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Abstract.  The main tools describing the formation of large-scale structure
are reviewed. Detailed emphasis is given to the Cold Dark Matter model, since
this appears to be a close match to observation. A consistent normalization that
satisfies both CMB constraints and the cluster abundance requires ,, ~ 0.35 for
a flat universe and scale-invariant fluctuations. Discrepancies between observed
galaxy power spectra and CDM predictions are discussed; a heuristic model for
galaxy bias is proposed that potentially allows such scale-dependent bias to be
understood.

1. Structure formation in the CDM model

The origin and formation of large-scale structure in cosmology is a key problem
that has generated much work over the years. Out of all the models that have
been proposed, this talk concentrates on the simplest: gravitational instability
of small initial density fluctuations. Furthermore, it is assumed that the mass
density is dominated by a collisionless component, so that we are left with a
theory very like the Cold Dark Matter model. This does not mean that CDM
is an untestable religion, to which cosmologists cling in the face of all evidence.
However, it is the simplest model for structure formation, and thus should be
tested thoroughly before we move on to more complex alternatives.

Suppose there existed some primordial power-law spectrum, written dimen-
sionlessly as the logarithmic contribution to the fractional density variance, o?:

do?
2 _ 34+n
A%(k) = dlnk(xk .
This undergoes linear growth
D(a)
1) =4 T
k(a) = dx(ao) [D(ao)] ks

where the linear growth law is D(a) = ag[Q(a)] in the matter era, and the
growth suppression for low €2 is

g(2) ~ 0065 (open)
~ 092 (flat)

The transfer function T} depends on the dark-matter content as shown in fig-
ure 1.
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Figure 1.  Transfer functions for various dark-matter models. The scaling
with Qh? is exact only for the zero-baryon models; the baryon results are
scaled from the particular case Qg =1, h =1/2.

The state of the linear-theory spectrum after these modifications is illus-
trated in figure 2. The primordial power-law spectrum is reduced at large k,
by an amount that depends on both the quantity of dark matter and its na-
ture. Generally the bend in the spectrum occurs near 1/k of order the horizon
size at matter-radiation equality, oc (2h2)~!. For a pure CDM universe, with
scale-invariant initial fluctuations (n = 1), the observed spectrum depends only
on two parameters. One is the shape I' = Qh, and the other is a normaliza-
tion. This can be set at a number of points. The COBE normalization comes
from large angle CMB anisotropies, and is sensitive to the power spectrum at
k ~ 1073 hMpc~!. The alternative is to set the normalization near the quasi-
linear scale, using the abundance of rich clusters. Many authors have tried this
calculation, and there is good agreement on the answer:

og =~ 0.50,,06.

(White, Efstathiou & Frenk 1993; Eke et al. 1996; Viana & Liddle 1996; Pier-
paoli, Scott & White 2000; Wu 2000). In many ways, this is the most sensible
normalization to use for LSS studies, since it does not rely on an extrapola-
tion from larger scales. Within the CDM model, it is always possible to satisfy
both these normalization constraints, by appropriate choice of I' and n. This is
illustrated in figure 3. Note that vacuum energy affects the answer; for reason-
able values of h and reasonable baryon content, flat models require ©,, ~ 0.3,
whereas open models require £2,, ~ 0.5.

Figure 1 shows that rather large oscillatory features would be expected if
the universe was baryon dominated. The lack of observational evidence for such
features is one reason for believing that the universe might be dominated by
collisionless nonbaryonic matter (consistent with- primordial nucleosynthesis if
Qn 2 0.1). Nevertheless, baryonic fluctuations in the spectrum can become
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Figure 2.

This figure illustrates how the primordial power spectrum is mod-

ified as a function of density in a CDM model. For a given tilt, it is always
possible to choose a density that satisfies both the COBE and cluster normal-

izations.
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1.5

Figure 3. For 15% baryons, the value of n needed to reconcile COBE and
the cluster normalization in CDM models. If A = 0.7, then Q,, ~ 0.35 is
required in a flat universe containing scale-invariant fluctuations.

significant for high-precision measurements. Figure 4 shows that order 10%
modulation of the power may be expected in realistic baryonic models (Eisen-
stein & Hu 1998; Goldberg & Strauss 1998). Most of these features are however
removed by nonlinear evolution. The highest-k feature to survive is usually the
second peak, which almost always lies near k = 0.05 Mpc ™! (no h, for a change).
This feature is relatively narrow, and can serve as a clear proof of the past exis-
tence of baryonic oscillations in forming the mass distribution (Meiksin, White
& Peacock 1999).

2. The observed galaxy power spectrum

The real-space galaxy power spectrum has been estimated from angular cluster-
ing in the APM survey (Baugh & Efstathiou 1993, 1994; Maddox et al. 1996).
The APM survey was generated from a catalogue of ~ 108 galaxies derived
from UK Schmidt Telescope photographic plates scanned with the Cambridge
Automatic Plate Measuring machine. The APM result has been investigated
in detail by a number of authors (e.g. Gaztafiaga & Baugh 1998; Eisenstein &
Zaldarriaga 1999; Efstathiou & Moody 2000) and found to be robust, although
there is some evidence that the true power uncertainty due cosmic variance may
have been underestimated.

One advantage of the APM estimate of the power spectrum is that it is based
on a deprojection of angular clustering, and is thus immune to the complicating
effects of redshift-space distortions. These effects were first fully analyzed by
Kaiser (1987), and distort the apparent density field in a 3D redshift survey in
a number of ways. For a survey that subtends a small angle (i.e. in the distant-
observer approximation), a good approximation to the anisotropic redshift-space
Fourier spectrum is given by a systematic large-scale anisotropy, together with
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Figure 4.  Baryonic fluctuations in the spectrum can become significant for
high-precision measurements. Although such features are much less impor-
tant in the density spectrum than in the CMB (first panel), the order 10%
modulation of the power is potentially detectable. However, nonlinear evolu-
tion has the effect of damping all beyond the second peak. This second feature
is relatively narrow, and can serve as a clear proof of the past existence of
oscillations in the baryon-photon fluid (Meiksin, White & Peacock 1999).
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Figure 5. A recent compilation of measurement of the power spectrum of
galaxy clustering (dimensionless power against wavenumber). The real-space
APM result was deprojected from angular clustering. The other points show
the results from various redshift surveys, with an approximate correction for
redshift-space distortions (see text). For the IRAS-based PSCz survey, an
additional relative bias factor of 1.3 has been applied.

a damping term from nonlinear effects:
8% = (1 + Bu®) D(kop).

Here, 8 = Q06 /b, b being the linear bias parameter of the galaxies under study,
and u =k -f. For an exponential distribution of relative small-scale peculiar
velocities (as seen empirically), the damping function is D(y) ~ (1 4+ ¢2/2)~/2,
and o ~ 400kms~! is a reasonable estimate for the pairwise velocity dispersion
of galaxies (e.g. Ballinger, Peacock & Heavens 1996). In principle, this distor-
tion should be a robust way to determine Q (or at least (); see the reviews by
Strauss & Willick (1995) and Hamilton (1997). At this meeting, Colless pre-
sented preliminary results for § from the 2dF Galaxy Redshift Survey, which
show the distortion effect clearly for the first time. For the present purpose,
we are interested in the scale-dependent correction to the angle-averaged power,
which may be deduced by integrating over u in the above expression.

We can thus carry out an approximate comparison between the APM de-
projection and the power measured in some of the largest recent redshift sur-
veys, which contain of order 10* galaxy redshifts (LCRS: Shectman et al. 1996;
DUKST: Hoyle et al. 1999; PSCz: Saunders et al. 2000) This comparison is per-
formed in figure 5, and indicates that there is now good agreement on the form
of the galaxy power spectrum for wavelengths up to several hundred A~! Mpc.
Indeed, this conclusion has been stable for a number of years (see Peacock &
Dodds 1994 for an earlier compilation).

A number of authors have pointed out that the detailed spectral shape
inferred from galaxy data appears to be inconsistent with that of nonlinear
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evolution from CDM initial conditions. (e.g. Efstathiou, Sutherland & Maddox
1990; Klypin, Primack & Holtzman 1996; Peacock 1997). Perhaps the most
detailed work was carried out by the VIRGO consortium, who carried out N =
2563 simulations of a number of CDM models (Jenkins et al. 1998). Their results
are shown in figure 6, which gives the nonlinear power spectrum at various times
(cluster normalization is chosen for z = 0) and contrasts this with the APM data.
The lower small panels are the scale-dependent bias that would required if the
model did in fact describe the real universe, defined as

1/2
bik) = <_A§als(’“)> g
A1211ass
In all cases, the required bias is non-monotonic; it rises at & > 5h~! Mpc, but
also displays a bump around k ~ 0.1 A1 Mpc.

3. Galaxy formation and biased clustering

The disagreement between galaxy clustering and the mass clustering expected
in CDM universes might be resolved if the relation between galaxies and the
overall matter distribution is sufficiently complicated. Indeed, the formation of
galaxies must be a non-local process to some extent, and the modern paradigm
was introduced by White & Rees (1978): galaxies form through the cooling of
baryonic material in virialized haloes of dark matter. The virial radii of these
systems are in excess of 0.1 Mpc, so there is the potential for large differences
in the correlation properties of galaxies and dark matter on these scales.

A number of studies have indicated that the observed galaxy correlations
may indeed be reproduced by CDM models. The most direct approach is a
numerical simulation that includes gas, and relevant dissipative processes. This
is challenging, but just starting to be feasible with current computing power
(Pearce et al. 1999). The alternative is ‘semianalytic’ modelling, in which
the merging history of dark-matter haloes is treated via the extended Press-
Schechter theory (Bond et al. 1991), and the location of galaxies within haloes
is estimated using dynamical-friction arguments (e.g. Kauffmann et al. 1993,
1999; Cole et al. 1994; Somerville & Primack 1999; van Kampen, Jimenez & Pea-
cock 1999; Benson et al. 2000a,b). Both these approaches have yielded similar
conclusions, and shown how CDM models can match the galaxy data: specifi-
cally, the low-density flat ACDM model that is favoured on other grounds can
yield a correlation function that is close to a single power law over 1000 2 £ > 1,
even though the mass correlations show a marked curvature over this range
(Pearce et al. 1999; Benson et al. 2000a; see figure 7). These results are impres-
sive, yet it is frustrating to have a result of such fundamental importance emerge
from a complicated calculational apparatus. There is thus some motivation for
constructing a simpler heuristic model that captures the main processes at work
in the full semianalytic models. This section describes an approach of this sort
(Peacock & Smith 2000; see also Seljak 2000).

An early model for galaxy clustering was suggested by Neyman, Scott &
Shane (1953), in which the nonlinear density field was taken to be a superposition
of randomly-placed clumps. With our present knowledge about the evolution of
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Figure 6. The nonlinear evolution of various CDM power spectra, as deter-
mined by the Virgo consortium (Jenkins et al. 1998). The dashed lines show
the evolving spectra for the mass, which at no time match the shape of the
APM data. This is expressed in the lower small panels as a scale-dependent
bias at z = 0: b?(k) = Papy/ Prass-
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The correlation function of galaxies in the semianalytical simu-

lation of an LCDM universe by Benson et al. (2000a). The predicted galaxy
correlations are very close to a single power law, especially around 1 A~! Mpc,
where the predicted mass correlations rise above the APM data.

T T T

g __ ./I1 - .__ ."""‘
Sk N

N F

oL i
-~ 5 ——E
S 3
°E TCDM A ]
- ° 1 r o 1
QS F ° °

SE o E e
o [ ° ] Lo
'O Ol i AT | P, Ll NPT | |
- 0.1 1 10 100 0.1 1 10 100

k / h Mpe™! k / h Mpe™?
Figure 8. The power spectrum for the 7TCDM and ACDM models. The

solid lines contrast the linear spectrum with the nonlinear spectrum, calcu-
lated according to the approximation of PD96. The spectrum according to
randomly-placed haloes is denoted by open circles; if the linear power spec-
trum is added, the main features of the nonlinear spectrum are well repro-
duced. In neither case is the resulting nonlinear spectrum at all the same
shape as the APM observations (shown asa dot-dashed line).
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Figure 9. The empirical luminosity—mass relation required to reconcile the
observed AGS luminosity function with two variants of CDM. L* is the char-
acteristic luminosity in the AGS luminosity function (L* = 7.6 x 101°A=2L,).
Note the rather flat slope around M = 10'3 to 10h~! M, especially for
ACDM.

CDM universes, we can make this idealised model considerably more realistic:
hierarchical models are expected to contain a distribution of masses of clumps,
which have density profiles that are more complicated than isothermal spheres.
These issues are well studied in N-body simulations, and highly accurate fitting
formulae exist, both for the mass function and for the density profiles. Briefly,
we use the mass function of Sheth & Tormen (1999; ST) and the halo profiles
of Moore et al. (1999; M99). Using this model, it is then possible to calculate
the correlations of the nonlinear density field, neglecting only the large-scale
correlations in halo positions. The power spectrum determined in this way is
shown in figure 8, and turns out to agree very well with the exact nonlinear
result on small and intermediate scales. The lesson here is that a good deal
of the nonlinear correlations of the dark matter field can be understood as a
distribution of random clumps, provided these are given the correct distribution
of masses and mass-dependent density profiles.

How can we extend this model to understand how the clustering of galaxies
can differ from that of the mass? There are two distinct ways in which a degree
of bias is inevitable:

(1) Halo occupation numbers. For low-mass haloes, the probability of ob-
taining an L* galaxy must fall to zero. For haloes with mass above this
lower limit, the number of galaxies will in general not scale with halo
mass.

(2)  Nonlocality. Galaxies can orbit within their host haloes, so the probabil-
ity of forming a galaxy depends on the overall halo properties, not just
the density at a point. Also, the galaxies will end up at special places
within the haloes: for a halo containing only one galaxy, the galaxy will
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Figure 10.  The power spectrum for galaxy catalogues constructed from the
7CDM and ACDM models. A reasonable agreement with the APM data (dot-
dashed line) is achieved by simple empirical adjustment of the occupation
number of galaxies as a function of halo mass, plus a scheme for placing
the haloes non-randomly within the haloes. In contrast, the galaxy power
spectrum differs significantly in shape from that of the dark matter (linear
and nonlinear theory shown as in figure 8).

clearly mark the halo centre. In general, we expect one central galaxy
and a number of satellites.

The numbers of galaxies that form in a halo of a given mass is the prime quan-
tity that numerical models of galaxy formation aim to calculate. However, for
a given assumed background cosmology, the answer may be determined empiri-
cally. Galaxy redshift surveys have been analyzed via grouping algorithms sim-
ilar to the ‘friends-of-friends’ method widely employed to find virialized clumps
in N-body simulations. With an appropriate correction for the survey limiting
magnitude, the observed number of galaxies in a group can be converted to an
estimate of the total stellar luminosity in a group. This allows a determina-
tion of the All Galaxy System (AGS) luminosity function: the distribution of
virialized clumps of galaxies as a function of their total luminosity, from small
systems like the Local Group to rich Abell clusters.

The AGS function for the CfA survey was investigated by Moore, Frenk &
White (1993), who found that the result in blue light was well described by

dp =" (/L) + (/L] drjre,

where ¢* = 0.00126R3Mpc~3, 8 = 1.34, v = 2.89; the characteristic lumi-
nosity is M* = —21.42 + 5loggh in Zwicky magnitudes, corresponding to
M3% = —21.71 + 5log;g h, or L* = 7.6 x 101°A~2L, assuming M = 5.48. One
notable feature of this function is that it is rather flat at low luminosities, in con-
trast to the mass function of dark-matter haloes (see Sheth & Tormen 1999). It is
therefore clear that any fictitious galaxy catalogue generated by randomly sam-
pling the mass is unlikely to be a good match to observation. The simplest cure
for this deficiency is to assume that the stellar luminosity per virialized halo is a
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monotonic, but nonlinear, function of halo mass. The required luminosity—mass
relation is then easily deduced by finding the luminosity at which the integrated
AGS density ®(> L) matches the integrated number density of haloes with mass
> M. The result is shown in figure 9.

We can now return to the halo-based galaxy power spectrum and use the
correct occupation number, N, as a function of mass. This is needs a little care
at small numbers, however, since the number of haloes with occupation number
unity affects the correlation properties strongly. These haloes contribute no
correlated pairs, so they simply dilute the signal from the haloes with N > 2.
The existence of antibias on intermediate scales can probably be traced to the
fact that a large fraction of galaxy groups contain only one > L, galaxy. Finally,
we need to put the galaxies in the correct location, as discussed above. If one
galaxy always occupies the halo centre, with others acting as satellites, the
small-scale correlations automatically follow the slope of the halo density profile,
which keeps them steep. The results of this exercise are shown in figure 10,
and are encouragingly similar to the scale-dependent bias found in the detailed
calculations of Benson et al. (2000a), shown in figure 7.

4. Conclusions

Although this talk has presented only a partial selection of the evidence, there is
a good case for convergence in our understanding of the basis of large-scale struc-
ture. The power spectrum of the matter density that results from gravitational
instability is understood in detail, including small corrections from nonlinear
effects and fine signatures of the baryon content. On the observational side, the
next generation of galaxy surveys will yield sufficiently precise results that we
may be able to detect these features.

The great barrier to using large-scale structure as a tool for quantitative
cosmology has long been the uncertainties associated with galaxy bias, and this
problem is not yet beaten. Nevertheless, both the detailed semianalytic results
and their incarnation in the generic ‘halo model’ give grounds for optimism
that we may be starting to attain a physical understanding of the origin of
galaxy bias. If this provisional understanding holds up, we should be able to use
observations of the galaxy power spectrum with confidence in order to measure
the properties of the matter density. It is not yet clear whether the result of this
process will be a familiar standard model for structure formation, or a complete
revolution. However, there appears to be no fundamental obstacle that will
prevent a decision being reached.
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