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Abstract

Nutritional requirements and responses of all organisms are estimated using various models representing the response to different dietary
levels of the nutrient in question. To help nutritionists design experiments for estimating responses and requirements, we developed a
simulation workbook using Microsoft Excel. The objective of the present study was to demonstrate the influence of different numbers of
nutrient levels, ranges of nutrient levels and replications per nutrient level on the estimates of requirements based on common nutritional
response models. The user provides estimates of the shape of the response curve, requirements and other parameters and observation to
observation variation. The Excel workbook then produces 1-1000 randomly simulated responses based on the given response curve and
estimates the standard errors of the requirement (and other parameters) from different models as an indication of the expected power of the
experiment. Interpretations are based on the assumption that the smaller the standard error of the requirement, the more powerful the
experiment. The user can see the potential effects of using one or more subjects, different nutrient levels, etc., on the expected outcome of
future experiments. From a theoretical perspective, each organism should have some enzyme-catalysed reaction whose rate is limited by the
availability of some limiting nutrient. The response to the limiting nutrient should therefore be similar to enzyme kinetics. In conclusion, the
workbook eliminates some of the guesswork involved in designing experiments and determining the minimum number of subjects needed to
achieve desired outcomes.
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clotting time v. vitamin K in chicks'”, whole body protein 2.
sulphur-containing amino acids in pigs”™, cataracts . histidine
© and energy metabolism v. arginine'” in salmon diets,

The concept of nutrient requirements is central to the field of
nutrition. Nutritional response kinetics refers to the basic shape

of the curve describing the relationship between nutrient input levels

levels (concentration or intake) and responses (growth, effi-
ciency, metabolism, lactation, egg production, etc.). The parti-
cular choice of the mathematical response model to describe
nutritional kinetics is, therefore, very important to nutritionists
who need to estimate requirements of any organism. While
some nutritionists consider that there should be a smooth
transition from the ascending to the plateau portions of the
response"™ | the practical approaches are often to use multiple
range tests, polynomials or the ‘broken-line’ spline model, to
estimate the requirements for maximum performance, effi-
ciency of nutrient utilisation, etc.“™®. Just a very few examples
of response models that have been described in this manner are
weight gain v. nitrogen intake and isoleucine retention v. dietary
casein level in rats, bone ash v. vitamin D level and blood

and the protein requirements of healthy pregnant women®. In
human nutrition, the practice has been to relate requirements or
recommended allowances to clinical status, growth and body
fluid composition. In agricultural animals and fish, a balance
must be struck between feed costs and time to reach market
weights and carcass composition”. In crop production, a bal-
ance can be found using kinetic response models to maximise
the difference between crop value and fertiliser costs.

To help nutritionists design more efficient nutritional
experiments, we developed an Excel-based simulation pro-
gram. The program, called the Nutritional Response Determi-
nation Optimization workbook (NuURDO.xls), simulates a series
of experimental responses around a pre-selected ‘true’ model,
which can be then used to estimate parameters and

Abbreviations: BLL, broken-line spline model with linear ascending segment or broken-line linear model; BLQ, broken-line spline model with quadratic
ascending segment or broken-line quadratic model; NuRDO.xls, Nutritional Response Determination Optimization workbook; QP; quadratic regression; RC,

rate constant; SK, saturation kinetics model.
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requirements. In particular, NuRDO can be used to simulate
responses based on quadratic polynomials (QP, y=by+ b;x+
b,x%), broken-line spline models with either linear (BLL,
y=maximum if x>requirement, maximum+rate constantX
(requirement-x) if x<requirement) or quadratic (BLQ,
y=maximum if x>requirement, maximum-+rate constantX
(requirement—x)2 if x<requirement) ascending segments, or
the saturation kinetics (SK, yp=(interceptXrate constant+
maximum X 28¢5 e /rate: constant + 8¢ ey model ™
with parameters input by the user (Table 1; Fig. 1). For all
models, y=response variable, x = nutrient level, b, = intercept,
b, and b, =regression coefficients, while other variables are
parameters.

NuRDO can be used to evaluate the effects of experimental
design choices on the expected confidence in requirements
and/or other parameter estimates. The objectives of the studies
reported here were to determine how standard errors of the
estimates of nutritional requirements are affected by (1) the
number of simulated experiments; (2) the number of nutrient
levels and replicates (reps) per level; (3) the range of nutrient
levels above and below the actual requirement; and (4) the
variability of simulated responses (CV) and the shape of the
‘true’ response model (rate constant or RC).

The workbook should be most helpful in planning experi-
ments to maximise the efficiency of resource use and to justify
the number of experimental subjects required to achieve
desired confidence in conclusions from experiments.

Methods

NuRDO is implemented as a Microsoft Excel workbook that
allows the user to design a nutritional requirement experiment
and simulate its outcomes (http://www.poultry.uga.edu/extension/
PoultryNutrition.htm). First, the user selects the desired number
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Fig. 1. Example of Nutritional Response Determination Optimization (NuRDO)
simulation of data from an experiment with eight nutrient levels between 5 and 15
with a maximum response of 100 and a rate constant of —10. The models fitted are
the quadratic polynomial (QP, y=by+ byx+ box?), broken-line spline models with
either linear (BLL, y=maximum if x> requirement, maximum+rate constantx
(requirement—x) if x<requirement) or quadratic (BLQ, y=maximum if x>
requirement, maximum+rate constant x (requirement—x)? if x<requirement)
ascending segments and the saturation kinetics (SK (intercept x rate constant+
maximum x Xnete o rate constant + X< °¥€Y) - For all models, y=response
variable, x=nutrient level, by =intercept, b; and b, =regression coefficients, other
variables are parameters. O, Simulation; , BLL; , BLQ; , QP;
, SK.

of levels, replicates and the range of inputs. The workbook
automatically generates a uniformly spaced grid of input levels.
However, the generated levels can be adjusted, for example to
cluster them around a suspected inflection point of the BLL or BLQ
model. The user then selects the ‘true’ model from which the
responses are simulated and calculates the corresponding model
parameters. The available options are BLL, BLQ, QP and SK
functional forms. Lastly, the user specifies the CV of simulated
responses and the number of experiments to simulate. The
workbook then generates a series of responses around the true
model (with the random errors drawn from the normal distribu-
tion), fits up to four selected models (BLL, BLQ, QP and/or SK),
and calculates and outputs the estimated parameters along with
their standard errors and 95% CI. The outputs are stored in the
workbook and can be used for subsequent analysis.

st were calculated as square roots of the diagonal elements

of the matriix: &%[Z'(P)Z(b)]", where Z(b):%’;m ;
~2_ =/ (xB)] =/ (x.p)] : ; ; b
6°= =R AR f(x,B) is the non-linear function para-

meters of which was estimated, x and y are the inputs and
responses from a given experiment, respectively, 7 is the
number of observations and & is the number of parameters. sp
were calculated across different simulated experiments, that is:

sD=, 1.3 (5,-B)*, where f; is the estimate of a specific parameter
i=1

obtained from the simulated experiment i.
Linear regressions were fitted to R”s as functions of the total
number of pens in the experiment.

Results

As the number of simulated experiments increased, the varia-
tion in the mean requirement decreased until thirty simulations
were reached (Fig. 2). For the BLL model, increasing the size of
the simulated experiment from sixteen to twenty-four pens
decreased the st of the requirement estimate by about 19 %
(Table 1; 046 v. 0-57), from twenty-four to forty-eight pens by
about 28 % (0-33 v. 0-46) and from forty-eight to ninety-six pens
by another 30% (0-23 v. 0-33). st estimates were much higher
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Fig. 2. Influence of number of Nutritional Response Determination
Optimization simulations on the precision of requirement estimation. There
were ten requirement estimates with five to eighty simulations each. Each point
represents one requirement estimate. @, Broken-line quadratic model;
O, broken-line linear model.
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Table 1. Results of several models fitted to data simulated with various combinations of levels and replications per level*

(Standard errors and coefficients of determination)

Levels Broken-line linear Broken-line quadratic QP SK
Pens Levels Reps Low High Break point Requirement SE R Requirement SE R R R
16 4 4 5 15 10 9-89 0-57 0-91 12:45 1.25 0-91 0-91 0-91
24 6 4 5 15 10 10-09 0-45 0-90 12-82 1-05 0-90 0-90 0-90
24 4 6 5 15 10 10-14 0-48 0-91 1291 112 0-91 0-91 0-91
24 8 3 5 15 10 9.97 0-45 0-89 12.36 0-99 0-88 0-89 0-89
48 6 8 5 15 10 9.92 0-32 0-89 12-50 0-73 0-88 0-88 0-89
48 8 6 5 15 10 10-11 0-34 0-87 12.71 0-77 0-87 0-87 0-87
48 16 3 5 15 10 9-93 0-34 0-85 12.28 0-76 0-84 0-84 0-85
96 8 12 5 15 10 9.97 0-23 0-88 12:43 0-51 0-87 0-87 0-87
96 12 8 5 15 10 9.99 0-23 0-87 12.29 0-51 0-86 0-86 0-86
96 16 6 5 15 10 10-02 0-23 0-86 12:45 0-51 0-86 0-86 0-86
48 6 8 5 15 12 12.08 0-27 0-95 16-17 1-00 0-94 0-94 0-94
48 8 6 5 15 12 12.00 0-28 0-95 15.92 1.02 0-94 0-94 0-94
48 16 3 5 15 12 12.07 0-27 0-94 16-35 1.28 0-93 0-93 0-93

QP, quadratic polynomial; SK, saturation kinetics model; reps, replicates.

* The CV between observations was 8 %; equally spaced levels between 5 and 15, for example for four levels =5-000, 8-333, 11-667, 15-000.

Table 2. Results of several models fitted to data simulated with various ranges of data above and below the simulated nutritional requirement or ‘break point™

(Standard errors and coefficients of determination)

Levels Broken-line linear Broken-line quadratic QP SK
Pens Levels Reps Low High Break point Requirement SE R? Requirement SE R R? R?
24 4 6 5 15 10 10-19 0-50 0-91 13-20 1-11 0-91 0-91 0-91
24 4 6 6 14 10 10-05 0-51 0-86 12.35 1.08 0-86 0-86 0-86
24 4 6 7 13 10 10-11 FC 0-77 11-91 FC 0-77 0-77 0-77
24 4 6 8 12 10 10-19 FC 0-57 14-10 FC 0-57 0-58 0-57
24 4 6 9 11 10 9-98 FC 0-21 14-60 FC 0-23 0-24 0-23
48 8 6 5 15 10 10-08 0-34 0-87 12-62 0-77 0-86 0-87 0-87
48 8 6 6 14 10 9.87 0-33 0-80 11-80 0-75 0-79 0-79 0-79
48 8 6 7 13 10 10-00 0-34 0-70 11.56 0-84 0-70 0-70 0-69
48 8 6 8 12 10 9-93 0-33 0-55 11-13 0-94 0-54 0-54 0-53
48 8 6 9 11 10 9-94 0-33 0-24 11-36 13.57 0-24 0-23 0-23

QP, quadratic polynomial; SK, saturation kinetics model; reps, replicates; FC, Excel failed to converge on a solution for that data.
* Equally spaced levels between low and high, for example four equally spaced levels between 5 and 15=>5-000, 8-333, 11-667, 15-000.

(>100%) for the BLQ models. Relative differences for the BLQ
model were similar to the BLL model. R* values decreased as
the number of pens (total variation) increased from sixteen to
forty-eight for all models (BLL, P=0-039; BLQ, P=0-036; QP,
P=0-025; SK, P=0-011). If the break-point was not central to
the range studied (i.e. break-point of 12, Table 1), the sE
decreased for the BLL model, but increased for the BLQ model.
R values increased for all four models when the break point
was not in the centre of the range studied. The combination of
nutrient levels and number of replications per level made little
difference in the precision of the requirement estimates; in this
example eight levels of six reps each and sixteen levels of three
reps each gave very similar results with sg of 0-27 (to two
decimal places).

The influence of range of nutrient levels simulated was
dependent on the experimental replication (Table 2). As the
range of simulated nutrient levels decreased, R* values
decreased and when the range was too small, the models would
not converge and thus produced no st estimates. With forty-
eight total observations there was little difference in st estimates

for the BLL model but for the BLQ model, the estimated st
increased as the simulated interval decreased.

As the CV of the simulated responses increased, the
requirement estimates became less precise (Fig. 3 and 4),
although there seems to be little difference above CV levels of
6% for either the BLL or BLQ models. The more important
factor is the RC, the slope of the ascending portion of the
response (Table 3). If the angle between the segments in the
BLL model is relatively small, the requirement estimate is more
precise. As the angle becomes greater (-20 v. —2), the increase
in se is much greater with higher CV.

Discussion

In planning experiments, it is most helpful for nutritionists to
know the expected variation and the shape of the response from
historical data; plus they need to have some expectation of the
acceptable variation in the requirement estimate. With this basic
information, the nutritionist can decide if they have sufficient
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14r resources and then how to best allocate the resources to meet

135 | ° 2 s their goals. In the past, nutritionists had to make an educated
il 'l . ° guess on the best way to design their experiments. The NuRDO

© o i i s e workbook uses Excel to take at least some of the guesswork out
g 125} i . o : H of the process of experimental design. Note that the results from
% 12 ° ° . NuRDO simulations will never be exactly the same because they
é sl are based on random draws from normal distributions (the same
2 as real experiments have individuals randomly chosen from
E’ " some greater population). However, with enough simulated
105 L 5 ° 5 experiments, the mean results of multiple simulations should be

g 2 8 very similar up to any desired number of decimal places.

or é @ 6 § o The three factors having the largest impact on accuracy of
9-50 ; . . . m " " requirement estimates are the CV of the subjects, RC and

CV of experimental unit (animals, pens, etc.)
Fig. 3. Effect of the CV of the experimental unit on the precision of requirement

estimation. Each point represents one requirement estimate from thirty
simulations. @, Broken-line quadratic model; O, broken-line linear model.
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Fig. 4. Example of Nutritional Response Determination Optimization
simulations with different rate constants (RC) and different observation to
observation CV. O, Simulations CV =4 %; ,RC=-4;——— RC=-12;
@, simulations CV =10 %.

interval (nutrient levels) to study. If the RC is small and there is a
very gradual transition from ascending portion of the response
to the plateau portion, it will be difficult to get a precise estimate
of the requirement in question regardless of the number of
levels and replicates used. This is a result of the requirement
estimate being made for the population and not any particular
individual(s). The influence of the RC is not just a matter of
scaling that can be manipulated in graphing the data. The slope
of the regression line is the critical factor and it is represented by
the RC in the model used to estimate the st of the requirement.
There is little that can be done to alter the RC. Like the K, in
enzyme kinetics, RC is a property of the system being studied.

On the other hand, the variation between individuals, or the
CV, can often be changed to help increase experimental pre-
cision. The most common method of decreasing the CV is to
choose uniform individuals to study. It is important that con-
clusions drawn from limited populations are not extrapolated to
other populations. Regressions with only individuals near the
mean weight, for instance, may not be normally distributed
(a transformation may be necessary) and the results may only
apply to similar individuals. Choosing one sex or the other, one
strain or the other, etc. may be quite useful if it is remembered
that the results may only be applicable to the sub-population
from which they were derived.

Choosing the appropriate range of nutrient levels to study is
an area where NuRDO may be particularly helpful. If there are

Table 3. Results of several models fitted to data simulated with different rate constants and two coefficients of variation*

(Standard errors and coefficients of determination)

Levels Broken-line linear Broken-line quadratic QP SK
CV  Levels Reps Low High Rateconstant Requirement SE R Requirement SE R? R R?
4 8 6 5 15 -2 9.78 0-84 0-52 12.32 1-99 0-52 0-52 0-52
4 8 6 5 15 -4 10-18 0-46 0-80 12.83 1.04 0-79 0-79 0-79
4 8 6 5 15 -6 9-96 0-28 0-91 12-51 0-63 0-90 0-90 0-90
4 8 6 5 15 -8 9-93 0-20 0-95 12.41 0-47 0-94 0-94 0-94
4 8 6 5 15 -10 10-02 0-16 0.97 12:46 0-39 0-96 0-96 0-96
4 8 6 5 15 -20 9-99 0-07 0-99 12.48 0-23 0-99 0-98 0-99
8 8 6 5 15 -2 10-30 1543028 0-22 16-74 57-83 0-21 0-22 0-21
8 8 6 5 15 -4 10-01 0-87 0-51 13-01 247 0-50 0-51 0-51
8 8 6 5 15 -6 10-01 0-59 0-70 12-66 1.34 0-69 0-69 0-69
8 8 6 5 15 -8 10-11 0-44 0-81 12.69 0-99 0-80 0-80 0-80
8 8 6 5 15 -10 9.87 0-32 0-87 12-30 0-74 0-86 0-86 0-86
8 8 6 5 15 -20 10-00 0-15 0.97 12.45 0-37 0-96 0-96 0-96

CV =sp/mean; QP, quadratic polynomial; SK, saturation kinetics model; reps, replicates.

* Eight equally spaced levels between 5 and 15.
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no preliminary or historical data then the range to be studied
should be particularly wide to include all possible outcomes.
Once there is preliminary or historical data to base experiments
on, then NuRDO can be helpful in making sure the range
studied is not too narrow. If there is too much concentration
near the requirement, then the ®* may be low and the model
may even fail to converge on an st estimate. While it seems
intuitive that replication should be concentrated near the
break-point, it is not necessarily helpful if the range studied is
narrowed, or if the RC is small.

There are two aspects of NuRDO simulations that are
critical for accurate predictions: model fitting and random
observation distribution. The model fitting method imple-
mented in Excel by NuRDO gives the same result as SAS®'?.
Non-linear equations are fitted by iterative methods, trial and
error, until a given tolerance is reached to find the coefficients
minimising the model sum of squares. While no method
is perfect, the method implemented by NuRDO gives the
same results as one of the most accepted statistical analytical
packages available.

The second potential source of error in NuRDO simulations is
in Excel’s ability to randomly choose observations belonging the
specified distribution (means and standard deviations). By their
very nature when random numbers are involved the results are
not perfectly reproducible (especially obvious with small sample
sizes). Still, if enough simulations are obtained, the means and
standard deviations should closely approach those specified.
When one million simulations were made from populations
specified to have a mean of 100 and sp of 10, means ranged from
99-9781 to 100-0186 and sp ranged from 9-9846 to 10-0277 (12 10).
The overall mean was 99-9976 for 0-0024 % error (1 107). The
overall sp was 9-9997 for 0-0265 % error (12 107).

Therefore, the errors inherent in NuRDO’s implementation are
much smaller than the experimental error in means and standard
errors in typical nutrition experiments (Tables 1-3). Experimental
error should not be expected to cause noticeable differences in
model parameter estimates. The key to using NuRDO efficiently
is to have a good estimate of expected variation under the
experimental conditions being simulated, and to perform enough
simulations that the coefficient estimates have acceptable varia-
tion for the intended use of the experimental results.

The NuRDO workbook was designed to help nutritionists to
design experiments using several common models that all may
accurately describe nutrition response kinetics under particular
circumstances'”. The comparisons made in Tables 1-3 and
Fig. 1-4 are mainly based on the BLL and BLQ models, as they
are the ones that feature requirement estimates with standard
errors. The standard errors of the requirements are direct indi-
cations of the precision that may be expected from an actual
experiment. Of course, that is if the experiments that are actu-
ally performed have subject to subject variation and RC similar
to past observations. NuRDO could be used in a similar fashion
to estimate the precision in estimating the R« or K,,, for the SK
model™” or the nutrient concentration giving the maximum
response in the QP model. We implemented NuRDO with four
commonly used nutritional response models assuming that
there is no model appropriate for all situations and researchers
should further adapt it to other situations as they deem

appropriate. Nutritional kinetics have been studied in a wide
variety of species including humans rats, mice chicks and
fish"®. The models should be appropriate for all organisms
since enzyme catalysed reactions are common processes of all
living things. The NuRDO workbook was developed with four
common response models, but is easily adaptable to simulate
data from practically any other response model considered
more appropriate for any organism.
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