
BULL. AUSTRAL. MATH. SOC. 20DI5, 2OE25, 20E35

VOL. 10 (1974), 135-142.

On groups of exponent four

with generators of order two

Narain D. Gupta, Horace Y. Mochizuki,

and Kenneth W. Weston

The largest group of exponent k generated by n elements of

order 2 has nilpotency class n + 1 when n > 3 .

Introduction

Let G(n) = (a., ...s a ; a., w ) (n 2 2) he the freest group of

exponent h on n generators of order 2 . It is almost immediate that

a2,, w J = (a^ a^, a*, a

, a2; a\, a\, [a^ a^ aj , [a^ a^ aj)

so that G(2) is nilpotent of class precisely 2 . It is a well-known

result of Wright [7] that the nilpotency class of G(n) (n 2 3) is at

most n + 1 . In this note we show that the nilpotency class of G(n)

(n > 3) is at least n + 1 . This settles a long standing conjecture of

Wright [/].

Preliminaries

Let S denote the free associative ring freely generated by
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x^, x2, ... . Let p = ( ( l+x^ . . . ( l+x^j- l)3 (Z > 2) be a fixed element

of S . A s t ra ight forward expansion shows that

(r,s.,t) r 8 *

where ^ = \ *£ / , ) ••• x£(m) > t h e svim being taken over a l l sequencesx£(m)

1 5 fc(l) < . . . < k(m) IS I . For each sequence 1 £ &(l) < . . . < fc(m) £ I ,

define

(2) F (fed), •••> k(m)) = sum of a l l monomials in ( l ) which have
P

p o s i t i v e degree i n each of xvt-i)> •••> XJ,I \ an<i degree zero

i n t h e o t h e r x ' s ;

(3) F (fe(l) k(m)) = sum of a l l monomials in F (fed) > • • • , fe("O)
P P

which are of length precisely m + d (d - 0) ;

(h) ofk( ')) ^ d ) , • • • , k(m)) = sum of a l l monomials in

(d)
F ( fe( l ) , . . . , k(m)j whose f i r s t component i s x , , . . ;

P *̂  \ ̂  /

(5) F r! , . s-i ( fe( l ) , . . . , f c ( m ) ) = sum of a l l monomials i n

F ( fe( l ) , . . . , k(m)) whose l a s t component i s xi,( • \ 5

* -' - (\(i), . . . , fe(m)) = sum of a l l monomials in

F ( f e ( l ) , . . . , k{m)) whose f i r s t component i s x , , . > a n d l a s t
P Kyi')

component i s x. , .> ; a n d

( 7 ) | F | = number o f monomia l s i n F .

LEMMA 1 . Let P = ( ( l + a ^ ) • • • ( l + x ^ ) - ! ) 3 ( Z > 2 ) be a fixed

element of S . Then for each sequence 1 £ fed) < . . . < fc(m) £ I ,

(i) $ ( i ) ) (*(U. . . . .

i € {l , . . . , m) ;

•te even for each
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(ii) F^i.i.-\-\ (fe(l), . . . , k(m)) is even for each

i i {l, . . . , m) ;

(iii)

(iv)

.(0)

F{0)[Hl), ..., fc(m))| is even;

is even for all pairs 1 5 : i < j ^ m ; and

(v) ' p [ J < i > . * u > ] ( * ( 1 ) - •••' for each

i I {1, ..., m] .

Proof of d). I t is clearly enough to prove that

is even for each i € {l , . . . , m} . By definition every monomial in

_.^(l, .. . , m) is of the form [x .M J \M J (AM , where a:.W. , M , A

terms from £ , C_, C+ respectively for some r, s, t . Thus we may pair
" o t

( a ; . w ) ( w ) ( M ) with [x.M )[MJ[M ) which by ( l ) i s a l s o presen t i n

Proof of (ii) . As in (i,) we may pair {M ) [M ) [M X.) and
1 d i i*

[M ) [M ) [M x.) t o g e t h e r .

Proof of (iii). Since

the proof follows by (i).

Proof of (iv). As in the proof of (i) i t is enough to prove that

Fr. . n ( l , . . . . m)\ + \F r . .-i(l, . . . . m) is even for each pair
P[t>j] I I P[J,i->

1 S i < j 5 m . We note by ( l ) t ha t every monomial in F , . . , ( 1 , . . . , m)

i s of the form
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and every monomial i n F " r . . - , ( 1 , . . . , m) i s of the form

where

A± u 4O = {1, . . . , i-1

B == B± u B2 u B3 = ii+1, . . . , j-l) [BinB2 = B^^ = B ^ = 0)

and

M[av . . . , a) = xa ... xa .

For each choice of B , S , 5 (fi ^ SJ , we may p a i r

a n d

s o t h a t F r • .-.(X, . . . , m) + F T . .-.(l, . - . , m) e q u a l s t h e e v e n n u m b e r o f
P i ' - »e7 J P l i7 »»• J

terms plus the sum of paired terms of the form

= sum of even number of terms .

Proof of (v). Once aga in i t i s enough t o show t h a t

r . - i d tn) i s odd. By ( l ) every monomial in F , . • 1 ( l , . . . , rr>)
3[z , t J p i t ,?- J

is of the form

iiTn ^ J.A( A 1 1 / f D 1 KM (A ^ ™ » (C C « C " » f ^

where

A u /I = {l, . . . , i-l} (^i^o = ^

and
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Since s 2: 1 , there are £ I v \ choices of MIA )M[B ) and for each
fe=l l >

choice of M{A )M{B J , M[B j and M[A J are uniquely determined. Thus

m-l r^jl

' L \ v » w ni°h i s an odd number (independent of
fe=l <• " >

the choice of i € { l , . . . , m) ) .

This completes the proof of Lemma 1.

The ring i?(«) ( n 2 2)

Let n 2 2 be a fixed positive integer and let R(n) denote the

ring (with 1 ) of characteristic 2 generated by y , ..., y and

satisfying only the following three conditions and their consequences:

( I ) v t \ . . . u t \ — 0 *

y£i±\ y^d) = ° i f l ~ n a n d *W) = *(&) f o r

some j t k ;

( I I I ) yiy± ... y. . . . y . = i / ^ 1 0 . . . Pi(J . . . j / n a J / i for a l l

i = 1, . . . , n and a l l permutations 0 of { l , . . . , n}

such that ia = i .

Let J denote the ideal of R(n) generated by a l l elements of the form

l) 3 (Z 2 2) •

For each I = 2, 3, ... , there are only finitely many, say r{l) , such

elements . Thus we may write

J = idealif(n){p(l, q(l)), q(l) € {l, ..., HI)}, I = 2, 3, ...} .

We refer the reader to (2) where in the expansion of

the terms F (fe(l), ..., k(m)) have been defined for each sequence

1 S k(l) < ... < k[m) £ Z . Correspondingly, we may write
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where the summation i s taken over a l l sequences 1 < fe(l) < . . . < k(m)

We clearly have

J<=

We note tha t

i f m 5 n - l , then by ( I I ) ,

with |{ j ( fe( l ) ) , . . . . j[k(m))}\ = m ;

i f m > n+2 , then by ( i ) ,

0 i

i f m = n + 1 , then by ( i ) ,

0 , or

and i f m = n , then

... d[k(m))) (with j[k(i)) = j[k(p))

for some i ? p

0 by (III) and the pairing used to

prove Lemma 1

0 , or

(with | {j (*(!)) d[k(m))}\ = m)

Thus
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= m < « and

with {j(fc(l)) j(fe(n))} = {i „}} .

n
In par t icular i f £ zAh^, ••• £„• ••• J/J/,0 € * » E. € {0, l ) , then by

Lennua 1 (i) , (ii), (iii) and ( I I I ) i t follows that

j
with {J

j x ^MH ••• ^ ••• v < ) ( ) K (
)) J(fc(n))} = ( 1 , . . . , » } }

Lemma 1 (v);

hence e. = 0 for a l l i or e. = 1 for al l i . We summarize these

observations in the following:

LEMMA 2. If I ei[yiy1 . . . p i . . . yjj . e < € {0, 1} , Ziee in. If I ei[yiy1 . . . pi . . . yj
X>^X

Hie ideal J 3 then either e, = . . . = e = 0 or en = . . . = e = 1 . In
i n ± n

The main result

L e t A/(n+l) d e n o t e t h e m u l t i p l i c a t i v e g r o u p o f 2 > < 2 m a t r i c e s o v e r

g e n e r a t e d b y X, X , . . . , X (n > 2 ) , whe re

»- I I . *<
1+t/. 0

i = 1 n .

THEOREM. M(n+l) %8 a homomorphia image of G(«+l) and the

nilpotenoy aloes of A/(n+l) is at least n + 2 .

Proof. I t is easily verified that X and J . ' s are of order 2 .
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An a r b i t r a r y element of M(n+l) is of t h e form W = T ° , where T i s

a u n i t . Since ( l + f ) 3 . € J i t follows t h a t 1 + T + T2 + T 3 € e 7 and

k
1 . Thus

•r o
2_3y(l+T+T2+T3}

which implies that M(n+l) i s a homomorphic image of G(n+l) . Next we

note that

p 1 0

\^i °

where

P * = I

1 0
p* 1

Thus by obvious induction

which is not the identity matrix by Lemma 2. Thus M(n+l) is nilpotent of

class at least n + 2 as was to be shown.
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