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Stimulated Raman forward scattering (SRFS) of an intense X-mode laser pump in a preformed parabolic plasma density profile is
investigated. The laser pump excites a plasma wave and one/two electromagnetic sideband waves. In Raman forward scattering,
the growth rate of the parametric instability scales as two-third powers of the pump amplitude and increases linearly with

cyclotron frequency.

1. Introduction

The propagation of intense laser pulses in plasma [1, 2] is
relevant to various applications including laser-driven ac-
celeration [3-5], optical harmonic generation [6, 7], X-ray
laser [8], laser fusion [9, 10], and magnetic field generation
[L1]. The laser-plasma interaction leads to a number of
relativistic and nonlinear effects such as self-focusing
[12-14], parametric Raman and Brillouin instabilities [15],
filamentation and modulational instabilities [16-24], and
soliton formation.

Stimulated Raman scattering (SRS) is an important
parametric instability in plasmas. In stimulated Raman
forward scattering (SRES), a high phase velocity Langmuir
wave is produced that can accelerate electrons to high energy
[25-35]. In stimulated Raman backward scattering (SRBS),
electron plasma wave (EPW) has smaller phase velocity and
can cause bulk heating of electrons. The high-amplitude laser
wave enables the development of this instability in plasmas
with a density significantly higher than the quarter critical
density (n./4), which is usually considered as the SRS
density limit for lower laser intensities. Shvets et al. [36] have
demonstrated that SRS is strongly modified in a plasma
channel, where the plasma frequency varies radially through
the radial dependence of the plasma density #, (r). Liu et al.
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[37] have studied forward and backward Raman instabilities
of a strong but nonrelativistic laser pump in a preformed
plasma channel in the limit when plasma thermal effects may
be neglected. Mori et al. [38] have developed an elegant
formalism of SRFS in one dimension (1D). Panwar et al. [39]
have studied SRFS of an intense pulse in a preformed plasma
channel with a sequence of two pulses. They have studied the
guiding of the main laser pulse through the plasma channel
created by two lasers. Sajal et al. [40] have studied SRES of a
relativistic laser pump in a self-created plasma channel.
Hassoon et al. [41] have studied the effect of a transverse
static magnetic field on SRES of a laser in a plasma. The
X-mode excites an upper hybrid wave and two sidebands.
They found that the growth rate of SRFS increases with the
magnetic field. Gupta et al. [42] have investigated SRS of
laser in a plasma with energetic drifting electrons generated
during laser-plasma interaction. They showed numerically
that the relativistic effects increase the growth rate of the
Raman instability and enhance the amplitude of the decay
waves significantly.

Liu et al. [43] developed 1D Vlasov—-Maxwell numerical
simulation to examine RBS instability in unmagnetized
collisional plasma. Their results showed that RBS is en-
hanced by electron-ion collisions. Kalmykov et al. [44] have
studied RBS in a plasma channel with a radial variation of
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plasma frequency. Paknezhad et al. [45] have investigated
RBS of ultrashort laser pulse in a homogeneous cold
underdense magnetized plasma by taking into account the
relativistic effect of nonlinearity up to third order. The
plasma is embedded in a uniform magnetic field. Kaur and
Sharma [46] developed nonlocal theory of the SRBS in the
propagation of a circularly polarized laser pulse through a
hot plasma channel in the presence of a strong axial mag-
netic field. They established that the growth rate of SRBS of a
finite spot size significantly decreases by increasing the
magnetic field. Paknezhad et al. [47] have studied the Raman
shifted third harmonic backscattering of an intense ex-
traordinary laser wave through a homogeneous transversely
magnetized cold plasma. Due to relativistic nonlinearity, the
plasma dynamics is modified in the presence of transverse
magnetic field, and this can generate the third harmonic
scattered wave and electrostatic upper hybrid wave via the

Raman scattering process.

In this paper, we examine the SRFS of an X-mode laser
pump in a magnetized plasma channel including nonlocal
effects. In many experiments in high-power laser-plasma
interaction, transverse magnetic fields are self-generated
[11]. Laser launched from outside travels in X-mode in such
magnetic fields and often creates parabolic density profiles.
Thus, the current problem is relevant to experimental

situations.

The ponderomotive force due to the front of laser pulse
pushes the electrons radially outward on the time scale of a
plasma period w?!, creating a radial space charge field, and
modifies the electron density, where w, is the electron

p

plasma frequency. Laser and the sidebands exert a pon-
deromotive force on electrons driving the plasma wave. The
density perturbation due to plasma wave beats with the
oscillatory velocity due to laser pump to produce nonlinear

currents, driving the sidebands.

In Section 2, we analyse the SRFS of a laser pump in a
preformed channel with nonlocal effects. In Section 3, we

discuss our results.

2. Raman Forward Scattering

Consider a two-dimensional plasma channel with a para-
bolic density profile immersed in a static magnetic field BZ.
The electron plasma frequency in the channel varies as

2

2 2 Y
w,=wyl 1+,
’ "°( Li)

where w,, is the plasma frequency at y =0 and L, is the
density scale length. An X-mode laser propagates through

the channel (cf. Figure 1),

g .
E, = A ()’)(j’ - SOxy R)e_l(wot_ko"x).

O0xx

The plasma permittivity at w, is a tensor. Its components

are
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where w, = (eB,/m) is electron cyclotron frequency and e
and m are the electronic charge and mass, respectively.
Maxwell’s equations V x Ej = iwyuH, and
V x Hy = —iwe, € -E, combine to give the wave equation
2 wé
VEO—V(V-EO)+ESO-EO:O, (4)

where ¢, is the free space permittivity. Here, we chosen the
plasma to be uniform and expressed the spatial-temporal
variation of E, as e”'(@!kn*"k0,)) ye would obtain from
equation (4), on replacing V by (iky,y + ik,,%),

DoFo =0 (%)

where D, = (wj/c?) gy —kg I +kok,. Its matrix form is
expressed as follows: = -

2 2 .
Wy

2 w,
2 €0xx ~ kOy foxy T kOxkOy 0
C Cc
wz (U2
- 0 0 2
:DO | T 2%xy + kOxkOy 2 €xx T kO 0
C C
w2
0 2
0 0 C—2€OZZ - kO

(6)

The local dispersion relation of the mode is given by
| Dy | = 0, which can be written as

2 2 2 2 2
c €oxx

- ) 2 2 2 2 2 2
g2 = Yo foe Py o @ [1 i } K2
0y — 0x~— 2 0x*
Wy Wy — W, — W,

p

(7)

Equation (2) gives Ey, = — (&g, /€xx)Ey,- To incorporate
nonlocal effects, one may deduce the mode structure
equation from the above equation by replacing ko, by
(—i9/0y) and operating over E

0y>
Ey, [w? 0w -
y 0 r 0 P 2 _
v’ +[2 1_72 2 2 2 _k0x EOy—O- (8)
y c Wy Wy — Wy, — W,
Define
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FIGURE 1: Schematic of excitation of a Langmuir wave and two sidebands by an X-mode laser in a plasma channel.

/ —i(wt—k
él 4)y — an (/) — ¢(y)€ i(wt x)’ (13)
2 2 2 2 and two electromagnetic sidebands with electric fields,
Wy w (‘Uo - wc) w
o=l u(aw Elxy i (wjt—k;x)
_ ~_ Tlxy o —ilwt—k.x
wy (wp— why— w?)" | Luc ) E = Aj(y elxxx)e iR (14)
2 2 2
I wg 1 Wpy Wy~ Wy ) 1 where j=1,2 and w,, =w ¥ w;, and k , =kFk; The
L PR ‘07(2) Wl - ‘U;Z:o — W T Tox piar sideband waves produce oscillatory electron velocities,
. . € w.Ejy
Equation (8) can be written as Vi = PN IPFAY
) (@) -l - })
T 4 (hg - B)Ey, = 0 (10) '
2 0 0)~0y — ¥ _
9% ’ e (@-wp)E, (15)
. . ” mw( %—wz—w)’
The eigenvalue for the fundamental mode is A = 1, and TG e T
the eigenfunction is given by E,, = Age” %2, From the ei-
genvalue condition, we obtain Vie =0,
2 2 2w here j=1,2
, W Wy Wy — Wy 2 w j=12.
ko == [1- —’; 2_—2112 - é ), (11) The sideband waves couple with the pump to exert a
¢ Wo Wo = @po ~ @e ponderomotive force on electrons at w, k, F,,, = — (m/2) (v, -

Vv, + vy - Vv, + v, - Vv + v, - Vvg) — (e/2) (Vg X By + v X

The pump wave produces oscillatory electron velocity, B +v: x B, + v, x B2, In the limit, k, >k, k, andk, are
ot Vo X By +Vy X Bg). » Ko > K, Ky 2

S w:Eq, largely along X, and the x and y components of the pon-
™7 m (wg —w - w; )’ deromotive force turn out to be
2.
y o e’i(PEy E, , + QE,, * E, )
__-EM (12) PO mwyw, @ (wz—wz—wz)(wz—wz—wz)’
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2
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= 7 2 727y
2mw0w1w2(w0 - w, - wp)(wl -—w, - wp)
and parametrically excites a Langmuir wave with electro-

static potential, where

P= (4)2{(k1 - ko)wlwowf + kl(a)g - w;)(w% —)

ARSI )

= wl{(kO — key ) w,00w] ~ kz(“’g - “’12>)(“’g e

(17)
R = w, (kow; + klwo)“’i’

S = w; (kow; + kywp)
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For w < w, F,, = eVe,; one may write
n
¢p =V [Ely - EZy]’
Up;

eE {w (wz—wz)(a)z—wz—wz)—wzwzw}
oy 1*1\*o P 1 c P cp™o
- 202 2 2\(,2_ 2 _ 2 >
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where

= 02(0? - - &)y (w2 - ) (- @ - 2) + wpulat),

s = 62(02 - 0 - 02 Moy (02 - 02)(@? - @ - o) - wgelel).

The drift velocity of plasma electrons due to electrostatic
wave of potential ¢ in the component form is given by

e wk
Vox = mﬁb’
_ e wk (20)
()
v,, =0.

The nonlinear velocity vI* due to ponderomotive force
can be' obtained from equation '(20.) by repl'acmg ¢ by ¢,

Using the equation of continuity, the linear and non-
linear density perturbations at w, k can be obtained as

AL V. {ng (y)vw}

w >

iw
(21)
© iw ’

Using these in Poisson’s equation,

V2 = (ele,) (nk + nY*), we obtain

2

w, (y)

Sy e Sy P (22)
W - w; - w, (y

The nonlinear current densities at the sidebands can be
written as

https://doi.org/10.1155/2021/9919467 Published online by Cambridge University Press

(19)
L .
]f”‘ = 3 1evp
(23)
N _ 1
), = — eV

Using equation (23) in the wave equation, we obtain

2
D-E, =<—kf1 + k1k1+w—2151>-E1
L I 2 &

kze(pw;leoy (24)

:2 2 2 2 2 2 2
mc wo(w” — w; )(wy — w; — W,

. {iwowcfc +(w§ - w;)?},
where 91 = —k%£+k1k1 + (wf/cz)s_l, and

2
D -E, =<—k§1+k2k2 + 22 82) 'E,
= = c

k2e¢>w;w2E0y (25)

- 2mctwy(w® — 0?)(w? - @? —a)z)
0 c 0 [4 P

. {—iwowc?c +(w§ - w;)j/},

where D= —k3 I +k,k, + (w3/c?) & .
Equations (24) and (25) on replacing k,, by —id/0y for
the sidebands can be written as
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We solve equations (26) and (27) by the first-order
perturbation theory. In the absence of nonlinear terms, the
eigenfunctions for the fundamental mode satisfying equa-
tions (26) and (27) are

Ey,=Ape 7 (29)

Corresponding eigenvalues are A, , = 1. When the RHS
of equations (26) and (27) are finite, we assume the
eigenfunctions to remain unmodified; only the eigenvalues
are changed a little. We substitute for E, , from equation (29)
in equations (26) and (27), multiply the resulting equations
by e 812 and integrate over £ from —co to co. Then, we

obtain
Z(E,V2
(M - 1)A, = -Wg, (ffl(:o )( Zl )’ (30)
(A -1)4, = 2“2{“%23) (31)

(w —w )L ﬁl/Z(
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where Z(&,,V/2) is the plasma dispersion function. Equa-
tions (30) and (31) give the nonlinear dispersion relation

1= Z(§10V2) W(zn n Wgz
e W -1 L-1)

This nonlinear dispersion relation is a function of the DC
magnetic field. The dispersion relation is modified if one
changes the value of the DC magnetic field. In the absence of
the DC magnetic field,

Z (10 (w0, = O)ﬁ)<
§10(w, =0)

(32)

W(2)1 (wc = 0)

1=
M (w,=0)-1

" AZV(%C(ZCO; ?) >

(33)

where ﬁll (w,=0)y =&, (w, =0), ﬁ1/4(wC:0)y:fz(wC:
0), Bi/* (w, = 0)y = & (w. = 0),

=0)

§19 (0 =0) = 2
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(U2 wZ w2
po "1
M@:m%%cmTz
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w2 w2 (4)2—
po 72
/\2(w£=0)=|:—22<1——2 2
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2

2
_ wpo ) 1

2 k 1/2 >
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Taylor expanding A, — 1 with respect to variables w,, k, where
and A, — 1 with respect to variables w,, k, and substituting in
equation (32), one obtains
Z(E0V2) Wy 1 1

= §o  (0Ao/0wy) (w ~kvgo + A) - (w ~kvgo ~ A) ’

(35)

dwy  0NJIky
ok, OAJow,

ae B
= 2(0hJowy)’
2 >
A= a—Azow2 + a—)LZOkZ,
02’ e

ow, ow, vVBo

P, 1 [3 L2000 Ay~ Ardy©p0 Ayd, - A3d4:|

2
aAO _ a(AO - ].) = L 2(4)0 n pro Al wp() A3
¢ F A LeA]

dw; - \/ﬁ & A Lyc A
ok, B,
Th_ 2
ok By
A = (g = wh =) (wpo = 25) = (wpo = wg) (20 — wi = )}, )
8, = wi(wf - who - )"
A; = _“"owf(“’o - “’;0 - “’c)a
PR 12 5 5
A, :{(wo — Wy~ @ ) + wc(wo - wc)} Wy~ Wyo "-’c) >
% =d, =(w0 —wi, - wz)(wz - 6w2) - 20 0° —(2(4)2 —wh, - wz)(w2 - 3a)2),
dw, po — @ J\Wpo 0 0%po 0~ Wpo = W J\Wpo 0
oA
BTJZ =d, = 2w0(wg — Wy~ wc)z,
oA
a—wz =d; = —wc(3w§ +Wpy — wc),
oA 12
a—wi =d, = 4w0(w0 —Wpy — @ ){(w(z) - wf,o -w )2 +w (“’0 - wc)}
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FIGURE 2: Normalized growth rate as a function of normalized amplitude of the pump wave in Raman forward scattering for (wp/wy) = 0.2,
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Fieure 3: Normalized growth rate as a function of normalized cyclotron frequency for (wo/wy) = 0.2, (L,wpy/c) = 8, and |eEy/mwc| = 0.1.

Equation (35) gives

2
(w—kv O)Z_Az :w
g (a)to/awo)flo

We substitute the value of &;, and Z(§,,V2) = — V2,

also write w = w, + iy, where w, = kv, = \ (w2 + wf,o), and

obtain
2
123 _ 2\/E‘/Voﬂ"poA 2iln

-1 — ¢
-1 (9hy/0w, )L, B1"*

Equation (38) gives the growth rate
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(38)

_|: ZVEWélprA :|1/SSin217'[ (39)
V2 onfow L, ] T 3
For I = 1, the growth rate turns out to be
= 2V2 Wiy ] (10)
V=2 (@agfaw) LB |

In Figure 2, we have displayed the normalized growth
rate (y/w,,) of the Raman forward scattering instability
as a function of normalized pump wave amplitude
leEy/mwc| for parameters: (wpo/wo) =0.2, (anpo/c) =38,
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and (wc/w,) = 1. The growth rate increases with the am-
plitude of the laser pump. It does not go linearly but nearly as
two-third powers of normalized laser amplitude. This is due
to the fact that the width of the driven Langmuir mode is
dependent on ponderomotive potential hence on pump
amplitude. In Figure 3, we have displayed the normalized
growth rate (y/w,) of the Raman forward scattering as a
function of normalized static magnetic field (w./w,,) for
(wpo/wo) =0.2, (anp(,/c) =8, and |eE;/mwc| = 0.1. In the
absence of DC magnetic field, the growth rate (y/w,) is
minimum. It rises with magnetic field. The magnetic field
raises the frequency of the driven plasma wave and brings in
cyclotron effects in nonlinear coupling leading to en-

hancement of growth rate.

3. Discussion

The plasma channel with a parabolic density profile localizes
the electromagnetic eigenmodes involved in the SREFS
process within a width of the order (an/wPO)m. The
Langmuir wave is more strongly localized, thus limiting the
region of parametric interaction and reducing the growth
rate. The static magnetic field modifies the electron response
to these eigenmodes and significantly influences the non-
linear coupling. In the limit when the normalized growth
rate (y/w,) > kvy,, one may neglect thermal effects. The
growth rate roughly scales as E%’; with pump amplitude and
goes linearly with ambient magnetic field. For typical pa-
rameters, (w,o/wy) = 0.2, (L,wpo/c) =8, (w/w,) = 0.5, and
leEy/mwc| = 0.1, the normalized growth rate is 0.26 whereas
for (wp/wy) =02, (L,wpy/c) =8, (w/wy) =1, and
leEy/mwc| = 0.8, the normalized growth rate is 0.028.

In the earlier work by Liu et al. [37] for the parameters
(wPO/wO) =0.2 and (anpo/c) =8 |vy/c| = 0.6, the normal-
ized growth rate is 0.06 whereas in our work for the pa-
rameters (w,o/wy) = 0.2, (L,wy/c) =8, (w/wpyy) =1, and
|eEy/mwc| = 0.6, the normalized growth rate is 0.025 Clearly,
our results are in good agreement with the earlier work by

Liu et al.
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