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The spatio-temporal characteristics of turbulent separations beneath semi-submerged bluff
bodies with different undersurface roughness conditions are studied using a time-resolved
particle image velocimetry. The Reynolds number based on the free-stream velocity and
submergence depth was fixed to 14 400. Three different undersurface conditions – smooth,
sandpaper roughness and cube roughness – were examined. The results showed that wall
roughness reduces the mean reattachment length, and suppresses the Reynolds stresses
in the second half of the mean separation bubble. The Kelvin–Helmholtz instability is
observed at the leading edge of the smooth bluff body, but is bypassed in the rough cases.
In the first half of the mean separation bubble, the frequencies in the separated shear
layer migrate to lower values in a discrete manner through the vortex pairing mechanism.
Consequently, multiple vortex shedding motions at different frequencies are nested in
the separated shear layer, and the cores of shed vortices are aligned near the isopleth of
free-stream velocity. The shed vortex is accompanied with multiple vortices along the edge
of mean flow reversal in the upstream locations. These vortices are influenced significantly
by wall roughness. A low-frequency flapping motion manifests as enlargement/shrinkage
of reverse flow areas in the first half of the mean separation bubble. The frequencies of
flapping motion in the smooth and sandpaper cases are similar, but are relatively lower
than that in the cube roughness case. This flapping motion is associated with an extremely
large vortex shed from the mean reattachment point to the free-stream region.
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1. Introduction

Flow separations induced by two-dimensional sharp-edged bluff bodies in uniform flow
as well as surface-mounted bluff bodies in the form of forward-facing or backward-facing
steps immersed in a boundary layer have been studied extensively (Eaton & Johnston 1981;
Hillier & Cherry 1981; Kiya & Sasaki 1983; Tafti & Vanka 1991; Pearson, Goulart &
Ganapathisubramani 2013; Lander et al. 2016; Graziani et al. 2018; Moore, Letchford
& Amitay 2019; Fang & Tachie 2020; Fang et al. 2021). For surface-mounted bluff
bodies, the role of upstream wall roughness on the mean separation bubble, turbulent
statistics and unsteady features of the separated shear layers has been examined critically
in the recent past (Essel et al. 2015; Nematollahi & Tachie 2018; Fang & Tachie 2020).
However, all these investigations have focused on hydrodynamically smooth bluff bodies
even though two-dimensional bluff bodies with surface irregularities or roughness are
common in diverse engineering and environmental applications. Typical examples include
river flows around corroded bridge piers or beneath ice covers with irregular undersurfaces
due to accumulation of debris. While considerable research on river ice covers, including
pressure measurements (Coutermarsh & McGilvary 1993; Dow Ambtman, Steffler &
Hicks 2011b) and stability analyses (Kivisild 1959; Uzuner & Kennedy 1972; Ashton 1974;
Dow Ambtman, Steffler & Hicks 2011a), has been performed over the past decades, the ice
covers were modelled using hydraulically smooth semi-submerged rectangular cylinders.
This hinders an in-depth understanding of the effects of surface roughness on the fluid
dynamics, and development of effective control strategy for realistic river ice processes.
The present study is motivated by the need to understand the effects of roughness on the
mean separated shear layer, Reynolds stresses and the unsteady characteristics of flow
separations induced by bluff bodies.

For flow separations induced by rectangular bluff bodies subjected to incoming uniform
flows, there exist two typical dominant instability mechanisms: Kelvin–Helmholtz (KH)
instability and von Kármán (VK) vortex shedding. At the leading edge of a bluff body,
the separated shear layer rolls up to form small-scale KH vortices. Behind the bluff body,
VK vortex shedding occurs in the form of a train of alternating signed vortices that are
convected in the downstream direction. Three distinct flow regimes can be identified
based on the aspect ratio: (i) small aspect ratio, where the separated shear layer is
shed directly into the wake region; (ii) intermediate aspect ratio, where the separated
shear layer reattaches intermittently on the sidewall of the bluff body, but there exists
an inherent interaction between the separated shear layer from the leading edge and the
wake formed behind the bluff body; and (iii) large aspect ratio, where the separated shear
layer reattaches permanently on the sidewall of the bluff body. The critical aspect ratios
that demarcate the aforementioned regimes are not universal, due to a strong sensitivity
of the flow dynamics to Reynolds number and incoming turbulence intensity. Based
on the current literature, the critical aspect ratio demarcating the regimes of small and
intermediate aspect ratios is between 2.0 and 3.5 (Okajima 1982; Nakagawa et al. 1998),
whereas that demarcating the regimes of intermediate and large aspect ratios is larger than
5 (Moore et al. 2019; Kumahor & Tachie 2022).

Extensive research has been devoted to examine the unsteady characteristic of KH
and VK instabilities, and their variation with aspect ratio and Reynolds number
(which is defined as ReH = HU∞/ν, with H, U∞ and ν being the bluff body height,
incoming free-stream velocity and kinematic viscosity, respectively). The spatio-temporal
characteristics of VK vortex shedding have been examined using proper orthogonal
decomposition (POD). The vortex shedding motion manifests as a pair of POD modes,
where the mode velocities are offset by a quarter wavelength, and the mode coefficients
947 A19-2
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have a shift of a quarter of phase (e.g. van Oudheusden et al. 2005; Legrand, Nogueira
& Lecuona 2011). For a square cylinder, the Strouhal number StVK = fVKH/U∞, where
fVK is the frequency of VK vortex shedding in the wake region, is nearly constant at
0.13 for ReH > 1000 (Okajima 1982; Durão, Heitor & Pereira 1988; Lyn & Rodi 1995;
Brun et al. 2008; Bai & Alam 2018; Lander et al. 2018; Kumahor & Tachie 2022). For a
fixed Reynolds number (ReH = 400), Chiarini, Quadrio & Auteri (2022) observed that
as aspect ratio increases, StVK increases in a stepwise manner due to a phase-locking
mechanism with the vortex shedding from the leading edge. Meanwhile, the Strouhal
number StKH = fKHH/U∞, where fKH is the frequency of KH instability, increases with
Reynolds number according to fKH/fVK = 0.18 Re0.60

H (Lander et al. 2018). For aspect
ratios 2 and 3, there is a discontinuous variation of StVK as Reynolds number increases
(Okajima 1982). Moore et al. (2019) also observed that the manifestation of VK instability
near the leading edge dominates the KH instability for aspect ratio 1, but is relatively
weaker than the KH instability for aspect ratio 5. Overall, KH and VK instabilities interact
with each other, and the underlying mechanisms vary with aspect ratio and Reynolds
number.

In contrast to bluff bodies with small and intermediate aspect ratios, the KH instability
near the leading edge of bluff bodies with large aspect ratios is not influenced by the
VK vortex shedding in the wake region. As such, the separated shear layer exhibits
dynamics drastically different to that of bluff bodies with short/intermediate aspect ratios.
Experimental investigations by Ota and collaborators (Ota & Itasaka 1971; Ota & Narita
1978; Ota, Asano & Okawa 1981) examined the mean flow and Reynolds stresses within
and downstream of the separation bubbles over a wide range of Reynolds numbers (ReH ∈
[40, 66 600]) using hot-wire. Their results demonstrated that the mean reattachment length
(Lr) increases as the Reynolds number ReH increases to 100–150, and then gradually
decreases to an asymptotic value of approximately 9H as the Reynolds number increases
further. Sasaki & Kiya (1991) observed a similar non-monotonic variation of Lr with ReH ,
and also demonstrated that the vortex filaments in the separated shear layer undulate to
form discrete hairpin-like structures in a staggered arrangement for ReH ∈ [380, 580].
Using pointwise measurements of wall pressure and velocity as well as visualization
techniques, Kiya & Sasaki (1983, 1985) and Cherry, Hillier & Latour (1984) investigated
flow separation over a long plate in uniform flow at ReH = 26 000 and 32 000, respectively.
They noted the co-existence of two distinct unsteady features: one associated with the
quasi-periodic vortex shedding in the separated shear layer at frequency (0.5–0.6) U∞/Lr,
and the other associated with a low-frequency enlargement/shrinkage of the separation
bubble (namely, flapping motion) at frequency (0.08–0.2) U∞/Lr. Similar observations
were also made by Tafti & Vanka (1991) for the flow separation over a long rectangular
bluff body at a lower Reynolds number (ReH = 1000). The flapping motion at a similar
frequency was also reported for flow separations induced by a backward-facing step (Eaton
& Johnston 1982), a forward–backward facing step (Chalmers, Fang & Tachie 2021), and
adverse pressure gradient (Mohammed-Taifour & Weiss 2016).

Cimarelli, Leonforte & De Angeli (2018) conducted direct numerical simulations for
flow separations induced by a rectangular bluff body of aspect ratio 5 at ReH = 3000.
They observed the transition from spanwise vortex filaments near the separating point to a
hairpin-like structure after the reattachment point (which is in line with the experimental
study of Sasaki & Kiya 1991) as well as the low-frequency flapping motion embracing
the entire flow separation (which agrees with Kiya & Sasaki 1983, 1985). Cimarelli et al.
(2018) concluded that the leading edge small-scale vortices and flapping motion form a
self-sustaining cycle.
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The effects of boundary layer thickness, Reynolds number and surface roughness
conditions for incoming wall boundary layers on the statistical properties for the flow
separations induced by a wide range of surface-mounted bluff bodies have been studied
extensively (Piirto et al. 2003; Hattori & Nagano 2010; Sherry, Lo Jacono & Sheridan
2010; Essel & Tachie 2015, 2017; Hearst, Gomit & Ganapathisubramani 2016; Kumahor &
Tachie 2022). It has been demonstrated that wall roughness upstream of a forward-facing
step reduces the mean reattachment length over the step by 20–50 %. The interactions
between the coherent structures embedded in the approaching wall boundary layers and
flow separations have been investigated recently (Pearson et al. 2013; Fang & Tachie 2019b,
2020; Fang et al. 2021). The results of these studies demonstrated that the large-scale
motion (Adrian, Meinhart & Tomkins 2000) and hairpin structures (Zhou et al. 1999)
residing in wall boundary layers impose a quasi-periodic flapping motion at the same
characteristic frequencies.

In a recent study (Fang et al. 2022), the authors performed a comprehensive
experimental investigation of undersurface roughness, Reynolds number and Froude
number on the mean flow and Reynolds stresses for turbulent flow separation beneath
semi-submerged rectangular blocks. These blocks were employed to mimic river ice
covers, following previous investigations on stability analysis (Kivisild 1959) and pressure
measurements (Pariset & Hausser 1961; Dow Ambtman et al. 2011a) in the same context.
The undersurface conditions consist of a reference hydraulically smooth surface and
sandpaper roughness. The experiments were performed for a wide range of upstream
velocities and submergence depth cumulating into 23 test conditions that facilitate
a systematic investigation of undersurface roughness, Reynolds number, and Froude
number on the mean reattachment length, as well as the mean velocity and Reynolds
stresses. The objective of the present study is to investigate the effects of wall roughness
on the spatio-temporal characteristics of vortical structures in the flow separation
beneath semi-submerged bluff bodies using time-resolved particle image velocimetry
(PIV). Particular attention is also paid to clarifying the role of wall roughness on the
interactions of vortical structures originating from flow separation and the shear layer. The
present analyses, exploiting the time-resolved PIV data for the smooth bluff body, also
complement the structural mechanisms inferred from pointwise measurements by Kiya &
Sasaki (1983, 1985).

The remainder of this paper is organized as follows. In § 2, the experimental facility,
test cases and measurement procedure are detailed. In § 3, the experimental results are
discussed in terms of turbulence statistics as well as the unsteady characteristics of
separated shear layer and flow reversal. Finally, § 4 summarizes the major conclusions
of this research.

2. Experimental set-up

The experiments were conducted in a recirculating open water channel in the Turbulence
and Hydraulic Engineering Laboratory (THEL) at the University of Manitoba. The open
water channel consists of a flow conditioning unit, a test section and a return plenum. The
water flow is driven into the flow conditioning unit using a pump regulated by a 30 kW
variable-speed drive motor before entering the test section. The flow conditioning unit
consists of a perforated plate, a hexagonal honeycomb and mesh screens of different sizes,
followed by a 4.88 : 1 converging section. The side and bottom walls of the test section
are fabricated using Super Abrasion Resistant� transparent acrylic plates of 31.8 mm
thickness, so as to allow optical access from all directions. The interior dimensions of
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the test section are 6.00 m × 0.45m × 0.60 m in the streamwise, vertical and spanwise
directions, respectively. The water flow exiting the test section enters the return plenum,
where it is diverted by a turning vane system to a returning pipe and then goes back to the
flow conditioning unit.

Figure 1 illustrates the side view of the experimental set-up and fields of view of the
cameras of the PIV system, as well as the coordinate system and nomenclatures employed
in the present research. A box (the blue area in the figure) spanning the entire water channel
width was made of acrylic plates. Its streamwise length (L) and vertical height were 1.0 m
and 0.1 m, respectively. This box was fitted with a vertical threaded rod at each corner, and
the threaded rods were fastened by pairs of nuts to two horizontal bars mounted rigidly
over the water channel. The submergence of the box into the free-surface water flow was
adjusted accurately by lowering or raising the threaded rods. The undersurface of the box
was attached to three interchangeable plates (the orange area in the figure) to achieve three
different wall roughness conditions. The three interchangeable plates were a smooth 6 mm
thick acrylic plate, a 6 mm thick acrylic plate with 16-grit sandpaper (see figure 1b) glued
on the undersurface, and a 6 mm thick acrylic plate machined to have staggered cubes
(see figure 1c) on the undersurface. The average height, standard deviation, skewness
and kurtosis of the sandpaper roughness, measured using an SMZ800N optical stereo
microscope, are 1.54 mm, 0.42 mm, 0.63 and 3.08, respectively (Nematollahi & Tachie
2018). The cube roughness elements, on the other hand, were distributed uniformly
with centre-to-centre spacing 6.0 mm, and their side lengths were constant at 3.0 mm
(see figure 1c). As such, the combination of sandpaper and cube roughness test cases
encompasses irregular and regular roughness configurations of drastically different sizes.
The interchangeable plates were painted with non-reflective black paint to minimize the
surface reflection of the laser. For convenience in the discussion, hereinafter, the test cases
with the undersurfaces of smooth acrylic plate, sandpaper and cube roughness are termed
the smooth case, the sandpaper case, and the cube roughness case, respectively, while both
the sandpaper and cube roughness cases are collectively referred to as the rough cases. The
origins of the streamwise (x) and vertical (y) coordinates are defined at the leading edge of
the smooth undersurface or the roughness crest plane of the rough undersurfaces.

The box in figure 1 was adjusted so that its submergence depth (h) was kept at 0.03 m
(i.e. the incoming free surface is at y = 0.03 m) for all three test cases. As such, the
effective aspect ratio of the semi-submerged bluff body (L/h) was 33.3. This aspect ratio
is large enough to ensure permanent flow reattachment onto the undersurface, and to
eliminate any influence of the wake region on the flow separation near the leading edge.
The velocity of incoming free-surface flow (U∞) was 0.48 m s−1, while the kinematic
viscosity of the water (ν) was 10−6 m2 s−1 at the laboratory room temperature (20 ◦C).
The Reynolds number (Reh = U∞h/ν) was 14 400. The turbulence intensity (defined as√

u′u′/U∞) at the entrance of the test section is 1.3 %. The incoming water depth (D) was
maintained at 0.43 m, so that the Froude number (FrD = U∞/

√
gD) was 0.23, and this

ensured that the free-surface wave upstream of the semi-submerged box was negligible.
If the free surface is assumed to act as a free-slip boundary, then the effective body
height equivalent to that subjected to a uniform flow was twice of the submergence depth,
i.e. H = 0.06 m. Thus the equivalent Reynolds number ReH was 28 800, which is close to
26 000 and 30 400, respectively, investigated by Kiya & Sasaki (1983, 1985) and Moore
et al. (2019).

A planar time-resolved particle image velocimetry (TR-PIV) system was used to
measure the velocity field at the channel mid-span beneath the bluff body. The water
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FOV1 FOV2

x

y

U∞ = 0.48 m s–1

D = 0.43 m

h = 0.03 m

L = 1.0 m

0.10 m

(a)

(b) (c)

Figure 1. (a) Schematic of the experimental set-up (not to scale), the employed coordinate system, and fields
of view (FOV1 and FOV2) of two cameras. Photos are shown of the (b) sandpaper and (c) cube roughness
surfaces.

was seeded using 10 μm silver coated hollow glass spheres, whose specific gravity was
1.4. Following Raffel et al. (2007), the slip velocity (Us) and relaxation time (τp) of the
seeding particles are 2.2 × 10−5 m s−1 and 2.2 × 10−6 s, respectively (see Fang & Tachie
2019b). This slip velocity is orders of magnitude smaller than the measured velocity scales.
Following Pope (2000), the smallest time scale in the flow (τη) is estimated according to
τη/τ0 = Re−1/2

h (where τ0 ≡ h/U∞ is the largest time scale in the flow), and its value
is 5.2 × 10−4 s. Therefore, the present Stokes number of seeding particles (Sk = τp/τη)
is 0.0042, which satisfies the recommendation Sk � 0.05 by Samimy & Lele (1991)
for the velocities of seeding particles representing the instantaneous local velocities of
the fluid. A diode-pumped dual-cavity dual-head high-speed Neodymium-doped yttrium
lithium fluoride (Nd:YLF) laser (wavelength 527 nm) was positioned underneath the test
section and shot vertically upwards at the channel mid-span to illuminate the seeding
particles. Both cavities of the laser were fired simultaneously to deliver a total pulse energy
60 mJ pulse−1 at frequency 807 Hz. The particle images were captured by two high-speed
12-bit complementary metal oxide semiconductor (CMOS) cameras fitted with Nikon�
60 mm lenses at 807 Hz. The resolution of the cameras is 2560 pixel × 1600 pixel, and the
pixel pitch of the image sensor is 10 μm. The particle image diameter was approximately
2–4 pixels to avoid the pixel-locking effect (Raffel et al. 2007). As illustrated in figure 1(a),
two cameras were positioned side-by-side to capture the particle images in a large
streamwise-vertical (x–y) plane beneath bluff bodies while maintaining a high-fidelity
spatial resolution. The field of view of each camera was 192 mm and 123 mm in the
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streamwise and vertical directions, respectively, and these two fields of view overlapped
by approximately 15 mm in the streamwise direction.

A commercial software (DaVis version 10) supplied by LaVision Inc. (Michigan, USA)
was used to control the TR-PIV system and acquire 60 000 particle images for each test
case. This software was also employed to calculate the velocity vectors using a multi-pass
cross-correlation algorithm parallelized in a graphics processing unit (GPU). The initial
interrogation area was 128 pixel × 128 pixel with 50 % overlap, and the final interrogation
area was 24 pixel × 24 pixel with 75 % overlap. The resulting vector spacing was 0.45 mm,
so 67 velocity vectors cover one unit of submergence (h). The post-processing of velocity
vectors was performed using in-house Matlab� scripts.

The measurement uncertainty of the present experimental data is assessed using the
framework outlined by Sciacchitano & Wieneke (2016) and Essel, Tachie & Balachandar
(2021). The measurement uncertainty percentages of the streamwise mean velocity (U),
Reynolds normal stress (u′u′ and v′v′) and Reynolds shear stress (u′v′) are, respectively,
estimated as

ξU = Zc

U

√
u′u′

Neff
, (2.1a)

ξuu,vv = Zc

√
2

Neff
, (2.1b)

ξuv = Zc

√
1 + ρ2

uv

Neff − 1
. (2.1c)

In the above equations, ρuv ≡ u′v′/
√

u′u′ × v′v′, Zc = 1.96 and Neff are, respectively, the
correlation coefficient, the confidence coefficient for 95 % confidence, and the effective
number of independent samples. With a time-resolved measurement over time duration
T , Neff is estimated as Neff ≈ T/(2τ), where τ is the integral time scale. Measurement
uncertainties were calculated using (2.1a) at multiple points along the mean shear layers.
The results indicate that the measurement uncertainties of the mean velocity, Reynolds
normal stress and Reynolds shear stress are approximately 2 %, 8 % and 6 %, respectively,
at a 95 % confidence level.

3. Results and discussion

3.1. Turbulence statistics
Figure 2 compares the contours of the streamwise mean velocity (U) among the three
test cases. In the plots, the isopleths of U = 0 and the stream function Ψ = 0, where
Ψ (x, y = Y) ≡ ∫ 0

Y U(x, y) dy, with Y representing the designated vertical location, are
overlaid to facilitate visualization of the mean flow topology. The former encompasses
the region of flow reversal, while the latter marks the mean separating streamline (Castro
& Haque 1987; Mohammed-Taifour & Weiss 2016; Fang & Tachie 2019b). The isopleths of
U = 0 and Ψ = 0 both start at the leading edge ((x, y) = (0, 0)) and intersect with the wall
at the same point. This intersection point is the mean reattachment point beyond which the
mean flow reattaches onto the undersurface, thus its streamwise distance from the leading
edge defines the mean reattachment length Lr. The values of Lr in the smooth, sandpaper
and cube roughness cases are 9.2h, 7.3h and 7.7h (or equivalently, 4.6H, 3.65H and
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+ 1.32
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(a)
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Figure 2. Contours of the streamwise mean velocity (U) for the (a) smooth, (b) sandpaper, and (c) cube
roughness cases. The dashed, dash-dotted and solid isopleths are at U = 0, U = U∞ and Ψ = 0, respectively.
Symbols + and × mark the locations of the maximum and minimum U, respectively, with the corresponding
values written alongside.

3.85H), respectively. The present mean reattachment length (Lr = 4.6H) in the smooth
case is in good agreement with 5.0H, 4.7H and 4.4H, respectively, reported by Kiya &
Sasaki (1983), Djilali & Gartshore (1991) and Moore et al. (2019) for rectangular bluff
bodies subjected to uniform incoming flows. This implies a similarity between the mean
flow beneath a semi-submerged bluff body subjected to negligible free-surface waves, and
that around bluff bodies in unbounded uniform flows.

From figure 2, the mean reattachment lengths in the rough cases are apparently shorter
than that in the smooth case. It is also noted in figure 2 that a distinct mean shear
layer emanating from the leading edge is flanked by regions of elevated streamwise
mean velocity (U > U∞) and mean flow reversal (U < 0). The maximum values of U
(1.31U∞–1.32U∞) are not altered significantly by the wall roughness, but the magnitude
of the maximum mean flow reversal in the rough cases (0.32U∞) is 18 % smaller than that
in the smooth case (0.39U∞).

Figure 3 compares the streamwise variation of the maximum Reynolds stresses in the
vertical direction. In the region upstream of the bluff body, all Reynolds stresses retain
their levels of the incoming free-stream turbulence state. This is a direct indication that
with the present Froude number (0.23), free-surface waves neither alter the incoming
turbulence level nor influence the flow separation beneath the semi-submerged bluff body.
In the region of x/h < 4, the peak values of u′u′ in the sandpaper case are generally
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Figure 3. Streamwise variation of the maximum (a) u′u′, (b) v′v′ and (c) u′v′ in the vertical direction. Every
tenth measurement point is plotted for clarity.

higher than those in the other two cases, but the peak values of v′v′ and u′v′ in all cases
are comparable. Turbulence transition near the leading edge is promoted by sandpaper,
but not by the cube roughness. This underscores the difference between irregular and
regular roughness types in the sandpaper and cube roughness cases. Compared with the
rough cases, the smooth case possesses higher peak values of all three Reynolds stresses
in the region x ∈ [6, 12]. It is also noted in figure 3 that the disparity observed in the
Reynolds stresses for the sandpaper and cube roughness cases is most pronounced in the
u′u′ component for x < 10.

Following Moore et al. (2019), the averaged trajectory of the shear layer (denoted by
YS) is defined as the vertical location of the maxima of the turbulence kinetic energy
E ≡ 1

2(u′u′ + v′v′) (since the spanwise velocity was not measured). As presented in
figure 4(a), the elevation of the mean shear layer away from the wall increases gradually
in the first half of the mean separation bubble, and plateaus downstream of the centre
of the mean separation bubble. This plateau is a manifestation of the trajectory of the
separated shear layer diverging from the separating streamline in the second half of the
mean separation bubble. This pattern is in line with the observations by Kiya & Sasaki
(1983) and Moore et al. (2019). The asymptotic value of YS in the smooth case is in the
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Figure 4. (a) Streamwise variation of the vertical centre of the mean shear layer (YS) (i.e. the peak elevation
of 1

2 (u′u′ + v′v′)). Vertical profiles of (b) U, (c) u′u′, (d) v′v′, and (e) u′v′, are plotted against ( y − YS)/h. In
(a), the vertical lines mark the mean reattachment lengths. In (b–e), the profiles of the first three streamwise
locations use the vertical scale on the right, and the marked two horizontal dashed lines are symmetrical about
y = YS. Not all measurement points are plotted, for clarity.
947 A19-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

66
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.661


Turbulent separations beneath semi-submerged bluff bodies

0

–1

–2

–3
0 1 2 3 4 5 6 7 8 9 1110 12

1.2

1.0

0.8

0.6

0.4

0.2

–0.2

0

0

–0.2

–0.4
0 0.2 0.4

u/U∞

y/h

x/h
Figure 5. Contours of a typical instantaneous streamwise velocity (u) for the smooth case. The dashed and
solid isopleths are at u = 0 and u = U∞, respectively. The inset magnifies the region near the leading edge.

range (1.2 ± 0.1)h, which is in good agreement with values reported by Kiya & Sasaki
(1983) and Moore et al. (2019). It is also observed that the variations of YS in both the
sandpaper and cube roughness cases are almost indistinguishable, which is in line with the
similar mean reattachment length observed for the rough cases in figure 2. For x/h > 4,
the asymptotic values of YS for the smooth and rough cases are different by 0.2h. This
difference (0.2h = 6 mm) is apparently much larger than the roughness heights. The fact
that wall roughness shifts the centre of the shear layer towards the wall by more than the
roughness height is direct evidence that wall roughness significantly affects the turbulence
structures within the separation bubble.

Figures 4(b–e) show the vertical profiles of mean velocity and Reynolds stresses at
different streamwise locations. Note that the vertical coordinates are shifted by YS to
facilitate comparison of flow statistics surrounding the separated shear layers in different
cases. From figure 4(b), the profiles of streamwise mean velocity for all the test cases
collapse well. It is therefore concluded that the streamwise mean velocity in the separated
shear layer is not sensitive to the wall roughness. In contrast to the mean flow, the Reynolds
stresses are susceptible to the wall roughness, as is shown evidently in figures 3 and 4(c–e).
For instance, the peak magnitudes of the Reynolds stresses in the rough cases at x/h = 11.0
are almost 25 % smaller than those in the smooth case.

3.2. Unsteadiness of the separated shear layer
Figure 5 shows a typical example of the instantaneous streamwise velocity (u) field in
the smooth case. Examples for the rough cases are qualitatively similar to figure 5, and
therefore are not shown here for conciseness. The figure shows a distinct instantaneous
shear layer emanating from the leading edge. This shear layer meanders as it evolves
in the downstream direction, reflecting its unsteadiness. In this subsection, the unsteady
characteristics of the separated shear layer and its sensitivity to different wall roughness
conditions are elucidated.

3.2.1. Shear layer interface
In the context of the turbulent boundary layer (TBL), the mean shear is distributed
across the entire boundary layer, but the instantaneous shear layers are concentrated
at discrete wall-normal locations, creating the so-called uniform momentum zones in
between (De Silva, Hutchins & Marusic 2016; De Silva et al. 2017). These instantaneous
shear layers possess a constant streamwise velocity corresponding to local minima in the
probability density function (p.d.f.) of the streamwise velocity (Adrian et al. 2000). The
spatio-temporal and underlying structural mechanism of these instantaneous shear layers
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Figure 6. Probability density functions (p.d.f.s) of u in figure 5 and mean velocity U.

in the TBL have been studied extensively (Saxton-Fox & McKeon 2017; Laskari et al.
2018). As exemplified in figure 5, the instantaneous separated shear layer is apparent from
visual inspection, and deserves a closer quantitative examination. To this end, the p.d.f. of
the instantaneous streamwise velocity field for the same snapshot in figure 5(a) is examined
in figure 6.

From figure 6, the p.d.f. of u exhibits a steep increase as it increases to values larger
than U∞, reflecting the near-uniform velocity in the region far away from the separated
shear layer. On the other hand, the p.d.f. of u possesses a plateau at a low value for u <

U∞. This suggests that primarily, the instantaneous shear layer is confined to the regions
u < U∞. This shear layer is clearly different from the instantaneous internal shear layer
embedded in the TBL. Specifically, the internal shear layer in the TBL features a narrow
thickness on the order of a wall unit (De Silva et al. 2017), and is associated with a single
velocity value corresponding to a local minimum in the p.d.f. of u. The geometry-induced
shear layer in the present study features a thickness of the order of bluff body height, and
therefore corresponds to a low-level plateau in the p.d.f. of u. It is deduced from figure 6
that the instantaneous shear layer is bounded by the isopleth of u = U∞. This deduction
is consistent with the qualitative inspection in figure 5. Moreover, comparing the p.d.f.s
of u and U in figure 6, the steep change in the p.d.f. at U∞ persists in both the mean and
instantaneous flow. This is indicative of the persistence of the shear layer interface defined
by the isopleth of u = U∞. This deduction is reminiscent of the conclusion by Fang &
Tachie (2019a) that the instantaneous shear layer induced by surface-mounted bluff bodies
is bounded by the isopleth of the instantaneous streamwise velocity of the incoming flow
at the bluff body height.

It should be noted that the above analysis is not applicable in the region very close
to the leading edge (say x/h < 0.1). From the inset in figure 5, the isopleth of u = U∞
folds downwards, and does not well bound the shear layer close to the leading edge.
In the following, investigation of the unsteadiness of the shear layer is limited to the
region where x/h > 0.1. In figure 5, the isopleth of u = U∞ occasionally folds back onto
itself to create enclosed ‘islands’ of low or high velocity, consistent with the topological
characteristics of internal shear layer in the TBL (De Silva et al. 2017). As time evolves,
these islands become connected to the long isopleth of u = U∞, while new islands appear.
Therefore, most of these islands are likely representative of a two-dimensional slice of a
three-dimensional isosurface of u = U∞, and should be counted as the shear layer region.
Eventually, the interface bounding the instantaneous separated shear layer is defined as
the outermost envelope of the isopleth of u = U∞. For convenience, this interface is
hereinafter denoted by Ui∞, and the vertical location is described using ye(x, t) which
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Figure 7. Vertical profiles of (a) the p.d.f. of ye, and (b) the conditionally averaged streamwise velocity 〈u〉
across ye, at selected streamwise locations. In (a), the profiles of the first three x/h use the scale on the left,
while the other values use the scale on the right. Every third point is plotted, for clarity.

is a function of streamwise location x and time t. The space–time variation of ye reflects
the unsteady nature of the shear layer.

Following the techniques established for the analyses of interfacial layers in the TBL
(De Silva et al. 2017) and jets (Westerweel et al. 2005), the p.d.f. of ye and the
conditional-averaged streamwise velocity (denoted by 〈u〉) in the vertical neighbourhood
of instantaneous ye at selected streamwise locations are examined. As seen in figure 7(a),
the p.d.f. of ye is skewed towards the locations of ye − YS < 0, suggesting the frequent
occurrence of Ui∞ below the centre of the mean shear layer. The p.d.f. of ye spans
wider vertical ranges at locations further downstream, and remains fairly similar between
different test cases. This suggests that the vertical location of the shear layer varies over
a wider range in the downstream locations. This variation of vertical location of the shear
layer is not affected strongly by the wall roughness. From figure 7(b), the vertical profile
of 〈u〉 is representative of an approximated instantaneous shear layer, and remains similar
for different test cases.

To further demonstrate the dynamic significance of Ui∞ to the separated shear layer, the
possibility of reconstructing the streamwise Reynolds normal stress by a convolution of
the conditionally averaged shear layer 〈u〉( y − ye) with the p.d.f. of ye is explored. This is
expressed as

〈u′u′〉( y) =
∫ 0

−∞
〈u〉2( y − ye) p.d.f.( ye) dye −

[∫ 0

−∞
〈u〉( y − ye) p.d.f.( ye) dye

]2

. (3.1)

Figure 8 compares the reconstructed 〈u′u′〉 with the measured u′u′ for different test cases.
For the streamwise locations of x/h = 0.5 and 1.0, the reconstructed 〈u′u′〉 is in good
agreement with u′u′ except for the near-wall region. Evidently, the reconstruction of (3.1)
only sensitizes vortices near the shear layer interface. The similarity of 〈u′u′〉 and u′u′
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Figure 8. Vertical profiles of 〈u′u′〉 constructed from (3.1) and measured u′u′ for the (a) smooth,
(b) sandpaper, and (c) cube roughness cases. Not all grid points are plotted, for clarity.

for x/h � 1.0 is because the separated shear layer is not saturated with a wide range
of length scales of vortices in the region of early turbulence transition. For x/h � 5, on
the other hand, 〈u′u′〉 agrees well with u′u′ below the peak location of u′u′, but exhibits
noticeable differences from u′u′ between the peak location of u′u′ and the wall. These
differences emphasize the confinement effect of the wall on the development of the shear
layer. For x/h � 8.0, the peak values of 〈u′u′〉 in the rough cases are smaller than those
in the smooth case, which is consistent with the observation from u′u′ in figures 3(a)
and 4(c).

The temporal characteristics of the instantaneous shear layer interface Ui∞ is
investigated further using the frequency spectra of ye at different streamwise locations.
Note that the spectral analysis in the present study is implemented using Welch’s
overlapped window techniques (Welch 1967). The size and overlap of windows of Fourier
transformation are 4.96 s (4000 snapshots) and 0.12 s (100 snapshots), respectively. As
such, the resolved frequencies in the spectral analysis are multiples of 0.0126U∞/h
(0.2018 Hz). For different test cases, as shown in figure 9, the oscillation of Ui∞
downstream of the mean reattachment point is amplified at two distinct frequencies
regardless of wall roughness conditions. These distinct frequencies observed in figure 9 are
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Figure 9. Premultiplied frequency spectra of ye for the (a) smooth, (b) sandpaper, and (c) cube roughness
cases. The horizontal dash-dot-dotted lines mark the characteristic frequencies, while the vertical dash-dotted
and dashed lines mark, respectively, 50 % and 100 % of the mean reattachment length.

Mechanism (figure) Smooth Sandpaper Cube roughness

Outermost bound (figure 9) 0.050∗, 0.089 0.037, 0.075∗ 0.037, 0.063∗
KH instability (figure 10) 3.6 – –
Centre of mean shear layer (figure 11) 0.050∗, 0.089, 0.115 0.025, 0.063∗, 0.089 0.037, 0.094∗
Near-wall u′ (figure 12) 0.050, 0.089∗ 0.085∗ 0.094∗
A(t) in (3.2) (figure 14) 0.025∗ 0.025∗ 0.050∗
The first SPOD modes (figure 15) 0.050∗, 0.089, 0.115 0.063∗, 0.115 0.037, 0.089∗, 0.127

Table 1. Summary of significant Strouhal numbers (Sth) of different parameters/locations in different cases.
Symbol – indicates non-existence, and superscript ∗ marks the dominant Strouhal number.

summarized in table 1 along with other frequencies identified in the subsequent figures to
facilitate comparison. It is interesting to note in figure 9 that for the smooth case, the
significance of Sth = 0.050 is also visible in the first half of the mean separation bubble
(see the local peak of the isopleth around x/h ≈ 1). As for the rough cases, the significant
frequencies identified downstream of the mean separation bubble do not manifest in
the first half of the separation bubble. The underlying structural mechanism of these
observations will be discussed in § 3.4.
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Figure 10. Premultiplied frequency spectrum of the streamwise velocity (φuu) at the streamwise locations
x/h = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 1.0 along the peak locations of E (see figure 4a) for the
(a) smooth, (b) sandpaper, and (c) cube roughness cases. To facilitate visualization, the spectra are vertically
offset by the values indicated on the right-hand side. Vertical dash-dotted lines mark characteristic Sth numbers.

3.2.2. Frequency migration
Figure 10 presents the streamwise variation of frequency spectra of the streamwise
fluctuating velocity (φuu) along the mean shear layer for different cases (see figure 4a).
At the leading edge (x/h = 0), the spectra for all test cases are of low magnitudes and do
not possess any dominant frequency. This is in contrast to the observation by Moore et al.
(2019) that for rectangular cylinders of aspect ratios less than 5, the dominant frequency
associated with the VK vortex shedding in the wake region also manifests at the leading
edge. In the present study, the streamwise length of the bluff body is 33 times its effective
height (submergence depth), so instantaneous flow reattachment over the undersurface
of the bluff body is guaranteed to exclude any influence of wake flow dynamics on the
separated shear layer at the leading edge. Overall, low-intensity white noise at the leading
edge is imposed by the incoming flow condition, and the frequency spectra presented in
figure 10 showcase the development of a separated shear layer subjected to different wall
roughness conditions.

As seen in figure 10(a), slightly downstream of the leading edge at x/h = 0.1, a broad
peak centred around Strouhal number Sth (≡ fh/U∞) 3.60 appears. Further downstream, at
x/h = 0.2, a sharp dominant peak at Sth = 3.60 becomes distinct, and is attributed to the
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KH instability. This is in good agreement with the observation by Kiya & Sasaki (1983)
that a dominant frequency Sth ≈ 3 is induced by roll-up of the shear layer at x/h = 0.2 for
a plate at a similar Reynolds number. In contrast to the present results, Moore et al. (2019)
observed that the KH instability induced by a bluff body of aspect ratio 5 at a similar
Reynolds number manifests as a broader peak of spectra around a similar frequency (Sth ≈
4), but it is closer to the leading edge (at x/h = 0.046). By comparing figures 10(b,c) with
figure 10(a), in the two rough cases, sharp peaks of spectra do not occur near the leading
edge, suggesting the bypass of KH instability.

It is also interesting to note in figure 10(a) that at x/h = 0.2, there exists a
subdominant peak around the first sub-harmonic (Sth = 1.80) of the KH frequency. As
x/h increases from 0.2 to 0.4, the magnitude (measured by f φuu) of the sub-harmonic
at Sth = 1.80 gradually dominates over the fundamental KH frequency, while the second
sub-harmonic (Sth = 0.90) appears and strengthens. The spectral peak associated with
the KH instability ceases to exist at x/h = 0.5. At locations further downstream, the
dominance gradually switches from the first sub-harmonic (Sth = 1.80) to the second
sub-harmonic (Sth = 0.90). At x/h = 1.0, the third sub-harmonic (Sth = 0.45) dominates
while exhibiting a relatively broad peak. Based on the above observations, it is concluded
that downstream of the leading edge in the separated shear layer, the dominant frequency
decreases discretely through higher ranks of sub-harmonics, while the associated peak
becomes broader. This pattern of frequency migration is due to the mechanism of vortex
pairing occurring repeatedly. Specifically, small-scale spanwise vortices initiate because
of the roll-up of the shear layer due to the KH instability around x/h = 0.2. Two adjacent
vortices roll around each other as they are convected downstream, so as to form a single
vortex of twice the size and half the frequency. This process repeats in the downstream
direction leading to higher ranks of sub-harmonics of KH frequency. This repeating vortex
pairing mechanism is well known to dictate the growth of the free shear layer (Winant &
Browand 1974; Ho & Huerre 1984), and is evidently also at play for a separated shear layer.

From figures 10(b) and 10(c), a dominant frequency along with its sub-harmonic
do not emerge until x/h = 0.6 and 0.4 for the sandpaper and cube roughness cases,
respectively. Downstream of these locations, the dominance gradually shifts from the
dominant frequency to its sub-harmonic, similar to the smooth case. This is a clear
indication that the presence of wall roughness interrupts the vortex pairing mechanism
near the leading edge, where the separated shear layer is close to the roughness elements.
It is also emphasized that the migration from high to low frequency in the rough cases is
slower than that in the smooth case. For instance, between x/h = 0.4 and 1.0, the dominant
frequency decreases twofold from Sth ≈ 0.9 to ≈0.5 in the rough cases, but it decreases
fourfold from Sth = 1.80 to 0.45 in the smooth case.

Figure 11 characterizes the variation of f φuu along the mean shear layer over the
entire measurement domain (see figure 4a). In general, high levels of f φuu appear in
the form of horizontally aligned bands. This is attributed to vortices being convected in
the downstream direction while maintaining their characteristic frequencies. As seen in
figure 11, these horizontally aligned bands of f φuu appear at multiple discrete frequencies
at any streamwise location, and the associated frequencies clearly migrate to lower
frequencies in the first half of the mean separation bubble. This suggests the coexistence of
vortex shedding at discrete frequencies through the vortex pairing mechanism exemplified
in figure 10. It is important to note here that Moore et al. (2019) reported a continuous,
as opposed to discrete, migration of dominant frequency from the KH frequency near
the leading edge to the vortex shedding frequency in the wake region behind a bluff
body of aspect ratio 5. This difference with the present result reflects the interruption
of development of KH instability by the VK vortex shedding in the wake region.
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Figure 11. Variation of f φuu along the centre of the mean shear layer for the (a) smooth, (b) sandpaper, and
(c) cube roughness cases. The vertical dash-dotted and dashed lines mark, respectively, 50 % and 100 % of the
mean reattachment length. The horizontal dash-dot-dotted lines mark characteristic frequencies.

It is interesting to see in figure 11 that the migration to lower frequency ceases around
the mid-point of the mean reattachment length. The dominance of multiple frequencies
is maintained in the second half of the separation bubble. The underlying mechanism
is explained as follows. In the first half of the mean separation bubble, the separated
shear layer is relatively thin and gradually deflects away from the wall. As such, the larger
vortices associated with lower frequencies occur through the vortex pairing mechanism.
In the second half of the mean separation bubble, the distance of the separated shear layer
from the wall remains constant (see figure 4a), so further vortex pairing is suppressed by
the wall confinement. Consequently, vortices are shed downstream of the mid-point of the
mean separation bubble while maintaining their characteristic frequencies.

It is shown in figure 11 that successive frequencies do not have to be the sub-harmonic
of the predecessor fundamental frequencies. This suggests the occurrence of pairing
between two vortices at different frequencies. Specifically, the pairing of two vortices at
frequencies St1 and St2 (whose time scales are 1/St1 and 1/St2, respectively) generates a
vortex at frequency 1/(1/St1 + 1/St2) (whose time scale is 1/St1 + 1/St2). For instance,
as seen in figure 11(a) for the smooth case, the significance of frequencies St1 = 0.115,
St2 = 0.089 and St3 = 0.050 is evident. Although the harmonic of St3 at 0.100 is not
discernible, St3 is indeed 1/(1/St1 + 1/St2), suggesting that the vortices at St = 0.050
are generated by the pairing of vortices at St = 0.115 and vortices at St = 0.089. A close
examination of the identified significant frequencies in figures 11(b) and 11(c) indicates
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that the aforementioned vortex pairing mechanism for the smooth case is not valid for the
rough cases. This is not surprising. Since the radius of vortices in the second half of the
mean separation bubble is close to the height of the mean separation bubble, these vortices
interact directly with the wall and therefore are more susceptible to wall roughness. In
accordance with figures 10(b,c) and 11(b,c), the occurrence of vortex pairing in the rough
wall cases is limited to a subrange in the first half of the mean separation bubble. Indeed,
for the vortex pairing to occur, the separated shear layer needs to be sufficiently far away
from the wall, and the vortices need to be sufficiently small to avoid direct interaction with
the wall.

In figure 11(a), the dominance of Sth = 0.050 in the smooth case is apparent. This
frequency is similar to the vortex shedding frequencies (Sth = 0.05 ∼ 0.06) observed
by Kiya & Sasaki (1983) and Moore et al. (2019). From figure 11(b), the dominant
frequency in the sandpaper case is Sth = 0.63, and its dominance does not persist beyond
the mean reattachment point. As for the cube roughness case, the dominance of a particular
frequency is less pronounced than the other two cases, and is at best identified to be
between Sth = 0.094 and Sth = 0.171. This suggests a strong disruption of regular vortex
shedding by the cube roughness. It is also noted in figure 11 that there exists a less
prominent but clearly identifiable frequency (Sth = 0.025 and 0.037 in the sandpaper and
cube roughness cases, respectively), lower than the dominant frequency in the smooth
case. The interruption of vortex shedding/pairing by the wall roughness in the second half
of the separation is responsible for the weaker Reynolds stresses than in the smooth case
in the region of x/h > 5 (see figure 3).

3.3. Unsteadiness of flow separation
Attention is now turned to the unsteady characteristics of flow separation. Figure 12
compares the premultiplied frequency spectra f φuu at y/h = −0.09 for different test
cases. This is inspired by Kiya & Sasaki (1985) who measured the unsteady velocity
at 0.05h away from the wall to investigate the reverse-flow unsteadiness. As seen in
figure 12(a) for the smooth case, the dominance of Sth = 0.089 initiates around the mean
reattachment point and persists in the downstream direction. This dominant frequency
is close to Sth = 0.081 observed by Kiya & Sasaki (1985). In accordance with table 1,
the dominant frequency Sth = 0.050 in the mean shear layer becomes subdominant in
the near-wall region around the mean reattachment point. Kiya & Sasaki (1985) also
noted the disparity between the dominant frequencies in the shear layer and flow reversal
around the mean reattachment point, and interpreted this disparity as ‘dispersion of the
large-scale vortices in strength and position’. In accordance with figures 12(a), 11(a)
and 9(a), the vortex shedding motion at Sth = 0.089 is closer to the wall than that at
Sth = 0.050. As such, the former is more influential in the near-wall region around the
mean reattachment point while the later is more influential in the shear layer interface.
By comparing figures 11(b) and 12(b) for the sandpaper case, the subdominant frequency
Sth = 0.089 in the mean shear layer becomes dominant in the near-wall region, whereas
the dominance of Sth = 0.063 observed in the mean shear layer is discernible in the
near-wall region. As for the cube roughness case, based on figures 11(c) and 12(c),
the dominance of Sth = 0.094 persists in the mean shear layer and in the near-wall
region.

It is also worthwhile comparing the results in figure 12 with Cimarelli et al. (2018) on
a DNS study of flow separation around a bluff body with aspect ratio 5 at a Reynolds
number (Reh = 1500 based on half of body height) one-tenth of the present study.
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Figure 12. Streamwise variation of f φuu at y/h = −0.09 for the (a) smooth, (b) sandpaper, and (c) cube
roughness cases. The vertical dash-dotted and dashed lines mark, respectively, 50 % and 100 % of the mean
reattachment length. The horizontal dash-dot-dotted lines mark characteristic frequencies.

Cimarelli et al. (2018) examined the variation of dominant time scales (reciprocal of
frequencies) along a near-wall mean streamline traced back near the mean reattachment
point. The near-wall mean streamline of the present study is at a constant vertical elevation
except for the regions close to the separating and reattaching points. This allows a direct
comparison with the statistics along near-wall mean streamlines in Cimarelli et al. (2018).
Specifically, Cimarelli et al. (2018) showed that the time scale in the near-wall region
of the second half of the mean separation bubble is similar to that in the shear layer,
which is consistent with the present observations from figures 11(a) and 12(a). Cimarelli
et al. (2018) also observed that as the separating point is approached along the near-wall
mean streamline, the time scale gradually increases in the first half of the mean separation
bubble. This is in sharp contrast to the present results. As seen in figure 12, regardless of
the wall roughness condition, the dominant frequencies exhibit an abrupt change near the
middle point of the mean reattachment length. This disparity with Cimarelli et al. (2018)
is due to the differences in Reynolds number and aspect ratio of bluff bodies.

In Kiya & Sasaki (1983) and Moore et al. (2019), the integral time scales from their
pointwise measurements at various locations of the flow separation bubble were analysed.
In the present study, whole-field time-resolved velocity data are exploited to investigate the
time scales of the entire separation bubble. Here, the integral time scale (τ ) is calculated
by integrating the temporal autocorrelation of u′ from the time displacement of zero to the
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Figure 13. Contours of the integral time scales τ for the (a) smooth, (b) sandpaper, and (c) cube roughness
cases.

point associated with the first zero correlation, and the results are presented in figure 13.
Outside the mean separation bubble (see the lower left corners of the plots), the high values
of integral time scales are associated with incoming turbulence, and are not of particular
importance. It is, however, worth noting that along the mean separated shear layer, the
values of the integral time scale generally increase in the downstream direction, and are of
the order of h/U∞ near the mean reattachment point. These are similar to the observations
made by Kiya & Sasaki (1983) and Moore et al. (2019). In the near-wall region, on the
other hand, the values of integral time scale tend to decrease in the downstream direction.
In particular, there exists a distinct region of elevated integral time scale in the first half
of the mean reverse flow area, where the streamwise Reynolds normal stress, u′u′, is also
significant (see figure 4b). These patterns of integral time scale in the near-wall region are
persistent irrespective of the wall roughness condition. It is noted that the peak levels of
the integral time scale in the first half of the mean reverse flow area for the sandpaper case
are lower than those for the other two cases.

The observations from figures 12 and 13 suggest the existence of low-frequency motion
residing exclusively in the first half of the mean separation bubble. This is reminiscent
of the low-frequency flapping motion commonly observed in turbulent separation bubbles
(Eaton & Johnston 1982; Kiya & Sasaki 1983; Cherry et al. 1984; Tafti & Vanka 1991;
Cimarelli et al. 2018). Kiya & Sasaki (1983, 1985) noted the existence of a peak frequency
between Sth = 0.012 and Sth = 0.02 at x/Lr = 0.2. Kiya & Sasaki (1985) presented the
conditional-averaged streamwise velocity based on the surface pressure at x/Lr = 0.2,
and observed that this low-frequency pressure is associated with vertical flapping (hence
the term ‘flapping motion’) of the shear layer along with the thickening/thinning of flow
reversal. Prompted by the results from figure 13 and results from Kiya & Sasaki (1983,
1985), the frequency spectra of the reverse flow area in the first half of the mean separation
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bubble are further examined, and expressed as

A(t) =
∫ 0

−∞

∫ 0.5Lr

0
H [u(x, y, t)] dx dy. (3.2)

Here, H [u(x, y, t)] is 0 and 1 for positive- and negative-valued u(x, y, t), respectively. Note
that the integral range of x is between 0 and 0.5Lr. It is noted that the above equation with
an integral range of x over the entire measurement domain has also been evaluated, and
the results are not as meaningful as those evaluated within 0 � x � 0.5Lr.

Figure 14 compares the premultiplied frequency spectra of A(t) for different test cases.
The dominant frequency at Sth = 0.025 is evident for the smooth case. This frequency is
close to the frequency of flapping motion of separation bubbles reported commonly in the
literature (Eaton & Johnston 1982; Kiya & Sasaki 1983; Cherry et al. 1984; Tafti & Vanka
1991; Cimarelli et al. 2018). It is therefore concluded that the reverse flow area in the
first half of the mean separation bubble exhibits a low-frequency sequence of enlargement
and shrinkage. Cimarelli et al. (2018) also argued that the low-frequency flapping motion
is ‘strictly related to the behaviour of the secondary vortex’, which occurs in the first
half of the primary mean separation bubble. This confinement of low-frequency flapping
motion to the first half of the mean separation bubble marks a significant difference
between the flapping motions of separation bubbles induced by bluff bodies in uniform
flow and those induced by surface-mounted bluff bodies subjected to incoming TBL
investigated by Pearson et al. (2013), Fang & Tachie (2019b, 2020) and Fang et al.
(2021). For instance, Fang et al. (2021) reported that the reverse flow area of the entire
separation bubble over a forward-facing step (FFS) in a turbulent channel flow experiences
quasi-periodic expansion/contraction at multiple frequencies. These frequencies coincide
with the fundamental and harmonic frequencies of incoming hairpin structures, but are
significantly different from the typical frequencies of flapping motion due to development
of separation shear layers (Eaton & Johnston 1982; Kiya & Sasaki 1983; Cherry et al. 1984;
Tafti & Vanka 1991; Cimarelli et al. 2018). Fang & Tachie (2019b) and Fang et al. (2022)
demonstrated that the dominant frequencies of reverse flow areas reflect the interaction
of incoming large-scale motion (Adrian et al. 2000) and hairpin structures with the FFS.
For example, Fang et al. (2022) showed that as a hairpin structure is leaning over the
step, it induces a pair of vertical counter-rotating vortices on the frontal surface, while an
opposite-signed pair of counter-rotating vortices forms near the wall over the step. As a
consequence, an enlarged reverse flow area upstream of the step is typically associated
with a reduced reverse flow area over the step. In the present study, however, the incoming
flow is of low turbulence intensity, and turbulence transition occurs only downstream of
the leading edge. As such, the flapping motion of flow separation reflects the interaction of
vortical structures originating in the shear layer with flow reversal, which will be clarified
in the next subsection. It is worth noting in figure 14 that the dominant frequency of reverse
flow area in the first half of the mean separation bubble for the sandpaper case is the same
(Sth = 0.025) as that in the smooth case, whereas that in the cube roughness case is at a
relatively higher value, i.e. Sth = 0.050.

3.4. Spectral proper orthogonal decomposition analysis
Thus far, it has been demonstrated that the incoming free-surface flow is effectively a
free-slip boundary, so the present smooth case exhibits many similarities with the turbulent
separations induced by a bluff body exposed to incoming uniform flows (Kiya & Sasaki
1983, 1985). To identify the dominant frequencies along with their associated vortical
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Figure 14. Premultiplied frequency spectra of reverse flow area (f ΦA) in the first half of the mean
reattachment length.

structures, Kiya & Sasaki (1983, 1985) used statistical techniques such as conditional
average, frequency filtering and auto/cross-correlation to analyse pointwise measurement
data of velocity and wall pressure. In this subsection, an investigation of both the
spatial and temporal characteristics of the pertinent vortical structures is conducted to
exploit fully the time-resolved whole-field measurements using spectral proper orthogonal
decomposition (SPOD) (Towne, Schmidt & Colonius 2018).

In the framework of SPOD, the fluctuating velocity field is decomposed into different
modes at different frequencies as follows:

u′(X , t) =
∞∑

j=1

ûj(X ) exp(i2πfjt) + c.c. (3.3a)

=
∞∑

j=1

M∑
k=1

a(k)
j Φ

(k)
j (X ) exp(i2πfjt) + c.c., (3.3b)

where i ≡ √−1 and c.c. means the complex conjugate counterpart. Here, (3.3a) is the
Fourier transform of the velocity field exploiting the homogeneity in time. In practice,
the Fourier transform is performed employing Welch’s overlapped window technique
(Welch 1967), allowing multiple realizations for ensemble average. In (3.3b), the field
of the Fourier-transformed coefficient for the jth frequency ûj(X ) is further decomposed
into POD modes using singular value decomposition (SVD), in analogy to the space-only
POD (see Meyer, Pedersen & Özcan 2007; Fang & Tachie 2019b). In (3.3b), M = 200 is
the number of POD modes, which is determined by the number of windows of the Fourier
transformation. Additionally, Φ

(k)
j (X ) represents the kth POD mode for the jth frequency,

and its corresponding coefficient is denoted by a(k)
j . The POD modes are orthonormal to

each other, i.e. Φ
( p)
j (X )[Φ(q)

j (X )]T = δpq (where superscript T is the complex conjugate

transpose, and the summation convention is not implied), so λ(k)j ≡ |a(k)
j |2 measures the
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contribution of Φ
(k)
j (X ) to the integration of in-plane turbulence kinetic energy (E) over

the analysed area. The rank of POD mode is thus arranged in descending order according
to its energy λ(k)j . In essence, each SPOD mode represents a spatial structure varying over
a designated temporal period (i.e. reciprocal of the corresponding frequency) described by

Ξ
(k)
j (X , α) ≡ Φ

(k)
j (X ) exp(i2πfjt) + c.c., (3.4)

where α ≡ 2πfjt defines the phase angle.
We perform SPOD for the entire measurement area for all three test cases. Figure 15

compares the premultiplied frequency spectra of the first two SPOD modes. In general,
for low frequencies (say Sth < 0.2), the energies held by the first modes are much higher
than those by the second modes. This emphasizes the coherency of turbulent motions (or
‘low-rank behaviour’ as termed by Schmidt et al. 2018) at these low frequencies. In view of
this, attention is limited to the first modes in the subsequent analyses. As mentioned earlier,
the significant frequencies from the preceding discussions are summarized in table 1. As
seen in figure 15(a) and table 1 for the smooth case, three dominant frequencies of similar
energy levels are noted (i.e. Sth = 0.050, 0.089 and 0.115). These three frequencies have
been identified using the velocity spectra in the mean shear layer, while the first two
frequencies (i.e. Sth = 0.050 and 0.089) have also been identified in the region close to
the mean reattachment point and in the instantaneous shear layer interface. As for the two
rough cases, the dominant frequencies of the first SPOD modes do not always manifest in
the aforementioned localized indicators. This suggests that either strong vortical structures
do not necessarily exert strong influence everywhere, or some weak vortical structures are
in fact locally dominant. The latter is exactly the situation with the flapping motion in the
first half of the mean separation bubble, since in none of the cases does SPOD identify
the low frequency corresponding to the flapping motion. It is also important to note from
table 1 and figure 12 that the dominant frequencies close to the mean reattachment point in
the near-wall region (at y/h = −0.09) for different test cases are fairly close to each other
(Sth ≈ 0.09). Therefore, the vortex shedding motion at a frequency higher than Sth ≈ 0.09
is detached from the wall, whereas that at a frequency lower than Sth ≈ 0.09 is touching
the wall.

Figure 16 compares the first POD modes at the frequencies Sth = 0.115, 0.115 and
0.127 for the smooth, sandpaper and cube roughness cases, respectively. These plots are
representative of significant frequencies higher than Sth ≈ 0.09 identified in figure 15 for
different cases, and are used to examine the vortical structures that are detached from the
wall. Figure 16 shows Ξ (see (3.4)) at an arbitrary phase angle α, while supplementary
movie 1 available at https://doi.org/10.1017/jfm.2022.661 shows the complete period of
these SPOD modes, with α varying from 0 to 2π. In general, these modes exhibit
consecutive slanted patches of alternating positive and negative streamwise fluctuating
velocity. The inclination angles of these patches are about 45◦ regardless of the wall
roughness conditions. This angle (45◦) is the same as the angle of vortical structures
conditioned on the wall pressure at the mean reattachment point observed by Kiya &
Sasaki (1983, 1985). Within the streamwise range of the mean separation bubble, each
slanted patch possesses two local peaks that are well separated by the isopleth of U = 0,
and the upper peak is stacked over the lower peak of the adjacent downstream patch. As
seen in supplementary movie 1 for figure 16, a train of vortices moves in the downstream
direction in the close vicinity of the isopleth of U = U∞, and is attributed to the vortex
shedding motion that originated in the separated shear layer. (An animation of the first
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Figure 15. Premultiplied frequency spectra of the first and second SPOD modes (fλ(1) and fλ(2), respectively)
for the (a) smooth, (b) sandpaper, and (c) cube roughness cases. The vertical dash-dotted lines mark
characteristic frequencies of the first mode. The vertical axes use arbitrary scales.

SPOD mode at Sth = 3.6 for the smooth case is also supplied as supplementary movie 2;
it signifies the vortical structures associated with the KH instability.)

In figure 16, two opposite-signed vortices (marked as A1 and A2) are centred on
the isopleth of U = 0, while the vortex B1 is centred on the isopleth of U = U∞.
(For clarity, vortices centred on the isopleths of U = 0 and U = U∞ are named as Ai
and Bi, respectively, where subscript i indicates the order of appearance in discussion.)
Vortex B1 is the first vortex shed in the separated shear layer at this frequency. The
onset of each shed vortex goes through the following process. Vortices A1 and B1 are
counter-rotating, consequently strong mode velocities are induced in between. This strong
mode velocity also forms as an upstream part of vortex A2. As the phase angle increases,
vortices A2 and B1 are convected downstream while growing in size and maintaining
their relative streamwise locations. Downstream of the mean reattachment point, however,
only vortex B1 (and its successors) remains. Meanwhile, alternating-signed vortices (see
A3 and A4 in supplementary movie 1) appear along the frontal half of the isopleth of
U = 0. As vortex A1 is convected to beyond the mid-point of the mean reattachment
length, vortex B2 appears. The above process repeats itself except that the newly formed
vortices are of opposite signs with their predecessors at the same locations. This process
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Figure 16. The first POD mode at (a) Sth = 0.115 for the smooth case, (b) Sth = 0.115 for the sandpaper
case, and (c) Sth = 0.127 for the cube roughness case, at an arbitrary phase angle. The dashed and dash-dotted
isopleths are at U = 0 and U = U∞, respectively. Blue and red indicate negative and positive streamwise
velocity, respectively. Dashed ellipses mark characteristic vortices. An animated version is also provided as
supplementary movie 1.

clearly demonstrates that the vortical structures encompassing the flow reversal are linked
dynamically to the vortex shedding in the separated shear layer. By multiplying the
wavelength with the corresponding mode frequency, the pertinent convective velocity of
the vortex shedding shown in figure 16 is estimated to be approximately 0.6U∞, which is
close to the convective velocity of vortex shedding (0.5U∞) reported by Kiya & Sasaki
(1983, 1985).

Figure 17 along with supplementary movie 3 examines the first POD modes at
Sth = 0.089 for the three cases. Similar to figure 16, figure 17 reveals that the similar
evolution process of alternating-signed vortices moving along the isopleths of U = 0 and
U = U∞. This demonstrates that multiple vortex shedding motions at different frequencies
are nested with the vortex cores aligned along the isopleth of U = U∞ in the separated
shear layer. This conclusion is also in line with the deduction from § 3.2.1 that the
instantaneous shear layer is bounded primarily by the isopleth of u = U∞. By comparing
figures 16 and 17 along with supplementary movies 1 and 3, the variations of the vortical
structures at lower frequencies are summarized as follows. The interaction of vortices Ai
and Bi occurs in the more downstream locations, while the sizes of all visible vortices
downstream of the mean reattachment point are larger. The elevated mode velocity of the
vortices is closer to the wall. This explains why the dominant frequencies of Sth ≈ 0.09 at
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Figure 17. The first POD mode at (a) Sth = 0.089 for the smooth case, (b) Sth = 0.089 for the sandpaper
case, and (c) Sth = 0.089 for the cube roughness case, at an arbitrary phase angle. The dashed and dash-dotted
isopleths are at U = 0 and U = U∞, respectively. Blue and red indicate negative and positive streamwise
velocity, respectively. Dashed ellipses mark characteristic vortices. See also supplementary movie 3.

y/h = −0.09 manifest near the mean reattachment point for all test cases (see figure 12).
Additionally, strong mode velocity occurs between the isopleths of U = 0 and U = U∞,
while new vortices (see A3 and A4 in supplementary movies 1 and 3) appear near the
leading edge. The vortices Ai near flow reversal in the cube roughness case are closer to the
wall than those in the other two cases. This is attributed to the distortion of the near-wall
side of the vortex by the wall roughness. The wavelength of vortex shedding motion in
the second half of the mean separation bubble is approximately 6h for all test cases, and
the pertinent convective velocity is estimated to be 0.5U∞. The vortices downstream of
the mean reattachment point are deformed by the wall and exhibit longer characteristic
wavelength than those in the second half of the mean separation bubble.

Figure 18 compares the first SPOD modes at the only significant frequencies lower
than St = 0.089 in different test cases (see figure 15). As seen in figure 18(a) for the
smooth case, the first vortex in the separated shear layer (near the isopleth of U =
U∞) appears near the mean reattachment length. On the other hand, vortices along the
isopleth of U = 0 occur with larger sizes and further downstream locations than those in
figures 16 and 17. The supplementary movie (4) for figure 18(a) shows that as the phase
angle increases, vortex A2 approaches the mean reattachment point, and its vortex core
becomes discernible while a vortex appears around x/h = 7 on the isopleth of U = U∞.
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Figure 18. The first POD mode at (a) Sth = 0.050 for the smooth case, (b) Sth = 0.063 for the sandpaper
case, and (c) Sth = 0.037 for the cube roughness case, at an arbitrary phase angle. The dashed and dash-dotted
isopleths are at U = 0 and U = U∞, respectively. Blue and red indicate negative and positive streamwise
velocity, respectively. Dashed ellipses mark characteristic vortices. See also supplementary movie 4.

Meanwhile, vortex A2 grows larger, and a pair of counter-rotating vortices (A2 and B1)
appears in the second half of the mean separation bubble. This process emphasizes that a
vortex in the separated shear layer is always accompanied with an opposite-signed vortex
in the area of mean flow reversal.

By comparing figures 18(b,c) with figure 18(a), it is evident that wall roughness exerts
significant influence on the vortical structures at these low frequencies. In both rough
cases, the pattern of a pair of counter-rotating vortices, one on the isopleth of U = U∞,
and the other near the wall, are still visible. In the sandpaper case, vortex A1 near the
leading edge is inclined at a noticeable angle (see the dash-dot-dotted line in figure 18b)
with the isopleth of U = 0, whereas that in the smooth case is aligned (measured by the
interface where the streamwise mode velocity changes sign) tangential with the isopleth of
U = 0. The orientation of vortex A1 in the smooth case induces a near-wall area of elevated
streamwise velocity that extends parallel with the wall, so that this lower part of the vortex
is directly exposed to wall resistance. The orientation of vortex A1 in the sandpaper, on
the other hand, helps to move the location of elevated streamwise velocity away from the
rough wall, thereby minimizing the contact length. This reduces the distortion of the vortex
by wall roughness, so that the structure presented in figure 18(b) for the sandpaper case is
survived. As seen in figure 18(c) and supplementary movie 4 for the cube roughness case,
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vortex Ai is barely convected downstream and is destroyed abruptly, while the patch of
negative/positive streamwise mode velocity downstream of it grows larger.

The results shown in figures 16, 17 and 18 can also provide some clarification to the
well-recognized feedback influence of vortex shedding in flow separations. As commented
by Bradshaw & Wong (1972): ‘A key feature of the flow is found to be the splitting
of the shear layer at reattachment, where part of the flow is deflected upstream into the
recirculating flow region to supply the entrainment; the part of the flow that continues
downstream suffers a pronounced decrease in eddy length scale, evidently because the
larger eddies are torn in two’. A similar idea was adopted by Cimarelli et al. (2018), where
they further concluded that the upstream convection of structures by the mean flow reversal
contributes to a disturbance deflected upstream near the separating point. The results in
figures 16, 17 and 18 suggest that the feedback influence of vortex shedding does exist,
but it does not require any vortical structures to be convected upstream. In figure 16, the
mode velocities flanked by vortices A1 and B1 are amplified, while vortex A1 is convected
downstream. In figures 17 and 18(a,b), vortex A1 further induces another vortex in its
upstream location in the mean flow reversal area, and generates elevated mode velocity
in the channel flanked by the isopleths of U = 0 and U = U∞. As such, the process of
vortex shedding in the separated shear layer is accompanied with patch(es) of intensified
fluctuating velocities flanked by the isopleths of U = 0 and U = U∞ upstream of it. The
patch(es) is(are) perhaps what Bradshaw & Wong (1972) referred to as ‘part of the flow is
deflected upstream’. The patches indeed ‘supply the entrainment’ due to the strong mode
velocities deflected towards the flow separation at the interfaces.

The aforementioned feedback influence of vortex shedding is more significant for lower
frequencies (especially Sth < 0.09) and is sensitive to the wall roughness condition. From
figure 9, it is seen that the vortex shedding motion at the lower frequency (Sth = 0.050) in
the smooth case exerts influence on the shear layer interface in more upstream locations
than that at the higher frequency (Sth = 0.089). In contrast, the vortex shedding motions
at lower frequencies in the rough cases do not manifest in the first half of the mean
separation bubble. This is because the vortices near the mean flow reversal area are
destroyed by the wall roughness, so that the feedback influence of vortex shedding is
interrupted.

To investigate the underlying mechanism of flapping motion, figure 19 and
supplementary movie 5 present the first SPOD mode at the dominant frequency of reverse
flow areas in the first half of the mean separation bubble for different cases (figure 14).
The flapping motion represents a low-frequency large-scale structure encompassing the
entire separation bubble. This structure is relatively weak compared to the vortex shedding
motions in the separated shear layer, thus its frequency does not manifest as local peaks
in the SPOD spectra (figure 15). However, in the first half of the mean separation bubble,
where the turbulence intensity induced by the vortex shedding motions is relatively weak,
this large-scale structure, although weak, is influential and manifests as a low-frequency
oscillation of reverse flow areas (figure 14). From the supplementary movie (5) for
figure 19, for all test cases, a vortex appears in the area of mean flow reversal, and is
subsequently deflected away from the mean separation bubble downstream of the mean
reattachment point. The flapping motion of flow separation thus reflects the alteration of
reverse flow area by the accompanied fluctuating velocity of vortices. This analysis is
consistent with the deduction by Kiya & Sasaki (1983) that the low-frequency flapping
motion leads to an abrupt shedding of an extremely large vortex from flow separation. A
similar conclusion was made by Hillier & Cherry (1981), Tafti & Vanka (1991) and Yang
& Voke (2001).
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Figure 19. The first POD mode at (a) Sth = 0.025 for the smooth case, (b) Sth = 0.025 for the sandpaper
case, and (c) Sth = 0.050 for the cube roughness case, at an arbitrary phase angle. The dashed and dash-dotted
isopleths are at U = 0 and U = U∞, respectively. Blue and red indicate negative and positive streamwise
velocity, respectively. See also supplementary movie 5.

4. Summary and conclusions

The spatio-temporal characteristics of flow separations beneath a semi-submerged bluff
body with varying undersurface roughness conditions are studied using time-resolved
particle image velocimetry. Two different wall roughness conditions, consisting of
sandpaper and cube roughness as well as a reference smooth wall, are examined. The
Reynolds number based on the free-stream velocity and submergence depth is 14 400.
This Reynolds number is close to those based on half body height examined by Kiya &
Sasaki (1983, 1985) and Moore et al. (2019) for bluff bodies subjected to incoming uniform
flows. The free-stream turbulence intensity is about 1.3 %, and the Froude number is 0.23.
As such, the free surface is free of waves, and is analogous to the centreline symmetry
plane of a bluff body immersed in uniform flows.

Beneath the bluff bodies, the mean flow separates at the leading edge and reattaches
on the undersurface, forming a mean recirculation bubble. When properly scaled, the
mean reattachment length in the smooth case is similar to values reported for bluff bodies
immersed in uniform flows at comparable Reynolds numbers. Wall roughness reduces
the mean reattachment length and the maximum magnitude of mean flow reversal by
approximately 16–20 % and 18 %, respectively. Wall roughness also reduces the Reynolds
stresses in the second half of the mean separation bubble. The instantaneous shear layer is
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primarily confined by the isopleth of u = U∞. The convolution of the probability density
function of this isopleth and the conditional-averaged streamwise velocity in the vertical
neighbourhood of this isopleth gives close approximation of the total streamwise Reynolds
normal stress.

Near the leading edge, the Kelvin–Helmholtz instability occurs at Sth = 3.6 in the
smooth case, but is bypassed in the rough cases. Upstream of the mid-point of mean
reattachment length, the dominant frequencies in the separated shear layer migrate from
high to low values in a discrete manner through the vortex pairing mechanism, which is at
variance with the continuous spectra migration reported by Moore et al. (2019). In turn,
multiple vortex shedding motions at different frequencies are nested along the isopleth of
U = U∞. Each vortex shedding motion initiates as an interaction between vortices centred
on the isopleths of U = 0 and U = U∞. The vortex shedding motions at Sth > 0.090 are
detached from the wall, thus are not affected significantly by the wall roughness conditions.
The vortex shedding motions at Sth < 0.090, on the other hand, interact directly with the
wall, and are susceptible to wall roughness conditions. In particular, in the smooth case, the
vortex shedding motion at Sth < 0.090 generates a strong flux of streamwise fluctuating
velocity channelled between the isopleths of U = 0 and U = U∞ near the leading edge.
This channelled fluctuating velocity near the leading edge becomes stronger as the shed
vortices are convected downstream along the isopleth of U = U∞. This creates an illusion
that the influence of vortex shedding motion in the downstream location is fed back to the
upstream location, which has been conjectured previously by Bradshaw & Wong (1972)
and Kiya & Sasaki (1985). This feedback influence is disrupted by the wall roughness.

There exists a low-frequency structure that imposes negative/positive streamwise
fluctuating velocity over the entire mean separation bubble. This structure modulates the
reverse flow area, creating a flapping motion of separated shear layer. The frequency of
flapping motion is identified as the dominant frequency of reverse flow area in the first half
of the mean separation bubble. The flapping motions in the smooth and sandpaper cases
are at a similar frequency Sth = 0.025, but lower than Sth = 0.050 in the cube roughness
case. During the switching of negative and positive streamwise fluctuating velocity at this
low frequency, a vortex appears suddenly around the mean reattachment point, and then
moves quickly towards a downstream direction away from the wall before disappearing
outside the isopleth of U = U∞.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.661.
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