# UNIVERSITY OF KIEL RADIOCARBON MEASUREMENTS V

### H. WILLKOMM and H. ERLENKEUSER

# C<sup>14</sup> Laboratory of the Institut für Kernphysik, University of Kiel

Measurements reported in this paper were obtained with the 4.5 L and 3 L CO<sub>2</sub> counters, details of which were given earlier (Radiocarbon, v. 11, p. 423). The automatic data recording system built in 1968 (Hänsel, 1968) is now operating for both counting apparatus. For each one the counts of the guard counters ring (A counts), the total counts of the C<sup>14</sup> counter (B counts), the coincidences of central and guard ring counter (AB counts), and the anticoincidences ( $\overline{AB}$  counts) are tape punched every 100th minute. By an ALGOL program, all counts are checked first for large disturbances. Secondly, equation  $B = AB + \overline{AB}$  must hold (as an integral check for proper operation of logical circuitry and the data recording system) and finally statistical compatibility is examined before age and other data for the actual counting apparatus are computed. This detailed check of counting rates by computer has proved to be very efficient to yield reliable long-term measurements.

In 1969, a new technique for  $CO_2$  gas purification was developed. In the former (Radiocarbon, v. 8, 1966, p. 235; Münnich, 1957a)  $CO_2$ was absorbed in a NH<sub>4</sub>OH–CaCL<sub>2</sub> solution and precipitated as CaCO<sub>3</sub>.  $CO_2$  was liberated again by sulfuric acid and dried. Gas quality, though generally good, in some cases showed great variations and purification had to be repeated. At the end of 1968, after 3 years of steady operation, ammonium carbamate contamination of glass tubes and bulbs prevented efficient gas purification. The use of active charcoal seems to be a reliable, straightforward purification technique.

 $\rm CO_2$  is prepared by combustion, using two quartz tubes as described by de Vries (1953). Oxidation is performed by hot Pt-Asbestos and CuO (600°C). A first purification step is accomplished by bubbling the gas through solutions of potassium permanganate, potassium bichromate, and a mixture of conc. sulfuric acid and diphenylamine (for binding nitrogen oxides). The gas is dried in a two-stage cold trap at  $-78^{\circ}C$  and then frozen in two liquid air traps under vacuum pumping.

For secondary purification  $CO_2$  slowly enters a stainless steel cold trap at liquid air temperature filled with 50 g of active charcoal. The trap outlet is vacuum pumped. When all the gas (ca. 5 L atm) is adsorbed, the inlet valve is shut and the trapped  $CO_2$  is allowed to evaporate slowly, being trapped again in two succeeding vacuum pumped liquid air traps. Evaporation is completed by heating the charcoal to 100°C for about half an hour.  $CO_2$ , obtained in this way, does not require further purification or drying. Gas yield is better than 99.5%. Charcoal is regenerated by degassing at 750°C under vacuum. Up to January 1970, this process was applied to more than 90 gas samples; excellent counter gases have been obtained. Charcoal filling has not been replaced at this time. The second purification step is completed within two hours. Outgassing requires about the same length of time and often runs overnight.

Age calculations are based on 95% of NBS oxalic acid standard activity with modern value A.D. 1950. Results are calculated using Libby half-life and are given in the B.P. scale. Errors correspond to 1  $\sigma$  variation of sample net counting rate including statistics of modern standard and background. Uncertainty in C<sup>14</sup> half-life and in secular variations have not been taken into account. Unless otherwise stated dates are not corrected for isotopic fractionation.

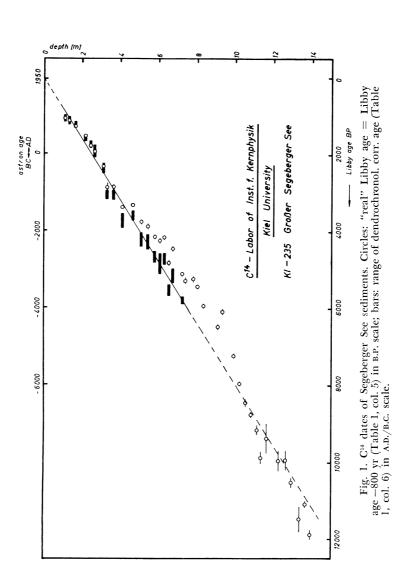
#### ACKNOWLEDGMENTS

We thank K. G. Hänsel for developing and setting up the data recording system and Mrs. H. Metzner for  $C^{13}/C^{12}$  measurements.

#### I. GEOLOGIC SAMPLES

#### Segeberger See series

Lake sediments of the Grosser Segeberger See (53° 56.6' N Lat, 10° 19.4' E Long), NW Germany. Coll. and subm. 1967 by F. R. Averdieck, Inst. f. Ur- und Frühgeschichte, Univ. Kiel, who also made pollen analysis. Basin of lake was formed by glaciers during last glaciation (Würm). In subsequent late glacial and post-glacial, detritus gyttja sediments up to 15 m thick were deposited. Samples were taken by a Livingstone corer (4 cms diam.). Except the basal meters of sediment, which consisted of pure clay, all layers contained enough organic material for C<sup>14</sup> measurement within 6 to 12 cms. Carbonate was removed by chloric acid. Samples were taken ca. every 30 cm, and pollen were analyzed every 2.5 cm. Thus we have a complete pollen diagram of the whole post-glacial with a fairly close set of C<sup>14</sup> dates. In this region, analogous measurements on bogs do not reach beyond 5000 or 6000 yr B.P.


General Comment: by linear extrapolation of Libby values of the upper layers, we get an apparent age of 940 yr B.P. for contemporary sediment. Also some pollen analytic boundaries show about the same age difference when compared with corresponding layers in bogs. C<sup>13</sup> values show no severe isotopic fractionation between atmospheric CO<sub>2</sub> and sediments; the discrepancy may be explained by the assumption (cf. Münnich, 1957b), that in the lake part of dead carbon is recycled according to

$$CO_3^{-} - + CO_2 + H_2O \rightarrow HCO_3^{-}$$
.

We assumed a constant fraction of dead carbon in the organic part of lake sediments and tested different values for this fraction to get the correct age of 0 yr B.P. for contemporary sediments. With 10% dead carbon, the measured Libby age (Table 1, col. 4) is 800 yr older than the real Libby age (col. 5). These values were corrected dendrochrono-logically until 6000 B.P. according to pub. tree-ring data (Willkomm, 1968). The straight line representing the least squares fit to these "astro-

| C <sup>14</sup> – Labor Kiel |          | Grosser Segeberger See |         |       |        | KI — 235    |         |
|------------------------------|----------|------------------------|---------|-------|--------|-------------|---------|
| 1                            | 2        | 3                      | 4       |       | 5      | 6           |         |
|                              | Depth    |                        | Libby   |       | Libby  | Rang        |         |
| 1                            | within   |                        | measu   |       | age    | dendrocł    |         |
| Lab.                         | sediment | $C^{_{13}}$            | ±       | lσ    | "real" | corr. age ( | from 5) |
| no.                          | m        | %0                     | B.F     | γ.    | B.P.   | A.D./B      | .Р.     |
| 235.01                       | 13.90    |                        | 12690 ± | = 130 | 11890  |             |         |
| 02                           | 13.67    | -25                    | 11890   | 95    | 11090  |             |         |
| 03                           | 13.34    |                        | 12290   | 340   | 11490  |             |         |
| 04                           | 12.94    |                        | 11320   | 120   | 10520  |             |         |
| 05                           | 12.63    |                        | 10750   | 280   | 9950   |             |         |
| 06                           | 12.27    |                        | 10770   | 280   | 9970   |             |         |
| 08                           | 11.64    |                        | 10180   | 390   | 9380   |             |         |
| 09                           | 11.36    |                        | 10670   | 170   | 9870   |             |         |
| 10                           | 11.14    |                        | 9950    | 130   | 9150   |             |         |
| 11                           | 10.85    |                        | 9560    | 75    | 8760   |             |         |
| 12                           | 10.56    |                        | 9250    | 100   | 8450   |             |         |
| 13                           | 10.22    |                        | 8760    | 55    | 7960   |             |         |
| 14                           | 9.94     |                        | 8020    | 50    | 7220   |             |         |
| 16                           | 9.33     |                        | 6880    | 85    | 6080   |             |         |
| 17                           | 9.10     | -24                    | 7270    | 85    | 6470   |             |         |
| 19                           | 8.35     |                        | 6730    | 90    | 5930   |             |         |
| 20                           | 8.06     |                        | 6240    | 60    | 5440   |             |         |
| 21                           | 7.81     |                        | 6030    | 85    | 5230   |             |         |
| 43                           | 7.41     | -25                    | 6060    | 95    | 5260   |             |         |
| 23                           | 7.27     |                        | 5820    | 45    | 5020   | -3910 to    | o —3730 |
| 44                           | 6.77     |                        | 5250    | 95    | 4450   | -3390       | -3000   |
| 25                           | 6.54     |                        | 5610    | 90    | 4810   | -3720       | -3420   |
| 26                           | 6.30     |                        | 4960    | 40    | 4160   | -2900       | -2600   |
| 27                           | 6.07     |                        | 5040    | 80    | 4240   | -3150       | -2630   |
| 28                           | 5.80     |                        | 4930    | 45    | 4130   | -2850       | -2570   |
| 29                           | 5.44     |                        | 4660    | 95    | 3860   | -2500       | -2140   |
| 30                           | 5.10     |                        | 4550    | 75    | 3750   | -2450       | -2080   |
| 31                           | 4.65     | -31                    | 4110    | 45    | 3310   | -1750       | -1530   |
| 33                           | 4.09     |                        | 4150    | 55    | 3350   | -1930       | -1570   |
| 34                           | 3.64     |                        | 3630    | 70    | 2830   | -1200       | - 980   |
| 35                           | 3.32     | -27                    | 3650    | 110   | 2850   | -1210       | - 960   |
| 36                           | 3.11     |                        | 3120    | 55    | 2320   | -570        | - 300   |
| 37                           | 2.68     |                        | 2730    | 75    | 1930   | - 130       | + 210   |
| 38                           | 2.42     |                        | 2580    | 65    | 1780   | 110         | 300     |
| 39                           | 2.18     |                        | 2390    | 50    | 1590   | 280         | 470     |
| 40                           | 1.66     |                        | 2070    | 60    | 1270   | 630         | 820     |
| 41                           | 1.36     |                        | 1930    | 60    | 1130   | 730         | 950     |
| 42                           | 1.11     | -31                    | 1890    | 60    | 1090   | 780         | 980     |

TABLE 1  $C^{14}$  dates of Segeberger See sediments Age calculations were made without  $\delta C^{13}$  corrections.



nomical" dates yields the required value of 0 B.P. for surface sediments (Fig. 1).

According to these values, mean sedimentation rate was fairly constant during the last 6 millennia except for short variations. Fig. 1 assumes similar rates of sedimentation and chemical behavior of the lake during period investigated. If these assumptions are valid, then differences between the "real" Libby age and the extended straight line may be interpreted as variations in the recent value of the C<sup>14</sup> content. It follows from Fig. 1 that deviation of recent activity has a maximum of  $\Delta C^{14} = 110\%$  corresponding to 900 yr between 6000 B.P. and 7500 B.P. (astronomic age) and decreases to 0% at 8500 B.P. Beyond 8500 B.P., Libby age and astronomic age do not show statistically significant difference. These determinations support the results of Stuiver concerning sedimentation in 3 lakes (Stuiver, 1967; 1969, p. 550) and calibration by varve chronology (Tauber, 1970).

### KI-315. Soholm, Profile 4

# $104.5 \pm 1.2\%$

Rootlets, 165 cm below surface, taken from soil sec. near Soholm (54° 41.9' N Lat, 9° 4.6' E Long), Schleswig-Holstein, Germany. Coll. and subm. 1969 by G. Jatho, Geog. Inst., Univ. Kiel. Surface vegetation: *Calluna, Pinus, Picea.* Below several differently strong leached sandy layers a meadow ore layer extended ca. 60 cm to 160 cm depth, overlying sample. *Comment*: sandy meadow ore layer was formed in Middle age when large areas were deforested for production of charcoal needed for smelting of numerous local bog-iron ore deposits. Rootlets should date beginning of meadow ore layer formation, because younger vegetation was not expected to penetrate stone-like layer. Result disproves assumption.

## KI-317. Soholm, Profile 1

### $12,250 \pm 170$ 10,300 в.с.

Well-preserved wooden branches, 280 cm below surface, from soil sec. (54° 43.5 N Lat, 9° 1.9' E Long) near Soholm, Schleswig-Holstein, Germany. Coll. and subm. 1969 by G. Jatho. Overlying sample were several layers of alternating humus and bleached sands. Deepest layer that was to be dated by branches was formed by air blown sands.

#### II. ARCHAEOLOGIC SAMPLES

### Möllenknob series

Excavations near Archsum (54° 52.7' N Lat, 8° 22.5' E Long) on Sylt I., Germany (Radiocarbon 1968, v. 10, p. 331; 1969, v. 11, p. 428). Coll. 1967 by R. Kenk; subm. 1967 by G. Kossack and F. R. Averdieck, Inst. f. Ur- und Frühgeschichte, Univ. Kiel.

### Möllenknob 245(2)

Cereals, weeds, and small pieces of charcoal from small ditches. Younger Bronze age or older pre-Roman Iron age.

530

|         |            | $2970 \pm 60$ |
|---------|------------|---------------|
| KI-243. | Fraction A | 1020 в.с.     |
|         |            |               |

Coarse fraction consisting of cereals only.

### KI-244. Fraction B

Second fraction of sample. *Comment*: no significant difference between the two fractions.

|         |            |         | $2070 \pm 45$ |
|---------|------------|---------|---------------|
| KI-237. | Möllenknob | 288(11) | 120 в.с.      |

Carbonized cereals and Gramineae, 100 to 120 cm below surface. Some rootlets of recent origin had to be removed. Expected age: ca. A.D.  $\pm$  0.

## KI-249. Münchsteinach PfA-Reg 11/1 (1966-1970) 295 ± 50 A.D. 1655

Human skull, from Münchsteinach (49° 34.4' N Lat, 10° 37.1' E Long), Germany. Coll. 1966 by H. Metzeler, Evang. Luth. Pfarramt, Münchsteinach/Neustadt a.d. Aisch; subm. 1968 by H. Helmuth, Anthropol. Inst., Univ. Kiel. Skull was found when renovating the former Benediktinerabtei Münchsteinach, 30 cm below floor flaps. Considering  $C^{14}$  variations (Willkomm, 1968) skull may date from A.D. 1450 until 1640.

### KI-316. Eggstedt

## 2190 ± 50 240 в.с.

 $3060 \pm 65$ 

1110 в.с.

Peat, enclosing a human skull, found near Eggstedt and Schafstedt (54° 4' N Lat, 9° 15' E Long), Schleswig-Holstein, Germany. Coll. 1969 by J. Peters, Eggstedt; subm. 1969 by H. Helmuth and F. R. Averdieck. Probably originating from pre-Christian Iron age, 500 B.C. to  $\pm$  0 B.C. Comment (F.R.A.): belongs to Pollen Zone X (Overbeck, 1950, p. 106). Low but significant values of Fagus and Carpinus. Cereals below 1%, but Secale and Linum usitatissimum are found.

#### **Belau series**

Samples of Belau (54° 6.7' N Lat, 10° 29.5' E Long), NW Germany. KI-90 and KI-230 coll. and subm. 1966 by F. Tidelski, who also made pollen analysis (unpub.). KI-283 coll. 1967 by E. Erich and subm. 1968 by F. R. Averdieck. *Comment* (E.E. and F.T.): samples coll. near to Schmalensee lake for proving the name *stagnum colse* (= lake of charcoal) appropriate. Other authors attribute name to the Stocksee (6 kms E) and thus obtain unnecessary extension of *limes Saxoniae*, wall of frontier built by Charlemagne (Ostertun, 1967).

### KI-90.

 $4270 \pm 60$ 2320 B.C.

Wood (Quercus) 170 cm below surface. Forest was necessary for charcoal production of greater extent.

| KI-230.                                          | 4800 ± 75<br>2850 в.с. |
|--------------------------------------------------|------------------------|
| Peat of about same stratigraphic layer as KI-90. | $2530 \pm 40$          |
|                                                  | 233V ± 4V              |

580 в.с.

#### KI-283.

Charcoal.

III. DENDROCHRONOLOGIC SAMPLES

#### Wienhausen series

Dendrochronologically dated wood from monastery of Wienhausen/ Celle (52° 34.5' N Lat, 10° 12' E Long). Coll. and subm. by D. Eckstein and J. Bauch, Lehrstuhl f. Holzwirtschaft, Univ. Hamburg, Reinbek. Dated by D. Eckstein and J. Bauch.

 $690 \pm 35$ Wienhausen 1  $\Delta = (-4.6 \pm 4.1)\%e$ а.**д. 1260 KI-238**. A.D. 1275 to 1285 730 + 30

| KI-239. | Wienhausen 2 | $\Delta = (-8.3 \pm 3.5)\%$ | А.D. 1220 |
|---------|--------------|-----------------------------|-----------|
| ар 1265 | to 1275      |                             |           |

A.D. 1205 to 12/5

|         |              |                              | $970 \pm 35$ |
|---------|--------------|------------------------------|--------------|
| KI-240. | Wienhausen 3 | $\Delta = (-17.5 \pm 4.0)\%$ | а.д. 980     |
| 1005    | 1105         |                              |              |

A.D. 1095 to 1105

General Comment: A.D. values under sample are determined by treering counting.  $\Delta$  values are calculated according to:

$$\Delta = 1000 \underline{A_{m} \cdot e^{\lambda T} - A_{o}}_{A_{o}}$$

where  $A_m$  = measured activity (not corrected for  $\delta C^{13}$ , because trees never have a serious deviation to  $\delta C^{13} = -25\%\epsilon$ ; T = dendrochron. age B.P.;  $\lambda = \frac{1}{8270}$  = best value available for decay constant;  $A_m \cdot e^{\lambda T}$  is activity reduced for A.D. 1950; and  $A_0$  = standard recent activity (= 95%) of oxalic acid).

### Correction

In Kiel IV, v. 11, p. 425, 3rd line of Keitum series should be omitted.

#### References

Hänsel, K.-G., 1968, Eine C<sup>11</sup>-Messapparatur mit einem Oeschgerzählrohr zur Altersbestimmung organischer Substanzen: Diplomarbeit, Kiel.

Münnich, K. O., 1957a, Messung natürlichen Radiokohlenstoffs mit einem CO.-Zählrohr: Ph.D. dissert., Heidelberg.

- 1957b, Messungen des C14-Gehalts von hartem Grundwasser: Naturwissenschaften, v. 44, p. 32.

- 1959, C<sup>14</sup>-Altersbestimmungen von Grundwasser: Naturwissenschaften, v. 46, p. 10-12.

Ostertun, H., 1967, Der limes Saxoniae zwischen Trave und Schwentine: Gesell. f. Schleswig-Holsteinische Geschichte Zeitschr., v. 92.

Overbeck, Fritz, 1950, Die Moore Niedersachsens: Bremen-Horn; Walter Dorn Verlag.

532

Stuiver, Minze, 1967, Origin and extent of atmospheric C<sup>14</sup> variations during the past 10,000 years: Symposium on radioactive dating and methods of low-level counting, I.A.E.A., Monaco 1967, p. 27-40.

- 1969, Yale natural radiocarbon measurements IX: Radiocarbon, v. 11, p. 545-658.

Tauber, Henrik, 1970, The Scandinavian varve chronology and C-14 dating: XII Nobel Symposium Proc., Uppsala 1970, in press.

de Vries, HÍ. and Barendsen, G. W., 1953, Radiocarbon dating by a proportional counter filled with carbon dioxide: Physica, v. 19, p. 987-1003. Willkomm, Horst, 1968, Absolute Altersbestimmungen mit der C<sup>14</sup>-Methode: Natur-

wissenschaften, v. 55, p. 415.

Willkomm, H. and Erlenkeuser, H., 1966, University of Kiel radiocarbon measurements I: Radiocarbon, v. 8, p. 235-238.

– 1968, University of Kiel radiocarbon measurements III: Radiocarbon, v. 10, p. 328-332.

- 1969, University of Kiel radiocarbon measurements IV: Radiocarbon, v. 11, p. 423-429.