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Abstract. Let <p be a flow on a compact metric space A and let p e A be chain
recurrent. We show that H'(A; R) ^ 0 if dimp A = 1 or if p belongs to a section of
<p. Applications to planar flows and to smooth flows are given.

Introduction
The classical Poincare-Bendixson Theorem states that for a flow in the plane, any
compact limit set A which contains no stationary point must be a periodic orbit.
As a consequence, A separates the plane. This has been generalized to compact
limit sets A of planar flows containing only finitely many stationary points; such a
set is a connected graph (in the combinatorial sense) of which every edge belongs
to a loop. See Hartman [6].

It is easy to construct a non-trivial compact limit set L of a planar flow <p which
does not separate the plane. For example, L can be an interval of stationary points
toward which the ^-trajectories spiral. But experimentation suggests that if a planar
limit set A is not entirely stationary then it does separate. In fact this is true and
the original motivation of our paper was to prove it.

It turns out that the only properties of A we need are
(1) A is 1-dimensional, (^-invariant, compact;
(2) A has a local section at any non-stationary point;
(3) points of A are chain recurrent.

These properties are valid for any compact non-stationary planar limit set and they
are easily seen to imply

(4) A has a section E containing a chain recurrent point.
To say that £ is a section of the flow <p on A means that E <= A is a compact set
having a flowbox neighborhood TV <= A; i.e. the flow (p:RxA-»A maps [—a, <r] x E
homeomorphically onto TV and E lies in the interior of TV in A. In the smooth case,
a section is given by a closed, codimension one submanifold E to which the flow
is transverse. The flow trajectories need not return to E.

Our main result, Theorem 1.1, says that

condition (4) implies H\A;U)^0

where H denotes Alexander-Spanier cohomology.
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By Alexander Duality, it follows that if such a A is contained in the plane then
it separates. See theorems 1.5, 1.6. In this sense our result generalizes the Poincare-
Bendixson Theorem.

We also consider the local flow <p generated by a smooth vector field F on a
manifold M. If A is a compact, chain recurrent, ^-invariant subset of M and if A
meets some smooth, codimension one submanifold of M which is transverse to F
then the natural homomorphism H ' ( M ; R)H> / / ' (A; R) is non-trivial. See theorem
1.4.
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1. The main theorem and its applications
Below, X will denote a metric space with metric d. A local flow <p on X is a
continuous map <p:fl-»X, denoted <p{t, x) = <p,x, such that

Q. is a neighborhood of {0} x X in R x X;
<po(x) = x for all x = X;
(pl+s(x) = <p, ° <ps(x) whenever the r.h.s. is defined.

If fl = R x X then <p is a flow. It is convenient to use the notation

t-x = <p,(x) and A- B = <p(Ax B)

where A x f i c R x X

Let <p be a flow on X and let 7", e > 0 be given. A (T, e) -pseudo orbit from peX

to q e X is a finite, indexed set of partial trajectories of <p

such that p = p0, a = pn+x, and f o r 7 = 0 , 1 , . . . , n,

d(tj- pj, pj+l) < e and (,- > 7".

If for every T, e > 0 there exists a (T, e)-pseudo orbit from p io q then we write
p < q. If p < p then /? is chain recurrent. If p< q for all p, q in a compact invariant
set A then A is a c/?ain recurrent set of the flow.

The set of all chain recurrent points of a flow is closed, invariant, and includes
all non-wandering points. For the theory of chain recurrence, see Bowen [1], Conley
[3], Franke & Selgrade [5], or Hurley [8].

Let <p be a local flow on X. A closed subset E <= X is called a local section at
p € E if there exists a- > 0 such that <p maps [—<T, a]x E homeomorphically onto a
closed neighborhood B of p. In this case, B = [—a, cr] • E, and we call B = B(a, E)
a flowbox.

It may happen that the flowbox B = B(a, E) is a compact neighborhood of all
the points of E. We then call E a section of the flow and define a map h : X -> R/Z
as follows. Let T T : R ^ R / Z be the canonical projection onto R/Z = T, the circle of
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unit length, and set

\TT(2S/CT) if xes- E and 0<s<\a
h{x) = \

I TT(O) otherwise.

The effect of h is to wrap the partial trajectory t • p, 0< t<\cr, pe E, around the
circle once, while crushing the rest of X to the point 77(0). Since B is a neighborhood
of E, the boundary of [0, ^cr] • E is Eujcr- E, so h is continuous. We call ft a
cosection map associated to E. It is easy to see that any two cosection maps associated
to E are homotopic.

Let Hl(X; R) denote the first Alexander-Spanier cohomology group of the space
X with real coefficients. (See § 2 or Spanier [9] for definitions.) If ft is a cosection
map associated to the section E then the induced map

h*:H\T;R)^>Hl(X;U)

carries the fundamental class, 0 , of T to a 1-dimensional cohomology class which
we denote by cE. It is well defined since any two co-section maps of E are homotopic;
we call cE the flow class of E. The way that cE depends on E is an interesting, open
problem.

From now on, <p is a flow on the compact metric space X. The following is our
main result.

THEOREM 1.1. If the section E of cp contains a chain recurrent point then its flow class
is a non-zero element of Hl(X; R).

Remark 1. A dual question would be this. Is there some kind of 1-dimensional
homology class, uE, in X (say an Alexander or Vietoris class [10]) such that the
Kronecker index of cF and uE is non-zero when E contains chain recurrent points?
We expect the answer is 'no'.

Remark 2. Is the converse of theorem 1.1 true or false?

THEOREM 1.2. Suppose that pe X belongs to a local section and that X has dimension
one at p. If p is chain recurrent then Hl(X; R) ^ 0.

Proof. Let Eo be a local section at p and Bo = B(a, Eo) be a flowbox. Then dimp Bo = 1.
Since Bo is homeomorphic to [ — a, a] x Ea, it follows from Hurewicz and Wallman
[7] that dim,, Ea = 0. Thus, there is a compact neighborhood E of p in Eo having
empty boundary in £0 . Consequently, £ is a section at p and Theorem 1.1
applies. •

Since smooth flows have local sections at all non-stationary points, we obtain as a
corollary:

THEOREM 1.3. Let Fbe a smooth vector field on the manifold M and let X be a compact
subset ofM invariant under the local flow generated by F. IfX contains a non-stationary,
chain recurrent point at which X has dimension one then Hl(X; R) ¥• 0.

In the situation of theorem 1.3 we can interpret the flow class cE as follows. Let D
be a smooth (m —1)-dimensional disc transverse to F at the chain recurrent point
p, m being the dimension of M. Then DnX contains a section E of the F-flow <p
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on X. Let h : X -»T be a cosection map associated to E. Let g: No-> T be a continuous
extension of h to a neighborhood of X in M. Fix an orientation of a neighborhood
of D so that the intersection number ([ —er, cr] • x) # D = +1 for all X E D near X.
(We assume the arc [~cr, a] • x is oriented from — a- x to cr- x.) For any small
neighborhood N of X in M, define a homomorphism

(iE,N:Hi{N;Z)->R
by assigning to each singular cycle z in JV, its intersection number z# D with D.
Using the proof of theorem 1.1, it is not hard to show that /LA£N corresponds to
(g|iv)*0 under the natural isomorphisms

Thus, cE is the direct limit of the classes / ^ ' ( / • ' E . N ) under the natural isomorphism

H\X\ R)«direct-limitN_x H\N; U).

The next result is like theorem 1.3 without X being 1-dimensional. We retain the
other hypotheses on F, X, M.

THEOREM 1.4. Suppose there is a smooth, codimension one submanifold 2cJW such
that 2 is closed as a subset of M, its normal bundle v is trivial, and F is transverse to
1 at X n l , always with the same orientation respecting v. Then the non-zero flow
class cE is in the image ofi%:H\M;U)^H\X;U).

Proof. Using the orientation of v, we get a homomorphism /x : HK(M; Z)-»R defined
by z i ->z#£. The previous discussion shows that

Another application of theorem 1.1 is the following.

THEOREM 1.5. If X has dimension one at the chain recurrent point p and S is any
planar surface containing X then X disconnects S.

Proof. We may assume S is an open subset of the sphere S2. It need not be invariant
under the flow. By Alexander Duality and theorem 1.3,

the number of components of S2\X = rank H0(S
2\X; U)

= l + rank/ / 1 (A r ;R)>2.
Therefore S\X is also disconnected. •

The following consequence of theorem 1.2 is a generalization of the Poincare-
Bendixson Theorem.

THEOREM 1.6. Let A be a compact co-limit set of a local flow defined in an open subset
S of the plane. If some p e A is non-stationary then A separates S.

Proof. H. Whitney [11] shows that there is a local section through any non-stationary
point of a planar local flow. It is well known that every point of a compact w-limit
set is chain recurrent. Therefore, by theorem 1.2, it suffices to check that dimp A = 1.
Since p is non-stationary, dimp A> 1. On the other hand, it is well known (and part
of the classical proof of Poincare-Bendixson) that p must be isolated in any local
section at p. Thus, dimp A= 1. •
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2. Alexander-Spanier cohomology
We recall some concepts from Spanier [9]. A cocycle on a space X is a map (not
necessarily continuous) a: U->R where U is a neighborhood of the diagonal in
X x X such that

whenever all three terms are denned. Thus,

a(x, x) = 0 and a(x, y) = — a(y, x).

If a has the special form f(y) —f(x) for some / : X -> R then it is the coboundary 8f
of/

Two cocycles /iaue //ie same germ if they agree on some neighborhood of the
diagonal. An equivalence class under this equivalence relation is a germ. The set of
germs of cocycles forms a group Z under the operation induced by addition of
representative cocycles. The germs containing coboundaries form a subgroup B and
the quotient group, Z/ B, is by definition the Alexander-Spanier cohomology group
in dimension one with real coefficients, H1(X; R). The coset of the germ of a is
denoted by [a]e/f ' (X;R).

If h : Y -» X is a continuous map then a homomorphism

is induced by the operation of h* on cocycles

h*a(y,y') = a(h(y),h(y'))

for y, y'e Y. One then defines h*[a] = [h*a].
Let T = R/Z be the circle of unit length and let 77:R->T be the projection. The

fundamental cocycle 0:W-*U on T is defined by

6(ITX, iry) = y — x if 3.

Thus,

W = {(TTX, wy)eJ XJ

Let V c X x X be a neighborhood of the diagonal. A V-chain is a finite sequence

of points in X, xo,xlt... ,xn, such that n > l and each pair (x,-,,*,-) lies in V,

1 < / < n. If also xo = xn then it is a V-cycle. The natural way to evaluate a cocycle

a on a V-cycle z = { x 0 , . . . , xn} is

LEMMA 2.1. 77ie cohomology class of the cocycle a : U -»R is non-zero provided that
for every neighborhood V c U of the diagonal there exists a V-cycle z such that (a, Z)T£0.

Proof. We prove the contrapositive. If the cohomology class of a is zero then it is
a coboundary; i.e. there is some/ : X -> R such that a(x, >>) =f(y) -f(x) for all (x, j>)
in some neighborhood V of the diagonal. Then, for any V-cycle z = {x 0 , . . . , xn},

(a, z) = I «(*;_,, x,) = I /(x,-) -/(*,-,) =/(xn) -/(x0) = 0. •
j j

It is also convenient to evaluate a cocycle a: LJ^R on a singular 1-simplex (or

path) y : [ a , b ] - » X as follows. Let e > 0 be small enough that (y(s), y(t))e U
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whenever \s - t\ < e. Let a = to< t, < • • • < tn = b be a partition of the interval [a, b]
with tj - tj-i < e, 1 <_/ s n. It is easy to see that the number

is independent of the choice of the partition {tj}, owing to the cocycle property of
a and the fact that the partition has mesh< e. We define this number to be (a, y).

L E M M A 2.2. If y:[a, b ] - » T is a path and y:[a, b]->R lifts y (i.e. ir °y=y) then

(0, y)= y(b) — y(a), where 6 is the fundamental cocycle on the circle T.

Proof. Left to the reader. •

One extends the idea of a V-chain by replacing the points x, with paths yjy V being
a neighborhood of the diagonal. An extended V-chain is a finite sequence r = {-y,}
of paths yJ:[aj,bj]^X such that (?_,•_,(&,_,), %-(a,-))e V, 1 < 7 < « . If also r n ( 0 =
yo(ao), t e [an, bn], then we call F an extended V-cycle. The value of a cocycle a : V-> R
on F is

where \<j<n and 0<i '<«. Combining Lemmas 2.1 and 2.2, we get

LEMMA 2.3. 77ie cohomology class of a cocycle a : U -»IR is non-zero provided that for
every neighborhood V of the diagonal there is an extended V-cycle F w/r/j (a,

3. Proof of Theorem 1.1
Let E c X be a section containing the chain recurrent point p e £. Let [ —cr, cr] • E = B
be a flowbox neighborhood of £. To simplify notation, we assume a = 2. This is no
loss of generality because we can replace <p by the re-parameterized flow (//(?, x) =
<p{2t/a, x), and all the hypotheses on tp hold also for <p.

Let h : X -> T be the cosection map associated to [-2, 2] • E = B. See § 2. Thus

/i(r-x) = ir(r) if 0 < r < l and xeE,

while ft sends the rest of X to 77(0).
Recall that W is the domain of the fundamental cocycle 6 on T and 0 = [0] is

its cohomology class in H' (T; R). To prove theorem 1.1, we must show that the
flow class cE = h*(@) ^ 0. We do so via lemma 2.3. That is, for any neighborhood
V of the diagonal in X x X, we will find an extended V-cycle F such that (cE, F) ^ 0.
Let such a Vbe given. There exists e > 0 s o small that if x, yeX and d(x, y)<e then

(5) (x,y)eV;
(6) (hx,hy)eW;
(7) if 0 < r < 1 and xer- E then y e s- £ for some s with | r - s | < 1.

It follows from (6) that h*6{x, y) is defined if d(x, y) < e.
Since p is chain recurrent, there exists a (2, e) -pseudo-orbit of <p from p to itself,

{•y,}, ( = 0, l , . . . , n - l . Define yn{t) = p for fe[0,3] and F = {y,: 0< i < «}. In view
of lemma 2.3, it suffices to verify

(8) (/i#
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Call y,(0) = pt and y,(f,) = qh 0< i< w. Then

j '

As before, 1 <y'< n and 0 s i < n . All terms in the last sum are >0. Indeed, for any
forward-oriented partial trajectory y:t<-^t-x, 0 s ( < T , the set

J(y) = {te[0,T]:t-xe[0,\]-E}

is a finite union of intervals, and from lemma 2.2 and the definition of h, their total
length equals (6, h ° y). Since y0 starts at pe E and f o

a 2 , we see that [0,1]<= J(y0),
so

(9) {6,hoy0)>l.

We claim that for each i, 1 < j < n - 1,
(10) 6(h(q^l),h(pi)) + (e,ho yt)3:0.

We need only prove (10) for those i with negative first term. Fix such an i. Since h
sends the complement of [0,1] • E onto a single point, one or both of the points
<7,_,, Pi lie in [0, 1] • E. Since ^(g,-!, pt) < e, it follows from (6), (7) that <y,_x e s- E
and p, e r • E for some r, s such that

0 < s - r < l and either r or s lies in [0,1].

If 0 < r < s < l then

/(%)=> [r, l] = [r,s] and s - r =

verifying (10). If 0 < r < 1< s then

/ (y , )3 [ r , l ] and 1 - r=

verifying (10). If r < 0 < s < 1 then

J(y,)^[0,s] a n d s-l =

verifying (10) in this case also.
From (9), (10), and the definition of h we see that

{h* e,r)>

Since pe E =0 • E, and d(qn^upn)< e, it follows from (6), (7) that </„_, e s- E with
(12) | s |< l .

If s<0 then 0(Jj(<7n_,), TT(0)) = 0 and (11) implies (8). If s > 0 then
Zn-,), TT(0)) = -5 and (11), (12) imply (8). •
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