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On groups of exponent four

with generators of order two

Narain D. Gupta, Horace Y. Mochizuki,
and Kenneth W. Weston

The largest group of exponent L generated by n elements of

order 2 has nilpotency class n + 1 when n = 3 .

Introduction

2

L
Let G{n) = <al, cees @3 AL, 0 > (n =2 2) be the freest group of

exponent 4 on n generators of order 2 . It is almost immediate that
~ L2 2 h>_< L 2 2 2>_
G(2) = (al, ay; ays @y, v ) = 4a), ays als a5, Eal, a2] =
2 2
= (al’ ay; ays ays (a5 a5, a)), [a)s ay, a1]> »

so that G(2) is nilpotent of class precisely 2 . It is a well-known
result of Wright [7] that the nilpotency class of G(n) (n = 3) is at

most m + 1 . In this note we show that the nilpotency class of G(n)
(n 2 3) is at least n + 1 . This settles a long standing conjecture of
Wright [11].

Preliminaries

Let S denote the free associative ring freely generated by
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Ty Ty e Let p = ((1+:z:1) (1+:cz]-l)3 (L 22) bve a fixed element

of § . A straight forward expansion shows that

(1) p= 1 EEE (re,tedfl, ..., 1)),

(r,s,t) ©°

where E‘m = z xk(l) xk(m) , the sum being taken over all sequences

1 =k(1) <... <k(m) =1 . For each sequence 1 = k(1) < ... < k{m) =1

define
(2) Fp[k(l), ...s k(m)} = sum of all monomials in (1) which have
positive degree in each of xk(l)’ ey xk(m) and degree zero

in the other x's ;

(3) (d)(k(l) , k(m)) = sum of all monomials in Fp(k(l), ceus k(m)
which are of length precisely m+d (d = 0) ;

(%) éfi ) (x(1), ..., k(m)) = sum of all monomials in

(d)(k(l) cees k(m)) whose first component is Tp(i) }

p
(s) (dll(‘z,)] k(1), ..., k{m)) = sum of all monomials in
(d) [k(l) . k(m)) whose last component is xk(i) 3

(@) : ] .
(6) Fp[k(i),k(j)] (k(‘b), ..., k(m)) = sum of all monomials in
Féd) (k(1), ..., k(m)) whose first component is (1) and last
component is xk(j) ; and
(7) |F| = number of monomials in F .

LEMMA 1. Let o= ((1+4m) ... (142,)-1)3 (22 2) be a fized
element of S . Then for each sequence 1 = k(1) < ... <k(m) =1,

(i) f(J(El)dz)) (k(1), ..., k(m))| s even for each

z€e{1, ..., m};
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(i) Fg?ll(i)] (x(1), ..., k(m))l ig even for each
t €{1, ..., m};

(1i1) F‘()O)(k(l), vy k(rn))l is even;

(iv)

F(>C[)7)<(‘L) k()] (k(l)r oy Kk(m))

(0)
Fotk() k(1)) (K1)s -oos K(m)
i8 even for all pairs 1 =i < j=m; and

(1)

(v) D[k(z) k(i)](k(l)’ Thve k(’”))l is odd for each

7z € {1, ..., m}.

Proof of (Z). It is clearly enough to prove that é([)'Z)(l’ ceey m)
is even for each ¢ € {1, ..., m} . By definition every monomial in
#(0) )
p[z)(l ..., M) 1is of the form (:riMl) (Mg) (M3) » where z.M), M,, My are

terms from Er, Es, «Et respectively for some r, s, t . Thus we may pﬁir
(:z: M ) [M ) (M3] with (xiMl) [M3) (M2) which by (1) is also present in

(0)
p['L)( R O
Proof of (ZZ). As in () we may pair [Ml] (M2) [M3xi) and

[M2) (Ml) (M3aci) together.

Proof of (7). Since
(0) 7 g0
F, (k(1), ..., k(m)) = izl Fo[k(i)] (x(1), ..., k(m)) ,
the proof follows by (Z).
Proof of (Zv). As in the proof of () it is enough to prove that
(0) F(o) (1, ..., m)| is even for each pair

p[’L,J eld,z] (0)
1=%<j<m. Ve note by (1) that every monomial in Fp([)i j](l’ ve., m)

+

](l e, m)

is of the form

= M(8)u(c)) - u(ayu(s)u(c,) - ma)u(B )z, (€ € 5 -€)
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(0)
eld,

xJ.M(Cl) - w4 )m(Bm(c,) - M(a)z, (€ E 8 08 »

and every monomial in F i](l’ ..., m) 1is of the form

where
Ay VA, =11, ..., i1} (4, = 0)
B=B uB,uBy={i+l, ..., -1} (BrB, = By, = BB, = 9) ,
Cl v 02 = {j+1, ..., m} [Clnc‘2 =9 ,
and
M(al, sy aq) = xal e xaq

For each choice of Bl’ 82, B3 (32 # B) , We may pair

@ )ule)) e uBue,)  MauE )

and
e Jule))  MauEHE,)) M uE,)e)
so that Fé?z,j](l’ e , m) + Fé?},i](l’ ..., M) equals the even number of

terms plus the sum of paired terms of the form

{(z(c,)) (0 )MBM(C,)) () )+ (w e(e,)) (8 JisIm(c,)) (e(a ), ) )
= sum of even number of terms .

Proof of (v). Once again it is enough to show that

(1)

p[z i i

](l ..., m)| is o0dd. By (1) every monomial in oli.,i

](l, e, m)
is of the form

zM(B) - M(a)u(B,) - Mla)z, (€ £, €. E,)

where

Apvd, =11, ..., i1} (40, = 9)

2

o
C
oy
[}

{i+1, ..., m} (Bln32 9) .
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Ml (o1
Since & Z 1 , there are z ( &

k=1
choice of M(Al)M(B2) s M(Bl) and M(AZ) are uniquely determined. Thus

] choices of M(Al)M(BE) and for each

(1)

m=1
F 7l Z m-1 , which is an odd number (independent of
ole k=1 LK

the choice of < € {1, ..., m} ).

’i](l, ceey m)l =

This completes the proof of Lemma 1.

The ring R(n) (n = 2)

let n = 2 be a fixed positive integer and let R(n) denote the
ring (with 1 ) of characteristic 2 generated by yl, . yn and

satisfying only the following three conditions and their consequences:

(1) ¥i(1) " Yg(neo) =03

(11) Yi(1) v Y1) T 0 if L =n and i(j) = i(k) for
some J # k 3
(111) Yi¥q - Gy o U Y U oo Bug cer Yy Tor ell

i=1, ..., n and all permutations 0 of {1, ..., n}

such that <0 =17 .

Let J denote the ideal of R{n) generated by all elements of the form

p(1) = ((14ypq)) -+ (1+yk(z)]—l)3 (1= 2)

For each 17 =2, 3, ... , there are only finitely many, say r(l) , such

elements. Thus we may write

J = idealR(n){p(Z, q(1)), q(1) e {1, ..., (1)}, L =2, 3, ...}
We refer the reader to (2) where in the expansion of
p = [(1+zl] oo (l+xz)—1)3 (L=z2),

the terms Fb(k(l), ..., k{m)) have been defined for each sequence

1 =k(1) < ... <k(m) =1 . Correspondingly, we may write
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p(l, q(Z)) = ((l‘..y,](l)) v (l+yj(z)]'l]3
= Z Fp(l,q(l)) (j(k(l))’ cees J(k(”'))) ’
where the summation is taken over all sequences 1 =< k(1) < ... <ki(m) =17 .
We clearly have

Jc idea.lR(n){Fp(Z’q(z)) (&), ..., dlxm))} =x .

We note that

if m = n-1 , then by (II),
; ; _ .(0) , .
Fo(1iqn) FE@)e ooy dlm)) = £g 0y G(0)), s G lkm)

with [{F(k)), ..., dk(m)}] =m ;
if m= n+2 , then by (I),

oz, k@), ooy Glm)) =0

if m=n + 1 , then by (I),
0, or

(0) .
Fo(2,q(0) [ilk(s)) 3 k()] G 1)

ey dlk(m)) (with §(k(2)) = k()
for some % # p

Fo(ta(1) (Fk@))s ...y dkM)) =

0 by (III) and the pairing used to
prove Lemma 1 (iv);
and if m = »n , then
0, or
#o) G D), .ens 3 km))
p(2,q(1)) P

Fp(l,q(l)) (j(k(l)), cees J(k(M))] = R Fé,l(%,q(z)) (j(k(l)), . j(k(m)]]

with [{5(k(1)), ..., dkm)}H =m) .
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JCK= idealR(n){Fé%%’q(z)) &), ..., 7&m)) wvitn
Hitk@)s ooos gk} =msn ana 20 o) R, .oy d&)

with {j(k(1)), ..., i(k())}} = (a, ..., n}} .

n
In particular if izl E:i(yiyl cen Gy een ynyi) €x, e ¢{0, 1}, then by
Lemma 1 (Z), (i1), (212} and (III) it follows that

n
izl e,y o 0 ooy y,) € idealR(n){FéJd’q(z)) (G(R1))5 ..., dRO))),
with {7(k(1)), ..., d(k(m)} = (2, ..., n}}
n
= idealR(n){izl Yy co- Q‘L ynyi} by
Lemma 1 (v/);
hence € = 0O for all i or €; = 1 for all %1 . We summarize these

observations in the following:

n
LEMMA 2. 1If 1121 ei(yiyl e Gy e ynyz] s € € {0, 1} , lies in
the ideal J , then either €, = ... = g_ =0 or e = =g =1. In

1 n 1T n
particular Y.y, --- Y, Eog.

The main result

Let M(n+l) denote the multiplicative group of 2 X 2 matrices over
R(n)/J generated by X, Yl, cees Yn (n = 2) , where

151, ooy .

THEOREM. M(n+1) is a homomorphic image of G(n+l) and the
nilpotency clase of M(n+l) ie at least n + 2 .

Proof. It is easily verified that X and Yi's are of order 2 .
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T 0

An arbitrary element of M(n+l) is of the form W = (U N

] , where T is

a wnit. Since (1+T1)3 € J it follows that 1 + T + 12 + 13 € J and

Th = 1 . Thus

o & o] _ [1 OJ
u(a+t+lerd) 1 01

which implies that M(n+l) is a homomorphic image of G(n+l) . Next we

note that
1+y. 0 14y 0)?
[1 o] i _ i _ [; o}
s = = *
p 1 y; 1 D(l+yi]+yi 1 pr 1

where
p* = (p(1+yy)+y,) (1+wy) + o(avy,) + 4, = (p(avy;)4w, )y, = p(1vy,)y; = oy, -

Thus by obvious induction

1
X, v ,v,...,¥r,v]=
1’ 2 n’> X Y¥-- Y4y 1
which is not the identity matrix by Lemma 2. Thus M(n+l) is nilpotent of

class at least 7n + 2 as was to be shown.
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