LAURENT EXPANSION OF DIRICHLET SERIES

U. Balakrishnan

Let \((a_n) \) be an increasing sequence of real numbers and \((b_n) \) a sequence of positive real numbers. We deal here with the Dirichlet series \(f(s) = \sum b_n a_n^{-s} \) and its Laurent expansion at the abscissa of convergence, \(\lambda \), say. When \(a_n \) and \(b_n \) behave like
\[
\sum_{a_n \leq N} b_n a_n^{-\lambda} \log^k a_n = P_2(\log N) + C_k + O(N^{-\varepsilon} \log^k N),
\]
as \(N \to \infty \), where \(P_2(x) \) is a certain polynomial, we obtain the Laurent expansion of \(f(s) \) at \(s = \lambda \), namely
\[
f(s) = P_1(s-\lambda) + \sum_{k=0}^{\infty} k!^{-1} C_k (\lambda-s)^k,
\]
where \(P_1(x) \) is a polynomial connected with \(P_2(x) \) above. Also, the connection between \(P_1 \) and \(P_2 \) is made intuitively transparent in the proof.

Suppose the Dirichlet series \(f(s) = \sum b_n a_n^{-s} \), \(s = \sigma + it \), is convergent for \(\sigma > \lambda \) \((>0)\) and has a pole of order \(d \geq 0 \) at \(s = \lambda \) and also suppose that \(f(s) \) has an analytic continuation to \(\sigma > \sigma_0(< \lambda) \). Then we know that \(f(s) \) has the Laurent expansion
\[
f(s) = P_1(s-\lambda) + \sum_{k=0}^{\infty} k!^{-1} C_k (\lambda-s)^k
\]
where

\[P_1(x) = (d-1)! \Delta_d x^{-d} + (d-2)! \Delta_{d-1} x^{1-d} + \ldots + \Delta_1 x^{-1 \ldots} \]

at \(s = \lambda \), with some constants \(a_k \) and \(\Delta_i \). It is conjectured that the \(a_k \)'s are given by

\[a_k = \lim_{N \to \infty} \left(\sum_{n \leq N} b_n a_n^{-\lambda} \log^k a_n - P_2(\log N) \right) \]

where

\[P_2(x) = \Delta_{d} (k+d) x^{k+d} + \Delta_{d-1} (k+d-1) x^{k+d-1} + \ldots + \Delta_1 (k+1) x^{k+1} \]

In special cases of the function \(f(s) \) this is known to be true (see [3], [4]). What we deal here is a conditional converse of this. We have the following Tauberian theorem:

THEOREM 1. Let \(0 < a_1 \leq a_2 \leq a_3 \ldots \) be an increasing sequence of real numbers and \(0 \leq b_n \), \(n = 1,2,3, \ldots \) be arbitrary positive real numbers satisfying

\[\sum_{n \leq N} b_n a_n^{-\lambda} \log^k a_n = P_2(\log N) + c_k + O(N^{-\varepsilon} \log^k N) \]

for \(k = 0,1,2, \ldots, \lfloor \frac{1}{2} \log N \rfloor \), for all \(N \geq N_0 \) with the 0-constant absolute and with a fixed \(\varepsilon \), \(0 < \varepsilon < \frac{1}{4} \), where \(P_2(x) \) is given by (2). Then the Dirichlet series \(f(s) = \sum b_n a_n^{-s} \) is convergent for \(s > \lambda \) and has the Laurent expansion (1) at \(s = \lambda \), with \(P_1(x) \) as in (1*), provided that \(c_k \ll (2k/\varepsilon)^k \), for \(k \geq \lfloor \frac{1}{2} \varepsilon \log N \rfloor \).

REMARKS.

1. It follows that the order of the pole of \(f(s) \) at \(s = \lambda \) is exactly the largest power of \(\log N \) appearing in \(\sum b_n a_n^{-s} \).

2. The condition in Theorem 1 could be altered to

\[\sum_{n \leq N} b_n a_n^{-\lambda} \log^k a_n = P_2(\log M) + c_k + O(M^{-\varepsilon} \log^k M) \]

for \(k = 0,1,2, \ldots, \lfloor \frac{1}{2} \log M \rfloor \) for all \(N \geq N_0 \) where \(M = M(N) \to \infty \) as \(N \to \infty \) and we restrict \(a_n \) by \(a_n \leq (M(n))^{100} \) for \(n \geq N_0 \).
3. The proof of the Theorem reveals explicitly how the powers of $\log N$ in $\sum b_n a_n^{-\lambda}$ are transformed to powers of $(s-\lambda)^{-1}$ in the Laurent expansion of $f(s)$.

4. We have given in Theorem 2 below a class of sequences satisfying the hypothesis of Theorem 1.

Proof of Theorem 1. We write a_n^{-s} in the form

$$a_n^{-s} = a_n^{-\lambda} \left(1 + \eta \log a_n + 2^{-1} \eta^2 \log^2 a_n + \ldots + t^{-1} \eta^t \log^t a_n \right) + O(t^{-1} |\eta|^t a_n^{-\lambda} \log^t a_n),$$

where we have denoted $\lambda - s$ by η and have used the fact that for $x \in \mathbb{C}$

$$e^x = 1 + x + 2^{-1} x^2 + \ldots + t^{-1} x^t + O(t^{-1} |x|^t e^{|x|}).$$

Now we consider a_1^{-s}, a_2^{-s}, ..., a_N^{-s} for the above expansion and by columnwise addition we get

$$\sum_{a_n \leq N} b_n a_n^{-s} = \sum_{a_n \leq N} b_n a_n^{-\lambda} + \eta \sum_{a_n \leq N} b_n a_n^{-\lambda} \log a_n + \ldots + t^{-1} \eta^t \sum_{a_n \leq N} b_n a_n^{-\lambda} \log^t a_n + O(t^{-1} |\eta|^t a_n^{-\lambda} \log^t a_n),$$

and using the hypothesis of the theorem we get for

(3) $0 \neq |\eta| \leq 10^{-6} \varepsilon \min(1, \lambda)$ and $t = \lfloor \varepsilon \log N \rfloor$

that

(4) $\sum_{a_n \leq N} b_n a_n^{-s} = \sum_{k=0}^t k^{-1} \eta^k \sum_{r=1}^d \Delta_r (k+r)^{-1} (\log N)^{k+r} + \sum_{k=0}^t k^{-1} \eta^k \sum_{a_n \leq N} b_n a_n^{-\lambda+|\eta|} \log^t a_n) + O(N^{-\varepsilon} \sum_{k=0}^\infty k^{-1} |\eta| \log N |^k + t^{-1} |\eta|^t \sum_{a_n \leq N} b_n a_n^{-\lambda+|\eta|} \log a_n).$

Now using the hypothesis of the theorem again, we get

(5) $t^{-1} |\eta|^t \sum_{a_n \leq N} b_n a_n^{-\lambda+|\eta|} \log^t a_n \ll N |\eta| \log^d N t^{-1} |\eta| \log N |^t$

$$\ll N |\eta|^{-\varepsilon} \log^d N,$$

using the choice of t from (3). Now let
We write for a fixed \(r \)

\[(k+1) \ldots (k+r-1) = A_1 + A_2(k+r) + A_3(k+r)(k+r-1) + \ldots + A_r(k+r)(k+r-1) \ldots (k+2),\]

as an identity in \(k \). It is easy to check that, for \(1 \leq i \leq r-1 \),

\[(7) \quad i!^{-1}A_1 + (i-1)!^{-1}A_2 + \ldots + A_{i+1} = 0; \quad A_1 = (-1)^{r-1}(r-1)!; \quad A_m = A_m(r).\]

Let us use this expansion in (6) and get

\[(8) \quad Q = \sum_{r=1}^{d} \Delta_r n^{-r} \sum_{i=1}^{r} A_i (k+r-i+1)!^{-1} (n \log N)^{k+r-i+1}
= \sum_{r=1}^{d} \Delta_r n^{-r} \sum_{i=1}^{r} A_i (n \log N)^{i-1} \sum_{k=0}^{t} (k+r-i+1)!^{-1} (n \log N)^{k+r-i+1}
= \sum_{r=1}^{d} \Delta_r n^{-r} \sum_{i=1}^{r} A_i (n \log N)^{i-1} \left\{ n^r - (1 + n \log N + 2^{-1}(n \log N)^2 + \ldots + (r-i)!^{-1}(n \log N)^{r-i}) + O(t!^{-1}n^{t+d}) \right\}
= \sum_{r=1}^{d} \Delta_r n^{-r} \sum_{i=1}^{r} A_i (n \log N)^{i-1} (n^r + O(n^{t-\varepsilon} \log d) N)
= \sum_{r=1}^{d} \Delta_r n^{-r} \left\{ A_1 + (A_1 + A_2)n \log N + \ldots + (n \log N)^{r-1} \sum_{i=1}^{r} (r-i)!^{-1} A_i \right\}.

Using (7), we have all of \(A_1 + A_2, 2!^{-1}A_1 + A_2 + A_3, \ldots , \sum_{i=1}^{r} (r-i)!^{-1} A_i \) are zero. Also by the choice of \(\eta \) and \(t \) as in (3) and reading \(A_1 \) from (7) we get from (8) that

\[(9) \quad Q = -\sum_{r=1}^{d} (r-1)! (-1)^{r-1} \Delta_r n^{-r} + O(N^n \log^d N + N^\varepsilon \log^2 d \ N).\]

It now follows from (5), (6) and (9) that

\[\sum b_n = \sum_{r=1}^{d} (r-1)! \Delta_r (n^{-r} + \sum_{k=0}^{t} t!^{-1} a_n^{k} + O(N^n \log^d N + N^{-\frac{i}{2}}(N))].\]
We are in \(\sigma > \lambda \) and hence \(\Re \eta < 0 \) and the truth of the theorem follows, as we let \(N \to \infty \).

Now we verify the hypotheses of theorem 1 for the case \(f(\sigma) = \zeta(\sigma,a) \), the Hurwitz zeta function. We have

\[
\zeta(\sigma,a) = a^{-\sigma} + (1+a)^{-\sigma} + (2+a)^{-\sigma} + \ldots, \quad \sigma > 1, \quad 0 < a \leq 1.
\]

We consider the sum

\[
\sum_{n=0}^{N} (n+a)^{-1} \log^n (n+a) = \sum_{n=1}^{\infty} \left\{ (n+a)^{-1} \log^n (n+a) - \int_n^{n+1} u^{-1} \log^k u \, du \right\}
\]

\[
+ a^{-1} \log^n a + \int_1^{N} u^{-1} \log^k u \, du + O(N^{-1} \log^k N)
\]

\[
+ \left(\sum_{n=N}^{\infty} (n+a)^{-1} \log^n (n+a) - \int_n^{n+1} u^{-1} \log^k u \, du \right)
\]

Now

\[
\left| (n+a)^{-1} \log^n (n+a) - \int_n^{n+1} u^{-1} \log^k u \, du \right| \leq 2(n^{-1} \log^n (n+1) - (n+1)^{-1} \log^n n)
\]

\[
\leq 2n^{-1}(\log^n (n+1) - \log^n n) + 2n^{-2} \log^{k-1}(n+1)
\]

\[
\leq 2n^{-2}(k(\log^n (n+1))^{k-1} + \log^k (n+1))
\]

so the first sum on the right side of (10) is absolutely convergent and further, for \(k \leq \frac{\epsilon}{2} \log N \),

\[
\sum_{n=N}^{\infty} \left| (n+a)^{-1} \log^k (n+a) - \int_n^{n+1} u^{-1} \log^k u \, du \right| \leq 6 \sum_{n=N}^{\infty} (n+1)^{-2} \log^k (n+1)
\]

\[
\leq 12N^{-1} \log^k N.
\]

Evaluating the integral we can write (10) as

\[
\sum_{n=0}^{N} (n+a)^{-1} \log^k (n+a) = (k+1)^{-1}(\log^k N)^{k+1} + c_k(a) + O(N^{-1} \log^k N),
\]

and so the hypotheses of the Theorem 1 are satisfied, with \(A_1 = 1, \quad d = 1 \) and even \(\epsilon = 1 \). Also observe using (11) that
Now Theorem 1 gives us the Laurent expansion of $\zeta(s,a)$ as

$$\zeta(s,a) = (s-1)^{-1} + b_0(a) + (1-s) b_1(a) + (1-s)^2 b_2(a) + \ldots$$

with

$$b_k(a) = k!^{-1} \lim_{N \to \infty} \left\{ \sum_{n=0}^{N} (n+a)^{-1} \log^k (n+a) - \frac{(k+1)^{-1}}{k+1} \log^k N \right\}.$$

Of course, for $a = 1$ we get the Laurent expansion of $\zeta(s)$ at $s = 1$. This expression for $b_k(a)$ is already present in [1] and [2]. We can easily see from the above estimates that $b_k(a) = k!^{-1} c_k(a) \ll 1$, which implies the validity of the Laurent expansion of $\zeta(s,a)$ in $|1-s| < 1$. A better estimation of $b_k(a)$ is given in [1].

Below we include a theorem, without proof, which gives a good degree of freedom in choosing a sequence a_n satisfying the hypotheses of Theorem 1. We restrict ourselves to the special case $d = 1 = \lambda$ and $b_n = 1$ for all n. If S_N denote the number of a_n's in the sequence with $a_n \leq N$ we would expect S_N to behave as $S_N = \Delta_1 N + O(N^{1-\epsilon})$.

This is in fact true provided we choose the $\tilde{\Delta}_1 N$ numbers as described below.

Theorem 2. Let integer $G \geq 1$, positive real numbers A, B, T and $0 < \epsilon \leq \frac{1}{2}$ be fixed. Suppose for each $n \geq n_0$, we choose G real numbers from the interval $[T_n - An^{1-\epsilon}, T_n + Bn^{1+\epsilon}]$ (the same real number may be chosen for different n's, provided that we pick them from the prescribed interval) and insert into the sequence thus formed any number of positive real numbers subject to the condition that $S_N = T^{-1} G N + O(N^{1-\epsilon})$, for $N \geq N_0$. Then the sequence thus constructed satisfies the hypotheses of Theorem 1 with $\Delta_1 = T^{-1} G$ and $\lambda = 1 = d$.

References

[1] U. Balakrishnan, "On the Laurent expansion of $\zeta(s,a)$ at $s = 1$",

 functions defined by Dirichlet series", Illinois J. Math., 5
 (1961), 43-44.

School of Mathematics,
Tata Institute of Fundamental Research,
Homi Bhabha Road,
Bombay - 5,
India.