LAURENT EXPAiNSION OF DIRICHLET SERIES

U. Balakrishnan

Let $\left\langle a_{n}\right\rangle$ be an increasing sequence of real numbers and $\left\langle b_{n}\right\rangle$ a sequence of positive real numbers. We deal here with the Dirichlet series $f(s)=\sum b_{n} a_{n}^{-s}$ and its Laurent expansion at the abscissa of convergence, λ, say. When a_{n} and b_{n} behave like

$$
\sum_{n} \leqslant N b_{n} a_{n}^{-\lambda} \log ^{k} a_{n}=P_{2}(\log N)+C_{k}+0\left(N^{-\varepsilon} \log ^{k} N\right)
$$

as $N \rightarrow \infty$, where $P_{2}(x)$ is a certain polynomial, we obtain the
Laurent expansion of $f(s)$ at $s=\lambda$, namely

$$
f(s)=P_{1}(s-\lambda)+\sum_{k=0}^{\infty} k!^{-1} C_{k}(\lambda-s)^{k}
$$

where $P_{1}(x)$ is a polynomial connected with $P_{2}(x)$ above. Also, the connection between P_{1} and P_{2} is made intuitively transparent in the proof.

Suppose the Dirichlet series $f(s)=\sum b_{n} a_{n}^{-s}, s=\sigma+i t$, is convergent for $\sigma>\lambda(>0)$ and has a pole of order $d \geqslant 0$ at $s=\lambda$ and also suppose that $f(s)$ has an analytic continuation to $\sigma>\sigma_{0}(<\lambda)$. Then we know that $f(s)$ has the Laurent expansion

$$
\begin{equation*}
f(s)=P_{1}(s-\lambda)+\sum_{k=0}^{\infty} k!^{-1} c_{k}(\lambda-s)^{k} \tag{1}
\end{equation*}
$$

Received 26 July 1985.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 $\$ \mathrm{~A} 2.00+0.00$.
where

$$
\begin{equation*}
P_{1}(x)=(d-1)!\Delta_{d} x^{-d}+(d-2)!\Delta_{d-1} x^{1-d}+\ldots+\Delta_{1} x^{-1} \tag{1*}
\end{equation*}
$$

at $s=\lambda$, with some constants q_{k} and Δ_{i}. It is conjectured that the c_{k} 's are given by

$$
\left.c_{k}=\lim _{N \rightarrow \infty} a_{n} \sum_{\leqslant N} b_{n} a_{n}^{-\lambda} \log ^{k} a_{n}-P_{2}(\log N)\right)
$$

where

$$
\begin{equation*}
P_{2}(x)=\Delta_{d}(k+d)^{-1} x^{k+d}+\Delta_{d-1}(k+d-1)^{-1} x^{k+d-1}+\ldots+\Delta_{1}(k+1)^{-1} x^{k+1} \tag{2}
\end{equation*}
$$

In special cases of the function $f(s)$ this is known to be true (see [3], [4]). What we deal here is a conditional converse of this. We have the following Tauberian theorem:

THEOREM 1. Let $0<a_{1} \leqslant a_{2} \leqslant a_{3} \ldots$ be an increasing sequence of real numbers and $0 \leqslant b_{n}, n=1,2,3, \ldots$ be arbitrary positive real numbers satisfying

$$
a_{n} \sum_{N} b_{n} a_{n}^{-\lambda} \log ^{k} a_{n}=P_{2}(\log N)+c_{k}+0\left(N^{-\varepsilon} \log ^{k} N\right)
$$

for $k=0,1,2, \ldots,\left[\frac{1}{2} \varepsilon \log N\right]$, for $a l Z N \geqslant N_{0}$ with the 0 -constant absolute and with a fixed $\varepsilon, 0<\varepsilon<\frac{1}{2}$, where $P_{2}(x)$ is given by (2). Then the Dirichlet series $f(s)=\left[b_{n} a_{n}^{-s}\right.$ is convergent for $\sigma>\lambda$ and has the Laurent expansion (1) at $s=\lambda$, with $P_{1}(x)$ as in (1*), provided that $c_{k} \ll(2 k / \varepsilon)^{k}$, for $k \geqslant\left[\frac{1}{2} \varepsilon \log N_{0}\right]$.

REMARKS. 1. It follows that the order of the pole of $f(s)$ at $s=\lambda$ is exactly the largest power of $\log N$ appearing in $\sum b_{n} a_{n}^{-\lambda}$.
2. The condition in Theorem 1 could be altered to

$$
\sum_{n} \sum_{n} b_{n} a_{n}^{-\lambda} \log ^{k} a_{n}=P_{2}(\log M)+c_{k}+0\left(M^{-\varepsilon} \log ^{k} M\right)
$$

for $k=0,1,2, \ldots,\left[\frac{1}{2} \in \log M\right]$ for all $N \geqslant N_{0}$ where $M=M(N) \rightarrow \infty$ as $N \rightarrow \infty$ and we restrict a_{n} by $a_{n} \leqslant(M(n))^{100}$ for $n \geqslant N_{0}$.
3. The proof of the Theorem reveals explicitly how the powers of $\log N$ in $\sum b_{n} a_{n}^{-\lambda}$ are transformed to powers of $(s-\lambda)^{-1}$ in the Laurent expansion of $f(s)$.
4. We have given in Theorem 2 below a class of sequences satisfying the hypothesis of Theorem 1.

Proof of Theorem 1. We write a_{n}^{-s} in the form

$$
\begin{aligned}
a_{n}^{-s}= & a_{n}^{-\lambda}\left(1+\eta \log a_{n}+2!^{-1} n^{2} \log ^{2} a_{n}+\ldots+t!^{-1} n^{t} \log ^{t} a_{n}\right) \\
& +0\left(t!^{-1}|n|^{t} a_{n}^{|n|-\lambda} \log ^{t} a_{n}\right)
\end{aligned}
$$

where we have denoted $\lambda-s$ by η and have used the fact that for $x \in \mathrm{C}$

$$
e^{x}=1+x+2!^{-1} x^{2}+\ldots+t!^{-1} x^{t}+0\left(t!^{-1}|x|^{t} e^{|x|}\right)
$$

Now we consider $a_{1}^{-s}, a_{2}^{-s}, \ldots, a_{N}^{-s}$ for the above expansion and by columnwise addition we get

$$
\begin{aligned}
\sum_{n} b_{n} a_{n}^{-s}= & \sum b_{n} a_{n}^{-\lambda}+n \sum b_{n} a_{n}^{-\lambda} \log a_{n}+\ldots+t!^{-1} n^{t} \sum b_{n} a_{n}^{-\lambda} \log ^{t} a_{n} \\
& +0\left(t!^{-1}|n|^{t} \sum b_{n} a_{n}^{-\lambda+|n|} \log { }^{t} a_{n}\right),
\end{aligned}
$$

and using the hypothesis of the theorem we get for

$$
0 \neq|n| \leqslant 10^{-6} \varepsilon \min (1, \lambda) \text { and } t=\left[\begin{array}{lll}
\frac{1}{4} \in \log N \tag{3}
\end{array}\right]
$$

that

$$
\begin{align*}
& \sum_{n} \leqslant N b_{n} a_{n}^{-s}=\sum_{k=0}^{t} k!^{-1} n^{k} \sum_{r=1}^{d} \Delta_{r}\left(k+r^{-1}(\log N)^{k+r}+\sum_{k=0}^{t} k!^{-1} c_{k} n^{k}\right. \tag{4}\\
& \quad+0\left(N^{-\varepsilon} \sum_{k=0}^{\infty} k!^{-1}|n \log N|^{k}+t!^{-1}|n|^{t} \sum_{a_{n} \leq N} b_{n} a_{n}^{-\lambda+|n| \log }{ }^{t} a_{n}\right)
\end{align*}
$$

Now using the hypothesis of the theorem again, we get

$$
\begin{gather*}
t!^{-1}|n|^{t} \sum_{a_{n} \leq N} b_{n} a_{n}^{-\lambda+|n|} \log t a_{n} \ll N|n| \log ^{d} N t!^{-1}|n \log N|^{t} \tag{5}\\
\ll N|n|-\varepsilon \log ^{d} N,
\end{gather*}
$$

using the choice of t from (3). Now let
(6)

$$
\begin{aligned}
Q & =\sum_{k=0}^{t} k!^{-1} \eta^{k} \sum_{r=1}^{d} \Delta_{r}(k+r)^{-1}(\log N)^{k+r} \\
& =\sum_{r=1}^{d} \Delta_{r} \eta^{-r} \sum_{k=0}^{t}(k+r)!^{-1}(\eta \log N)^{k+r}(k+1)(k+2) \ldots(k+r-1)
\end{aligned}
$$

We write for a fixed r
$(k+1) \ldots(k+r-1) \equiv A_{1}+A_{2}(k+r)+A_{3}(k+r)(k+r-1)+\ldots+A_{r}(k+r)(k+r-1) \ldots(k+2)$,
as an identity in k. It is easy to check that, for $1 \leqslant i \leqslant r-1$,
(7) $i!^{-1} A_{1}+(i-1)!^{-1} A_{2}+\ldots+A_{i+1}=0 ; A_{1}=(-1)^{r-1}(r-1)!; A_{m}=A_{m}(r)$.

Let us use this expansion in (6) and get
(8) $Q=\sum_{r=1}^{d} \Delta_{r} \eta^{-r} \sum_{i=1}^{r} \sum_{k=0}^{t} A_{i}(k+r-i+1)!^{-1}(n \log N)^{k+r}$ $=\sum_{r=1}^{d} \Delta_{r} n^{-r} \sum_{i=1}^{r} A_{i}(n \log N)^{i-1} \sum_{k=0}^{t}(k+r-i+1)!^{-1}(n \log N)^{k+r-i+1}$ $=\sum_{r=1}^{d} \Delta_{r} n^{-r} \sum_{i=1}^{r} A_{i}(n \log N)^{i-1}\left\{N^{\eta}-\left(1+n \log N+2!^{-1}(n \log N)^{2}+\right.\right.$ $\left.\left.+\ldots+(r-i)!^{-1}(n \log N)^{r-i}\right)+0\left(t!^{-1} N|n||n \log N|^{t+d}\right)\right\}$ $=\sum_{r=1}^{d} \Delta_{r} \eta^{-r} \sum_{i=1}^{r} A_{i}(\eta \log N)^{i-1}\left(N^{\eta}+0\left(\left.N\right|^{|\eta|-\varepsilon} \log ^{d} N\right)\right.$

$$
-\sum_{r=1}^{d} \Delta_{r^{n}}{ }^{-r}\left\{A_{1}+\left(A_{1}+A_{2}\right) n \log N+\ldots+(n \log N)^{r-1} \sum_{i=1}^{r}(r-i)!^{-1} A_{i}\right\}
$$

Using (7), we have all of $A_{1}+A_{2}, 2!^{-1} A_{1}+A_{2}+A_{3}, \ldots, \sum_{i=1}^{r}(r-i)!^{-1} A_{i}$
are zero. Also by the choice of η and t as in (3) and reading A_{1}
from (7) we get from (8) that
(9) $\quad Q=-\sum_{r=1}^{d}(r-1)!(-1)^{r-1} \Delta_{r}^{n^{-r}}+0\left(N^{n} \log ^{d} N+N|n|-\varepsilon \log ^{2 d} N\right)$.

It now follows from (5), (6) and (9) that
$a_{n} \leqslant N b_{n} a_{n}^{-s}=\sum_{r=1}^{d}(r-1)!\Delta_{r}(-n)^{-r}+\sum_{k=0}^{t} t!^{-1} c_{k} n^{k}+0\left(N^{n} \log ^{d} N+N^{-\frac{1}{2} \varepsilon}\right)$.

We are in $\sigma>\lambda$ and hence $\operatorname{Re} \eta<0$ and the truth of the theorem follows, as we let $N \rightarrow \infty$.

Now we verify the hypotheses of theorem 1 for the case $f(s)=\zeta(s, a)$, the Hurwitz zeta function. We have

$$
\zeta(s, a)=a^{-s}+(1+a)^{-s}+(2+a)^{-s}+\ldots, \sigma>1,0<a \leqslant 1 .
$$

We consider the sum

$$
\begin{align*}
\sum_{n=0}^{N}(n+a)^{-1} \log ^{k}(n+a)= & \sum_{n=1}^{\infty}\left\{(n+a)^{-1} \log ^{k}(n+a)-\int_{n}^{n+1} u^{-1} \log ^{k} u d u\right\} \tag{10}\\
& +a^{-1} \log ^{k} a+\int_{1}^{N} u^{-1} \log ^{k} u d u+0\left(N^{-1} \log ^{k} n\right) \\
& +0\left(\sum_{n=N}^{\infty} \mid(n+a)^{-1} \log ^{k}(n+a)-\int_{n}^{n+1} u^{-1} \log ^{k} u d u\right)
\end{align*}
$$

Now

$$
\begin{gather*}
\left|(n+a)^{-1} \log ^{k}(n+a)-\int_{n}^{n+1} u^{-1} \log ^{k} u d u\right| \leqslant 2\left(n^{-1} \log ^{k}(n+1)-(n+1)^{-1} \log ^{k} n\right) \tag{11}\\
\leqslant 2(n+1)^{-1}\left(\log k(n+1)-\log ^{k} n\right)+2 n^{-2} \log ^{k}(n+1) \\
\leqslant 2 n^{-2}\left\{k(\log (n+1))^{k-1}+\log ^{k}(n+1)\right\}
\end{gather*}
$$

so the first sum on the right side of (10) is absolutely convergent and further, for $k \leqslant \frac{1}{2} \varepsilon \log N$,

$$
\begin{aligned}
\sum_{n=N}^{\infty}\left|(n+a)^{-1} \log ^{k}(n+a)-\int_{n}^{n+1} u^{-1} \log ^{k} u d u\right| & \leqslant 6 \sum_{n=N}^{\infty}(n+1)^{-2} \log ^{k}(n+1) \\
& \leqslant 12 N^{-1} \log ^{k} N
\end{aligned}
$$

Evaluating the integral we can write (10) as

$$
\sum_{n=0}^{N}(n+a)^{-1} \log ^{k}(n+a)=(k+1)^{-1}(\log N)^{k+1}+c_{k}(a)+0\left(N^{-1} \log ^{k} N\right)
$$

and so the hypotheses of the Theorem 1 are satisfied, with $\Delta_{1}=1, d=1$ and even $\varepsilon=1$. Also observe using (11) that

$$
\begin{aligned}
c_{k}(a) & =\sum_{n=1}^{\infty}\left\{(n+a)^{-1} \log ^{k}(n+a)-\int_{n}^{n+1} u^{-1} \log ^{k} u d u\right\}+a^{-1} \log ^{k} a \\
& \ll k!.
\end{aligned}
$$

Now Theorem 1 gives us the Laurent expansion of $\zeta(s, \alpha)$ as

$$
\zeta(s, a)=(s-1)^{-1}+b_{0}(a)+(1-s) b_{1}(a)+(1-s)^{2} b_{2}(a)+\ldots
$$

with

$$
b_{k}(\alpha)=k!^{-1} \lim _{N \rightarrow \infty}\left\{\sum_{n=0}^{N}(n+\alpha)^{-1} \log ^{k}(n+a)-(k+1)^{-1}(\log N)^{k+1}\right\}
$$

Of course, for $a=1$ we get the Laurent expansion of $\zeta(s)$ at $s=1$. This expression for $b_{k}(a)$ is already present in [1] and [2]. We can easily see from the above estimates that $b_{k}(a)=k!^{-1} c_{k}(a) \ll 1$, which implies the validity of the Laurent expansion of $\zeta(s ; a)$ in $|1-s|<1$. A better estimation of $b_{k}(a)$ is given in [1].

Below we include a theorem, without proof, which gives a good degree of freedom in choosing a sequence a_{n} satisfying the hypotheses of Theorem 1. We restrict ourselves to the special case $d=1=\lambda$ and $b_{n}=1$ for all n. If S_{N} denote the number of a_{n} 's in the sequence with $a_{n} \leqslant N$ we would expect S_{N} to behave as $S_{N}=\Delta_{1} N+O\left(N^{1-\varepsilon}\right)$. This is in fact true provided we choose the $\Delta_{1} N$ numbers as described below.

THEOREM 2. Let integer $G \geqslant 1$, positive real numbers A, B, T and $0<\varepsilon \leqslant \frac{1}{2}$ be fixed. Suppose for each $n \geqslant n_{0}$, we choose G real numbers from the interval $\left[T n-A n^{l-\varepsilon}, T n+B n^{1+\varepsilon}\right]$ (the same real number may be chosen for different n 's, provided that we pick them from the prescribed interval) and insert into the sequence thus formed any number of positive real numbers subject to the condition that $S_{N}=T^{-1} G N+0\left(N^{1-\varepsilon}\right)$, for $N \geqslant N_{0}$. Then the sequence thus constructed satisfies the hypotheses of Theorem 1 with $\Delta_{1}=T^{-1} G$ and $\lambda=1=d$.

References

[1] U. Balakrishnan, "On the Laurent expansion of $\zeta(s, a)$ at $s=1 "$, J. Indian Math. Soc. 46 (1982), 181-187.
[2] B.C. Berndt, "On the Hurwitz zeta function", Rocky Mountain J. Math., 2 (1972), 151-157.
[3] W.E. Briggs and R.G. Buschman, "The power series coefficients of functions defined by Dirichlet series", Illinois J. Math., 5 (1961), 43-44.
[4] J. Knopfmacher, "Generalised Euler constants", Proc. Edinburgh Math. Soc., 21 (1978), 25-32.

School of Mathematics,
Tata Institute of Fundamental Research,
Homi Bhabha Road,
Bombay - 5 ,
India.

