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Abstract

We say that a Banach space X is ‘nice’ if every extreme operator from any Banach space into X is a nice
operator (that is, its adjoint preserves extreme points). We prove that if X is a nice almost CL-space, then
X is isometrically isomorphic to c0(I) for some set I. We also show that if X is a nice Banach space whose
closed unit ball has the Krein–Milman property, then X is ln∞ for some n ∈ N. The proof of our results
relies on the structure topology.
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1. Introduction

Nice operators were introduced in [15] as those operators whose adjoint preserves
extreme points of the unit ball. As a consequence of the Krein–Milman theorem, every
nice operator is an extreme operator. Nice operators have been intensively studied (see,
for example, [17] for recent results). Even before its formal definition, the coincidence
of extreme and nice operators between spaces of continuous functions was considered
in [2]. In subsequent papers, Sharir proved the existence of extreme nonnice operators
between spaces of continuous functions and that every extreme operator between L1-
spaces is a nice operator (see [18–20]). Recently, in [16], the authors studied the
coincidence of nice operators and surjective isometries in the context of spaces of
continuously differentiable functions. In [3], the notion of a nice Banach space was
introduced and studied for the first time. A Banach space is said to be nice if every
extreme operator into it is a nice operator. The main results in [3] characterise spaces of
continuous functions and reflexive Banach spaces which are nice. It was also proved
in [3] that, if µ is σ-finite, the only nice L1(µ)-space is either the scalar field or l21.
Later on, in [4] and [5], nice Banach spaces were characterised in the context of
special types of L1-preduals, namely, simplex spaces and G-spaces. Lima in [11]
introduced almost CL-spaces, though this class of Banach spaces appears implicitly
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in [12]. We give below the definition of an almost CL-space, but it is worth mentioning
that L1-spaces and their preduals are almost CL-spaces. The aim of this paper is to
characterise almost CL-spaces which are nice. We prove that a nice almost CL-space
is isometrically isomorphic to c0(I) for some nonempty set I. We also prove that
nice Banach spaces whose closed unit ball satisfies the Krein–Milman property are
isometrically isomorphic to ln∞ for some n ∈ N. The main tool for getting our results is
the structure topology, which we introduce in Section 3.

2. Notation and preliminaries

Throughout this paper we only consider real Banach spaces. Given a Banach space
X, BX , S X and EX will stand for the closed unit ball of X, the unit sphere of X and the
set of extreme points of BX , respectively. If A is a nonempty subset of X, co(A), lin(A)
and co(A) will denote the convex hull of A, the linear span of A and the closed convex
hull of A, respectively. The space of all bounded linear operators from a Banach space
X into a Banach space Y will be denoted by L(X, Y), endowed with its usual operator
norm. According to the custom, we will write X∗ instead of L(X,R) and the adjoint of
an operator T will be represented by T ∗. If B is any nonempty subset of X∗, we will
denote by B

w∗
and cow∗(B) the closure and the closed convex closure of B in the w∗-

topology of X∗. If M is a subspace of X, then M⊥ = {x∗ ∈ X∗ : x∗(x) = 0 for all x ∈ M}.
Next we introduce the class of Banach spaces we are interested in.

Definition 2.1. A Banach space X is said to be an almost CL-space if any maximal
convex subset of SX fulfils BX = co(F ∪ −F). If one can omit the closure in the above
equality, then X is said to be a CL-space.

Fullerton in [8] first introduced CL-spaces, and Lima in [11] defined almost CL-
spaces as a generalisation of CL-spaces, although, as far as we know, the existence
of an almost CL-space which is not a CL-space is an open question. Examples of
CL-spaces are L1(Ω,A, µ), for any (Ω,A, µ) measure space, and its isometric preduals
(see [10, Section 3]).

For more information about almost CL-spaces, we refer to [14]. In that paper the
authors showed several basic facts about maximal convex subsets of SX , which we
recall below for the sake of clarity. It is a consequence of the Hahn–Banach and
Krein–Milman theorems that for each maximal convex subset F of S X , there exists
x∗ in EX∗ such that F = F(x∗) = {x ∈ SX : x∗(x) = 1}. We denote by mexBX∗ the set of
elements x∗ in EX∗ such that F(x∗) is a maximal convex subset of SX . It is easy to prove
that, for any x in X, there exists x∗ in mexBX∗ such that x∗(x) = ||x||. The Hahn–Banach
theorem allows us to get BX∗ = cow∗(mexBX∗) and the reversed Krein–Milman theorem
yields EX∗ ⊆ mexBX∗

w∗
.

Finally, we give the central notion in this paper.

Definition 2.2. A Banach space X is said to be nice if for any Banach space Y , every
extreme operator T in L(Y, X) satisfies T ∗(EY∗) ⊆ EX∗ . That is, every extreme operator
in L(Y, X) is a nice operator.
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3. The structure topology

We need the notion of an L-summand in order to introduce the structure topology.
The main reference concerning this concept is [9].

Definition 3.1. A mapping π from X into X is said to be a semi-L-projection on X if π
satisfies:

(i) π(αx + π(y)) = απ(x) + π(y) for all x, y in X and α in R;
(ii) ||x|| = ||π(x)|| + ||x − π(x)|| for all x in X.

A linear semi-L-projection is called an L-projection. The range of a semi-L-projection
(L-projection) on X is said to be a semi-L-summand (respectively, an L-summand)
in X.

If π is a semi-L-projection on X and J = π(X), it is easy to prove that, for x in X,
π(x) is the unique best approximant to x in J, that is, π(x) is the only element in J
which satisfies ||x + J|| = ||x − π(x)||. Thus, J is a closed subspace of X and there is a
unique semi-L-projection on X with range J.

The notion of L-summand enables us to define a topology on the set EX∗ for any
Banach space X. This topology was first introduced by Alfsen and Effros in [1] and it
will be the main tool for getting our results.

Definition 3.2. Let X be a Banach space. The sets J ∩ EX∗ , where J is a w∗-closed
L-summand in X∗, are the closed sets of a topology on EX∗ , called the structure
topology.

Next we give a characterisation of ‘isolated points’ in the structure topology.

Proposition 3.3. Let X be a Banach space and let e∗0 be in EX∗ . The following assertions
are equivalent:

(i) X∗ , lin(EX∗ \ {±e∗0})
w∗

;
(ii) {±e∗0} is structurally open.

Proof. We prove that (i) implies (ii). The Hahn–Banach theorem provides an
element x0 in SX such that e∗(x0) = 0 for all e∗ ∈ EX∗ \ {±e∗0}. Moreover, since
1 = ||x0|| = max{e∗(x0) : e∗ ∈ EX∗} (see [7, Fact 3.119]), it follows that |e∗0(x0)| = 1.
We can suppose that e∗0(x0) = 1. We consider the operator π : X∗ → X∗ defined by
π(x∗) = x∗ − x∗(x0)e∗0. It is clear that π is a linear projection and that

π(X∗) = {x∗ ∈ X∗ : x∗(x0) = 0}.

Therefore, J = π(X∗) is w∗-closed and J ∩ EX∗ = EX∗ \ {±e∗0}. We are going to prove
that π is an L-projection. Let x, y be in S X and let x∗ be in X∗. Then

π(x∗)(x) = x∗(x − e∗0(x)x0)

and
(IdX∗ − π)(x∗)(y) = x∗(e∗0(y)x0).
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Taking into account [7, Fact 3.119],

||x − e∗0(x)x0 + e∗0(y)x0||= max{e∗(x − e∗0(x)x0 + e∗0(y)x0) : e∗ ∈ EX∗}

= max{| e∗0(y) |, e∗(x) : e∗ ∈ EX∗ \ {±e∗0}} ≤ 1.

This yields

π(x∗)(x) + (IdX∗ − π)(x∗)(y) = x∗(x − e∗0(x)x0 + e∗0(y)x0) ≤ ||x∗||.

From here it can be easily deduced that

||π(x∗)|| + ||(IdX∗ − π)(x∗)|| ≤ ||x∗||.

This finishes the proof of this implication.
To conclude, we show that (ii) implies (i). The hypothesis yields a w∗-closed

subspace J of X∗ such that EX∗ \ {±e∗0} = J ∩ EX∗ . Thus, lin(EX∗ \ {±e∗0})
w∗
⊆ J and

e∗0 does not belong to J. �

Despite its technical flavour, the following statement will play a key role in the
proof of the main result of the paper.

Proposition 3.4. Let X be a nice Banach space and let G be a structurally open subset
of EX∗ such that EX∗ ⊆ G

w∗
. Then G = EX∗ .

Proof. We argue by contradiction. Let us suppose that G , EX∗ . Then EX∗ \G is a
nonempty closed set in the structure topology. Therefore, there exist π, an L-projection
in X∗, and M, a closed subspace of X, such that π(X∗) = M⊥ and EX∗ \G = M⊥ ∩ EX∗ .
Let us consider the operator T : M → X defined by T (x) = x for all x in M. Since
T ∗(x∗) = 0 for all x∗ in EX∗ \G, it follows that T is not nice. By [9, Lemma I.1.5],
G = Eker(π) and, for all x∗ in ker(π),

||x∗|M || = ||x
∗ + M⊥|| = ||x∗ − π(x∗)|| = ||x∗||.

We deduce that the map T ∗
|ker(π)

is a linear isometric bijection from ker(π) onto M∗ and,
as a consequence, T ∗(x∗) belongs to EM∗ for all x∗ in G. Next we prove that T is an
extreme operator. Let S be in L(M, X) such that ||T ± S || ≤ 1. Let x∗ be in G. Then
||T ∗(x∗) ± S ∗(x∗)|| ≤ ||T ∗ ± S ∗|| ≤ 1. Since T ∗(x∗) belongs to EM∗ , we conclude that
S ∗(x∗) = 0. Taking into account that EX∗ ⊆ G

w∗
, the Krein–Milman theorem allows us

to conclude that S = 0. We have proved that T is an extreme nonnice operator and this
is a contradiction. �

4. The results

We can now state the main result in this paper.

Theorem 4.1. Let X be an almost CL-space. Then X is nice if and only if X is
isometrically isomorphic to c0(I) for some nonempty set I.
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Proof. In view of [3, Proposition 2.1], we only need to prove the ‘only if’ part. Let e∗0
be in mexBX∗ . By [14, Lemma 3] and [11, Theorem 3.1], Re∗0 is a semi-L-summand in
X∗. Let π be the (only) semi-L-projection in X∗ such that π(X∗) = Re∗0. We are going
to prove that π(e∗) = 0 for all e∗ in EX∗ \ {±e∗0}. On the contrary, let e∗ be in EX∗ \ {±e∗0}
such that π(e∗) , 0. Since e∗ , ±e∗0, we can write

e∗ = ||π(e∗)||
π(e∗)
||π(e∗)||

+ ||e∗ − π(e∗)||
e∗ − π(e∗)
||e∗ − π(e∗)||

with ||π(e∗)|| + ||e∗ − π(e∗)|| = 1, which is a contradiction. We obtain

||e∗ + Re∗0|| = ||e
∗ − π(e∗)|| = ||e∗|| = 1

for all e∗ in EX∗ \ {±e∗0}. By [5, Theorem 1 and Proposition 1], X∗ , lin(EX∗ \ {±e∗0})
w∗

,
and Proposition 3.3 shows that {±e∗0} is structurally open. From this, we see that

mexBX∗ is structurally open. Since X is an almost CL-space, EX∗ ⊆ mexBX∗
w∗

.
Proposition 3.4 allows us to conclude that EX∗ = mexBX∗ . Hence, {±e∗} is structurally
open for every e∗ in EX∗ and [5, Proposition 2] ends the proof. �

The following result improves [3, Corollary 2.6], where it is assumed that the
measure space involved is σ-finite.

Corollary 4.2. Let (Ω,A, µ) be a measure space such that X = L1(Ω,A, µ) is a nice
Banach space. Then X = R or X = l2∞.

Proof. As we have said before, X is an CL-space. By the above theorem, X is
isometrically isomorphic to c0(I) for some nonempty set I. Now the result is a
consequence of [9, Theorem I.1.9]. �

By using the fact that L1-preduals are CL-spaces, we obtain the following corollary.

Corollary 4.3. Let X be a nice Banach space such that X∗ is isometrically isomorphic
to L1(Ω,A, µ) for some measure space (Ω,A, µ). Then X is isometrically isomorphic
to c0(I) for some nonempty set I.

The above Corollary improves [5, Theorem 3]. Bearing in mind that G-spaces and
simplex spaces are L1-preduals, this result includes [5, Theorem 2] and [4, Theorem
2.4] as particular cases.

We will now characterise nice spaces in a class of Banach spaces which includes
Banach spaces with the Radon–Nikodỳm property (RNP for short; see [6] for
information about RNP). The relationship between Banach spaces having RNP and
almost CL-spaces was established in [13, Theorem 1].

Theorem 4.4. Let X be a nice Banach space such that BX = co(EX). Then X is
isometrically isomorphic to ln∞ for some n ∈ N.
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Proof. Fix e∗0 in EX∗ and let e∗ be in EX∗ \ {±e∗0}. Then there exist x, y in EX such
that e∗(x) , e∗0(x) and e∗(y) , −e∗0(y). By [3, Proposition 2.8], |e∗(x)| = |e∗0(x)| = 1 and
|e∗(y)| = |e∗0(y)| = 1. We can suppose that e∗(x) = e∗(y) = 1. Hence, e∗0(x) = −1 and
e∗0(y) = 1. Therefore, 1

2 (x + y) is an element in BX which satisfies e∗( 1
2 (x + y)) = 1

and e∗0( 1
2 (x + y)) = 0. From [3, Theorem 2.2], X∗ , lin(EX∗ \ {±e∗0})

w∗
. By Proposition

3.3, {±e∗0} is open in the structure topology. Once we have proved that the structure
topology is ‘discrete’, we derive from [5, Proposition 2] that X is isometrically
isomorphic to c0(I) for some nonempty set I. To finish the proof, it only remains to
take into account that Ec0(I) is nonempty if and only if I is finite. �

It is well known that Banach spaces having RNP satisfy the Krein–Milman property.
Whether the Krein–Milman property implies RNP is a long-standing open problem in
the theory of Banach spaces.

Corollary 4.5. Let X be a Banach space having RNP. Then X is nice if and only if
X = ln∞ for some n ∈ N.

Infinite-dimensional reflexive Banach spaces cannot be nice (see comments
below [3, Proposition 2.8]). Finite-dimensional nice spaces were described in
[3, Theorem 2.12]. These results are now obtained as a consequence of the fact that
reflexive Banach spaces have RNP.

Corollary 4.6. Let X be a reflexive Banach space. Then X is nice if and only if X = ln∞
for some n ∈ N.
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