.0∼–3.5 and
Re = 400–800. Chaotic vibration spans lg(K ) = –1.0∼–3.5 within the simulated Re,
regardless of the amplitude. We revealed the influences of stem oscillation and shape
deformation on hydrodynamic forces acting on the flexible stem. It is found that the flexible
stem experiences higher drag under relatively rigid conditions compared with a fully rigid
stem.

We found that both the stem oscillation and shape deformation are crucial in determining
vortex dynamics around the stem. Oscillation enhances vortex strength and alters vortex
distribution, while shape deformation significantly modifies the flow field, such as by
generating strong upwash flow from the junction. Compared with the rigid case, downwash
flow in the flexible case has a weaker effect on vortex formation. We confirmed distinctive
physical behaviours of flexible stems, depending on Re and lg(K ). Downwash flow is
notably weakened or absent due to strong deformation, which induces upwash flow. Low-
frequency oscillation occurs in the streamwise and vertical directions, suggesting that
different flow structures govern oscillations in these two directions.

The numerical method provided in this study has clear advantages for simulating wall-
mounted structures under different flow conditions. It shows great potential for engineering
applications and theoretical advancements, such as understanding how the total drag of a
circular or rectangular patch of vegetation/stems is affected by stem flexibility (Koken &
Constantinescu 2021, 2023).

Acknowledgements. We thank Professor C. Ji from Tianjin University, Professor D. Xu from Hohai
University, Mr Y. Wu and J. Ni from Tianjin University for their contributions to the IBM–VFIFE method.
We thank anonymous referees for their constructive suggestions and comments, which help a lot in improving
the quality of this paper. This work was supported with computational resources provided by the National
Supercomputing Centre, Singapore (https://www.nscc.sg), under project ID: 11002459 and 11003759.

Funding. This project is funded by the Research, Innovation and Enterprise 2025 Coastal Protection and
Flood Management Research Programme. The authors are grateful to the National Research Foundation of
Singapore, PUB (Singapore’s National Water Agency) for supporting this work done in the Coastal Protection
and Flood Resilience Institute (CFI) Singapore under the project grant H1-P3.

Declaration of interests. The authors report no conflict of interest.

REFERENCES

ADARAMOLA, M.S., AKINLADE, O.G., SUMNER, D., BERGSTROM, D.J. & SCHENSTEAD, A.J. 2006
Turbulent wake of a finite circular cylinder of small aspect ratio. J. Fluids Struct. 22 (6), 919–928.

BABAN, F., SO, R.M.C. & OTUGEN, M.V. 1989 Unsteady forces on circular cylinders in a crossflow. Exp.
Fluids 7, 293–302.

BAKER, C.J. 1979 The laminar horseshoe vortex. J. Fluid Mech. 95 (2), 347–367.
BLEVINS, R.D. 2016 Formulas for Dynamics, Acoustics and Vibration. Wiley.
BOURGEOIS, J.A., SATTARI, P. & MARTINUZZI, R.J. 2011 Alternating half-loop shedding in the turbulent

wake of a finite surface-mounted square cylinder with a thin boundary layer. Phys. Fluids 23 (9), 095101.
BOURGEOIS, J.A., SATTARI, P. & MARTINUZZI, R.J. 2012 Coherent vortical and straining structures in the

finite wall-mounted square cylinder wake. Intl J. Heat Fluid Flow 35, 130–140.

1013 A17-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
19

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://www.nscc.sg
https://doi.org/10.1017/jfm.2025.10199


W. Chen and Y.P. Li

BRADLEY, K. & HOUSER, C. 2009 Relative velocity of seagrass blades: implications for wave attenuation in
low-energy environments. J. Geophys. Res. 114 (F1), F01004.

CAO, Y., TAMURA, T., ZHOU, D., BAO, Y. & HAN, Z. 2022 Topological description of near-wall flows around
a surface-mounted square cylinder at high Reynolds numbers. J. Fluid Mech. 933, A39.

CHANG, G.H. & MODARRES-SADEGHI, Y. 2014 Flow-induced oscillations of a cantilevered pipe conveying
fluid with base excitation. J. Sound Vib. 333 (18), 4265–4280.

CHANG, W.Y., CONSTANTINESCU, G. & TSAI, W.F. 2017 On the flow and coherent structures generated by
an array of rigid emerged cylinders place in an open channel with flat and deformed bed. J. Fluid Mech.
831, 1–40.

CHANG, W.Y., CONSTANTINESCU, G. & TSAI, W.F. 2020 Effect of array submergence on flow and coherent
structures through and around a circular array of rigid vertical cylinders. Phys. Fluids 32 (3), 035110.

CHEN, W., JI, C., ALAM, M.M. & YAN, Y. 2022 Three-dimensional flow past two stationary side-by-side
circular cylinders. Ocean Engng 244, 110379.

DEARDORFF, J.W. 1970 A numerical study of three-dimensional turbulent channel flow at large Reynolds
numbers. J. Fluid Mech. 41 (2), 453–480.

DERAKHSHANDEH, J.F. & ALAM, M.M. 2019 A review of bluff body wakes. Ocean Engng 182, 475–488.
DUAN, Y.F., HE, K., ZHANG, H.M., TING, E.C., WANG, C.Y., CHEN, S.K. & WANG, R.Z. 2014 Entire-

process simulation of earthquake-induced collapse of a mockup cable-stayed bridge by vector form intrinsic
finite element (VFIFE) method. Adv. Struct. Engng 17 (3), 347–360.

ESSEL, E.E., TACHIE, M.F. & BALACHANDAR, R. 2021 Time-resolved wake dynamics of finite wall-mounted
circular cylinders submerged in a turbulent boundary layer. J. Fluid Mech. 917, A8.

ETZOLD, F. & FIEDLER, H. 1976 The near-wake structure of a cantilevered cylinder in a cross-flow.
Z. Flugwiss. 24, 77–82.

FINNIGAN, J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32 (1), 519–571.
FREDERICH, O., WASSEN, E. & THIELE, F. 2008 Prediction of the flow around a short wall-mounted finite

cylinder using LES and DES. J. Numer. Anal. Ind. Appl. Maths 3 (3-4), 231–247.
FRÖHLICH, J. & RODI, W. 2004 LES of the flow around a circular cylinder of finite height. Int. J. Heat Fluid

Flow 25, 537–548.
GAYLORD, B. & DENNY, M. 1997 Flow and flexibility. I. Effects of size, shape and stiffness in determining

wave forces on the stipitate kelps Eisenia arborea and Pterygophora californica. J. Exp. Biol. 200 (24),
3141–3164.

GHISALBERTI, M. 2000 Mixing Layers and Coherent Structures in Vegetated Aquatic Flows. M.S. thesis,
Massachusetts Institute of Technology, USA.

GHISALBERTI, M. & NEPF, H.M. 2002 Mixing layer and coherent structures in vegetated aquatic flows.
J. Geophys. Res 107 (C2), 3-1–3-11.

GRECO, J.J. 1990 The flow structure in the vicinity of a cylinder-flat plate juncture: flow regimes, periodicity
and vortex interactions. M.S. thesis, Lehigh University, USA.

GSELL, S., BOURGUET, R. & BRAZA, M. 2019 One- versus two-degree-of-freedom vortex-induced vibrations
of a circular cylinder at Re = 3900. J. Fluids Struct. 85, 165–180.

HAIN, R., KAHLER, C.J. & MICHAELIS, D. 2008 Tomographic and time resolved PIV measurements on a
finite cylinder mounted on a flat plate. Exp. Fluids 45 (4), 715–724.

HAJIMIRZAIE, S.M., WOJCIK, C.J. & BUCHHOLZ, J.H.J. 2012 The role of shape and relative submergence
on the structure of wakes of low-aspect-ratio wall-mounted bodies. Exp. Fluids 53 (6), 1943–1962.

HE, G.-S., WANG, J.-J., PAN, C., FENG, L.-H., GAO, Q. & RINOSHIKA, A. 2017 Vortex dynamics for flow
over a circular cylinder in proximity to a wall. J. Fluid Mech. 12, 698–720.

HE, S., LIU, H. & SHEN, L. 2022 Simulation-based study of turbulent aquatic canopy flows with flexible
stems. J. Fluid Mech. 947, A33.

HEARST, R.J., GOMIT, G. & GANAPATHISUBRAMANI, B. 2016 Effect of turbulence on the wake of a wall-
mounted cube. J. Fluid Mech. 804, 513–530.

HOSSEINI, Z., BOURGEOIS, J.A. & MARTINUZZI, R.J. 2013 Large-scale structures in dipole and quadrupole
wakes of a wall-mounted finite rectangular cylinder. Exp. Fluids 54 (9), 1595.

HOU, X., FANG, Z. & ZHANG, X. 2018 Static contact analysis of spiral bevel gear based on modified VFIFE
(vector form intrinsic finite element) method. Appl. Math. Model. 60, 192–207.

HU, J., MEI, C.C., CHANG, C.-W. & LIU, P.L.-F. 2021 Effect of flexible coastal vegetation on waves in water
of intermediate depth. Coast. Engng 168, 103937.

HU, Z., HUANG, L. & LI, Y. 2023 Fully-coupled hydroelastic modeling of a deformable wall in waves. Coast.
Engng 179, 104245.

HU, Z. & LI, Y. 2023 Two-dimensional simulations of large-scale violent breaking wave impacts on a flexible
wall. Coast. Engng 185, 104370.

1013 A17-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
19

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10199


Journal of Fluid Mechanics

HUANG, W.-X., SHIN, S.J. & SUNG, H.J. 2007 Simulation of flexible filaments in a uniform flow by the
immersed boundary method. J. Comput. Phys. 226 (2), 2206–2228.

HUNT, J.C.R., ABELL, C.J.J., PETERKA, A. & WOO, H. 1978 Kinematical studies of the flows around free
or surface-mounted obstacles: applying topology to flow visualization. J. Fluid Mech. 86 (1), 179–200.

HUSSEIN, H.J. & MARTINUZZI, R.J. 1996 Energy balance of turbulent flow around a surface mounted cube
placed in a channel. Phys. Fluids 8 (3), 764–780.

HWANG, J.Y. & YANG, K.S. 2004 Numerical study of vortical structures around a wall-mounted cubic
obstacle in channel flow. Phys. Fluids 16 (7), 2382–2394.

JACOBSEN, N.G., BAKKER, W., UIJTTEWAAL, W.S.J. & UITTENBOGAARD, R. 2019 Experimental
investigation of the wave-induced motion of and force distribution along a flexible stem. J. Fluid Mech.
880, 1036–1069.

JI, C., MUNJIZA, A. & WILLIAMS, J.J.R. 2012 A novel iterative direct-forcing immersed boundary method
and its finite volume applications. J. Comput. Phys. 231 (4), 1797–1821.

JIANG, H., CHENG, L., DRAPER, S., AN, H. & TONG, F. 2016 Three-dimensional direct numerical simulation
of wake transitions of a circular cylinder. J. Fluid Mech. 801, 353–391.

JIN, Y.Q., KIM, J.T., FU, S. & CHAMORRO, L.P. 2019 Flow-induced motions of flexible plates: fluttering,
twisting and orbital modes. J. Fluid Mech. 864, 273–285.

JIN, Y.Q., KIM, J.T., MAO, Z. & CHAMORRO, L.P. 2018 On the couple dynamics of wall-mounted flexible
plates in tandem. J. Fluid Mech. 852, R2.

JORDAN, D.W. & SMITH, P. 2007 Nonlinear Ordinary Differential Equations: an Introduction for Scientists
and Engineers. 4th edn. Oxford University Press.

KAWAMURA, T., HIWADA, M., HIBINO, T., MABUCHI, I. & KUMADA, M. 1984 Flow around a finite circular
cylinder on a flat plate: cylinder height greater than turbulent boundary layer thickness. Bull. JSME 27
(232), 2142–2151.

KIRKIL, G. & CONSTANTINESCU, G. 2012 A numerical study of the laminar necklace vortex system and its
effect on the wake for a circular cylinder. Phys. Fluids 24 (7), 073602.

KOKEN, M. & CONSTANTINESCU, G. 2021 Flow structure inside and around a rectangular array of rigid
emerged cylinders located at the sidewall of an open channel. J. Fluid Mech. 910, A2.

KOKEN, M. & CONSTANTINESCU, G. 2023 Influence of submergence ratio on flow and drag forces generated
by a long rectangular array of rigid cylinders at the sidewall of an open channel. J. Fluid Mech. 966, A5.

KRAJNOVIC, S. 2011 Flow around a tall finite cylinder explored by large eddy simulation. J. Fluid Mech. 676,
294–317.

KUMAR, P. & TIWARI, S. 2019 Effect of incoming shear on unsteady wake in flow past surface mounted
polygonal prism. Phys. Fluids 31 (11), 113607.

LECLERCQ, T. & DE LANGRE, E. 2018 Reconfiguration of elastic blades in oscillatory flow. J. Fluid Mech.
838, 606–630.

LEE, L.W. 1997 Wake structure behind a circular cylinder with a free end. Proc. Heat Transfer Fluid Mech.
Inst., 241–251.

LEONARD, L. & LUTHER, M. 1995 Flow hydrodynamics in tidal marsh canopies. Limnol. Oceanogr.
40, 1474–1484.

LI, X., WEI, W. & BAI, F. 2020 A full three-dimensional vortex-induced vibration prediction model for top-
tensioned risers based on vector form intrinsic finite element method. Ocean Engng 218, 108140.

LI, Y. & FUHRMAN, D.R. 2022 On the turbulence modelling of waves breaking on a vertical pile. J. Fluid
Mech. 953, A3.

LIU, Y., SO, R.M.C. & CUI, Z.X. 2005 A finite cantilevered cylinder in a cross-flow. J. Fluids Struct. 20 (4),
589–609.

LUHAR, M. 2012 Analytical and experimental studies of plant-flow interaction at multiple scales. Ph.D. thesis,
Massachusetts Institute of Technology, USA.

LUHAR, M., COUTU, S., INFANTES, E., FOX, S. & NEPF, H. 2010 Wave induced velocities inside a model
seagrass bed. J. Geophys. Res. 115 (C12), C12005.

LUHAR, M. & NEPF, H.M. 2011 Flow–induced reconfiguration of buoyant and flexible aquatic vegetation.
Limnol. Oceanogr. 56 (6), 2003–2017.

LUHAR, M. & NEPF, H.M. 2016 Wave-induced dynamics of flexible blades. J. Fluids Struct. 61, 20–41.
LUO, S.C., GAN, T.L. & CHEW, Y.T. 1996 Uniform flow past one (or two in tandem) finite length circular

cylinder(s). J. Wind Engng Ind. Aerodyn. 59 (1), 69–93.
MULLARNEY, J.C. & HENDERSON, S.M. 2010 Wave-forced motion of submerged single-stem vegetation.

J. Geophys. Res. 115 (C12), C12061.
MUNSON, B., YOUNG, D. & OKIISHI, T. 1990 Fundamentals of Fluid Mechanics. John Wiley.

1013 A17-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
19

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10199


W. Chen and Y.P. Li

NEPF, H.M. 2012 Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44 (1),
123–142.

NESHAMAR, O.E., VAN DER A, D.A. & O’DONOGHUE, T. 2022 Flow-induced vibration of a cantilevered
cylinder in oscillatory flow at high KC. J. Fluids Struct. 109, 103476.

O’CONNOR, J. & REVELL, A. 2019 Dynamic interactions of multiple wall-mounted flexible flaps. J. Fluid
Mech. 870, 189–216.

PALAU-SALVADOR, G., STOESSER, T., FROHLICH, J., KAPPLER, M. & RODI, W. 2010 Large eddy
simulations and experiments of flow around finite-height cylinders. Flow Turbul. Combust. 84 (2), 239–275.

PATTENDEN, R.J., TURNOCK, S.R. & ZHANG, X. 2005 Measurements of the flow over a low-aspect-ratio
cylinder mounted on a ground plane. Exp. Fluids 39 (1), 10–21.

PESKIN, C.S. 1972 Flow Patterns Around Heart Valves: a Digital Computer Method for Solving the Equations
of Motion school, Yeshiva University.

PORTEOUS, R., MOREAU, D.J. & DOOLAN, C.J. 2014 A review of flow-induced noise from finite wall-
mounted cylinders. J. Fluids Struct. 51, 240–254.

PY, C., DE LANGRE, E. & MOULIA, B. 2006 A frequency lock-in mechanism in the interaction between wind
and crop canopiess. J. Fluid Mech. 568, 425–449.

REVSTEDT, J. 2013 Interaction between an incompressible flow and elastic cantilevers of circular cross-section.
Intl J. Heat Fluid Flow 43, 244–250.

ROBINSON, S.K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1),
601–639.

ROTA, G.F., KOSEKI, M., AGRAWAL, R., OLIVIERI, S. & ROSTI, M.E. 2024 Forced and natural dynamics
of a clamped flexible fiber in wall turbulence. Phys. Rev. Fluids 9 (1), L012601.

SAEEDI, M., LEPOUDRE, P.P. & WANG, B.C. 2014 Direct numerical simulation of turbulent wake behind a
surface-mounted square cylinder. J. Fluids Struct. 51, 20–39.

SAHA, A.K. 2013 Unsteady flow past a finite square cylinder mounted on a wall at low Reynolds number.
Comput. Fluids 88, 599–615.

SAKAMOTO, H. & ARIE, M. 1983 Vortex shedding from a rectangular prism and a circular cylinder placed
vertically in a turbulent boundary layer. J. Fluid Mech. 126, 147–165.

SARPKAYA, T. 2004 A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct.
19 (4), 389–447.

SEAL, C.V., SMITH, C.R., AKIN, O. & ROCKWELL, D. 1995 Quantitative characteristics of a laminar,
unsteady necklace vortex system at a rectangular block-flat plate juncture. J. Fluid Mech. 286, 117–135.

SEAL, C.V., SMITH, C.R. & ROCKWELL, D. 1997 Dynamics of the vorticity distribution in Endwall junctions.
AIAA J. 35 (6), 1041–1047.

SHIH, C., WANG, Y.K. & TING, E.C. 2004 Fundamentals of a vector form intrinsic finite element: part III,
convected material frame and examples. J. Mech. 20 (2), 133–143.

SILVA-LEON, J. & CIONCOLINI, A. 2020 Experiments on flexible filaments in air flow for aeroelasticity and
fluid-structure interaction models validation. Fluids 5 (2), 90.

SIMPSON, R.L. 2001 Junction flow. Annu. Rev. Fluid Mech. 33 (1), 415–443.
SMAGORINSKY, J. 1963 General circulation experiments with primitive equations. Mon. Weath. Rev. 91 (3),

99–164.
SUMNER, D. 2013 Flow above the free end of a surface-mounted finite-height circular cylinder: a review.

J. Fluids Struct. 43, 41–63.
SUMNER, D. & HESELTINE, J.L. 2008 Tip vortex structure for a circular cylinder with a free end. J. Wind

Engng Ind. Aerodyn. 96 (6-7), 1185–1196.
SUMNER, D., HESELTINE, J.L. & DANSEREAU, O.J.P. 2004 Wake structure of a finite circular cylinder of

small aspect ratio. Exp. Fluids 37 (5), 720–730.
TING, E.C., DUAN, Y.F. & WU, D.Y. 2012 Vector Mechanics of Structures (in Chinese). Science Press.
TING, E.C., SHIH, C. & WANG, Y.-K. 2004a Fundamentals of a vector form intrinsic finite element: part I.

Basic procedure and a plane frame element. J. Mech. 20 (2), 113–122.
TING, E.C., SHIH, C. & WANG, Y.-K. 2004b Fundamentals of a vector form intrinsic finite element: part II.

plane solid elements. J. Mech. 20 (2), 123–132.
TING, E.C. & WANG, C.Y. 2008 Vector mechanics of solids. Research report, National Central University.
TRIANTAFYLLOU, M.S., BOURGUET, R., DAHL, J. & MODARRES-SADEGHI, Y. 2016 Vortex induced

vibrations. In Springer Handbook of Ocean Engineering. Springer International Publishing.
TSUTSUI, T. 2012 Flow around a cylindrical structure mounted in a plane turbulent boundary layer. J. Wind

Engng Ind. Aerodyn. 104-106, 239–247.
VETTORI, D. & NIKORA, V. 2018 Flow–seaweed interactions: a laboratory study using blade models. Environ.

Fluid Mech. 18 (3), 611–636.

1013 A17-40

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
19

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10199


Journal of Fluid Mechanics

WANG, E., XIAO, Q. & INCECIK, A. 2017 Three-dimensional numerical simulation of two-degree-of-freedom
VIV of a circular cylinder with varying natural frequency ratios at Re = 500. J. Fluids Struct. 73, 162–182.

WANG, H., ZHOU, Y., CHAN, C.K. & LAM, K.S. 2006 Effect of initial conditions on interaction between a
boundary layer and a wall-mounted finite-length-cylinder wake. Phys. Fluids 18 (6), 065106.

WANG, H.F., CAO, H.L. & ZHOU, Y. 2014 POD analysis of a finite-length cylinder near wake. Exp. Fluids
55, 1–15.

WANG, H.F. & ZHOU, Y. 2009 The finite-length square cylinder near wake. J. Fluid Mech. 638, 453–490.
WEI, Q.D., CHEN, G. & DU, X.D. 2001 An experimental study on the structure of juncture flows. J. Vis.

3 (4), 341–348.
WERNER, H. & WENGLE, H. 1993 Large-eddy simulation of turbulent flow around a cube in a plane channel.

In Selected Papers From the 8th Symposium On Turbulent Shear Flows (eds. DURST F., FRIEDRICH R.,
LAUNDERB.E., SCHUMANN U. & WHITELAW J.H.), pp. 155–168, Springer.

WILLIAMSON, C.H.K. 1996 Three-dimensional wake transition. J. Fluid Mech. 328, 345–407.
WU, H., ZENG, X., XIAO, J., YU, Y., DAI, X. & YU, J. 2020 Vector form intrinsic finite-element analysis of

static and dynamic behavior of deep-sea flexible pipe. Intl J. Nav. Archit. Ocean Engng 12, 376–386.
XU, L. & LIN, M. 2017 Analysis of buried pipelines subjected to reverse fault motion using the vector form

intrinsic finite element method. Solid Dyn. Earthquake Engng 93, 61–83.
XU, R., LI, D.-X., JIANG, J.-P. & LIU, W. 2015 Nonlinear vibration analysis of membrane SAR antenna

structure adopting a vector form intrinsic finite element. J. Mech. 31 (3), 269–277.
YAUWENAS, Y., PORTEOUS, R., MOREAU, D.J. & DOOLAN, C.J. 2019 The effect of aspect ratio on the wake

structure of finite wall-mounted square cylinders. J. Fluid Mech. 875, 929–960.
YU, Z., WANG, E., BAO, Y., XIAO, Q., LI, X., INCECIK, A. & LIN, B. 2024 VIV of two rigidly coupled

side-by-side cylinders at subcritical Re. Intl J. Mech. Sci. 267, 108961.
ZELLER, R.B., WEITZMAN, J.S., ABBETT, M.E., ZARAMA, F.J., FRINGER, O.B. & KOSEFF, J.R. 2014

Improved parameterization of seagrass blade dynamics and wave attenuation based on numerical and
laboratory experiments. Limnol. Oceanogr. 59 (1), 251–266.

ZHANG, D., CHENG, L., AN, H. & DRAPER, S. 2021 Flow around a surface-mounted finite circular cylinder
completely submerged within the bottom boundary layer. Eur. J. Mech. B Fluids 86, 169–197.

ZHANG, D., CHENG, L., AN, H. & ZHAO, M. 2017 Direct numerical simulation of flow around a surface-
mounted finite square cylinder at low Reynolds numbers. Phys. Fluids 29 (4), 045101.

ZHANG, X., HE, G. & ZHANG, X. 2020 Fluid–structure interactions of single and dual wall-mounted 2D
flexible filaments in a laminar boundary layer. J. Fluids Struct. 92, 102787.

ZHANG, X. & NEPF, H. 2022 Reconfiguration of and drag on marsh plants in combined waves and current.
J. Fluids Struct. 110, 103539.

ZHU, H.-Y., WANG, C.-Y., WANG, H.-P. & WANG, J.-J. 2017 Tomographic PIV investigation on 3D wake
structures for flow over a wall-mounted short cylinder. J. Fluid Mech. 831, 743–778.

ZHU, L., ZOU, Q., HUGUENARD, K. & FREDRIKSSON, D.W. 2020 Mechanisms for the asymmetric motion
of submerged aquatic vegetation in waves: a consistent-mass cable model. J. Geophys. Res.: Oceans 125
(2), e2019JC015517.

1013 A17-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
19

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10199

	1. Introduction
	1.1. Flow over the finite wall-mounted rigid structure
	1.2. Flow over the finite wall-mounted flexible structure
	1.3. The objective of the present study

	2. Methodology
	2.1. Large-eddy simulation (LES)
	2.2. Vector form intrinsic finite element
	2.3. Immersed boundary method
	2.4. Coupling between the fluid and structures

	3. Validation
	3.1. The deformation of a cantilever plate under uniform loading
	3.2. Flexible plate in uniform channel flow
	3.3. Flexible stem under uniform loading
	3.4. Dynamics of a flexible filament in uniform flow
	3.5. The non-dimensional time step for a wall-mounted stem in uniform flow
	3.6. Other validation

	4. Numerical set-up for a wall-mounted stem in uniform flow
	5. Wall-mounted rigid stem in uniform flow
	5.1. Statistics of fluid forces and vortex shedding frequency
	5.2. Details of the 3-D vortical structures
	5.3. The downwash and upwash flow
	5.4. Three-dimensional wake instability comparison with the infinite cylinder case

	6. Fluid-structure interaction of a wall-mounted flexible stem in uniform flow
	6.1. Characteristics of shape deformation and stem response
	6.2. Hydrodynamic forces and comparison with the rigid stem
	6.3. Characteristics of the 3-D vortical structures at different regimes

	7. Discussion
	7.1. Significantly weakened downwash flow
	7.2. Low-frequency oscillation in the streamwise and vertical directions

	8. Conclusions
	References

