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THE REDUCTIBILITY THEOREM FOR LINEARISED
POLYNOMIALS OVER FINITE FIELDS

STEPHEN D. COHEN

A self-contained elementary account is given of the theorem of S. Agou that classifies all
/ » n - l \

composite irreducible polynomials of the form P i xp - fa n _ ix p + . . . + aox I over a
finite field of characteristic p. Written to appeal to a wide readership, it is intended to
complement the original rather technical proof and other contributions by the author and
by Moreno.

1. INTRODUCTION

A linearised polynomial f{x) over a field Fq of prime power order q = p is one
of the form

(1) f(x) = anx
p" + an_1:c

pn~1 + ... + aix
p + aox

in F9[x], where n > 0. Because (x \-y)p = xp + yp in Fq, evidently a linearised
polynomial / represents a linear mapping on Fq as a vector space over the prime field
Fp; thus

f(x + y) = /(*) + f{y) for all x, y in Fq,
\ )

/(ex) = cf(x) for all x in Fq and c in Fp.

A simple consequence is that the set of roots of / form a linear subspace of any field
containing them. Not suprisingly, because of this structure, much can be said, both
theoretically and practically, about questions of reducibility and root finding for lin-
earised and related polynomials (see [8, Chapter 3, Sections 4 and 5 and the Notes on
pp.136-138]).

The theorem which is our topic was first proved by S. Agou in a series of papers
[1, 3, 4]. It specifies precisely those composites of linearised polynomials P(f), where
P is a polynomial of degree m over Fq, that are irreducible over Fq, asserting, in par-
ticular, that P(f) is always reducible when n > 2. Moreover, when n = 2, irreducible
composites only occur if p = 2 and m is odd. (The full statement is given later.)
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Now, composites of linearised polynomials have been most studied when the indices
of x in the terms of f(x) are powers of q (not just p as shown in (1)), in which case /
is /'^-linear over any extension of Fq. For such, very general theorems exist displaying
the explicit reducibility pattern of P(f) over Fq ; this comprises a listing of the degrees
of the irreducible factors of / with the number of factors of each degree (see, for
example, [0, 10]). These results are a rich source of supply of irreducible polynomials
of arbitrary degree over Fq . On the other hand, although factorising an arbitrary P(f)

in any particular case is relatively easy, the task of describing the general reduciblity
pattern within a single theorem is a challenge, and even to delineate the relevant / and
P for which P(f) is irreducible is a non-trivial exercise. In aggregate, Agou's'proof of
the reducibility theorem in [1, 3, 4] is somewhat lengthy with many technical details
and the consideration of particular cases. (In fact, we note that, at the cost of yet
more complication, he has extended his argument in some instances [2, 5] to yield the
minimum degree of an irreducible factor of P( / ) . )

In [7], I gave a much shorter conceptual explanation of the theorem based, however,
on relatively sophisticated ideas involving group theory applied to the Galois group of
a polynomial associated with / . Finally, a short proof of the theorem for n > 2

can be extracted from two more recently published articles of Moreno [11, 12]. In
qualifying this, we remark that the proof for p = 2 in [11] is derived from more elaborate
considerations while that for p > 2 in [12] (by induction on n) needs Agou's work for
n = 2 (itself the product of detailed effort) to start it off. It has also to be said that the
exposition is unclear; there are undoubtedly several misprints (for further comments see
the review of [11] in Mathematical Reviews, 88g: 11091). Nevertheless, drawing on the
virtues of his work, I found two aspects (mentioned below) that are the key to a brief
proof, simple enough I felt to be worthwhile assembling here for general appreciation.
Apart from some very basic facts about vector spaces and finite fields it has been made
self-contained. The new trick is to split the proof into two parts and apply the easier
first part (for which n = 1) to the second.

2. SIMPLIFICATIONS

Some simplifications are obvious. We can assume that / and P are monic; that is,

on = 1 in (1) and P(x) = xm + bm_1x
m~1 + ... + bQ, say. Trivially P(f) is reducible

over Fq whenever P is, and therefore we suppose that P is irreducible. Finally, because

any polynomial in i^x*"] (being the pth power of one in -F'.Jz]) is reducible, we can in

(1), without loss, impose the restriction that a0 ^ 0.

Next, let /? be a root of P{x) in Fq<n and a any root of f(x) — /? (in a suitable

extension); thus a is also a root of P(f)- Because Fq(/3) = Fqm has degree m over

Fq, we have that deg[ir,(a): Fq] = mdeg[F,(a): Fq(f3)] and recover the (well-known)
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conclusion that P(f) is irreducible over Fq if and only of f(x) — /? is irreducible over
Fqm . In much of our discussion therefore we may take m = 1 and concentrate on the
reducibility of polynomials of the form f(x) — 6 over Fq. The latter are referred to as
affine polynomials and are discussed with applications to coding theory in [6, Chapter
11]. Given one root a of such a polynomial, the full set of roots is the translate a + L

of L, the linear space of roots of / . We highlight the fact (featured in [12]) that an
affine polynomial for which / is non-singular over Fq is bound to be reducible.

LEMMA 1. Suppose that the linearised polynomial f has no non-zero root in Fq.

Then, lor any b in Fq, f(x) — b has a linear factor x — A, A € Fq.

PROOF: / is an injective mapping on Fq since, if x, y G Fq are such that f(x) =

f(y) then, by (2), f(x — y) = 0 and so x = y, by hypothesis. Because Fq is finite, it
follows that / is also surjective which implies the result as slated. U

3. T H E CASE n = 1.

We set f(x) = xp — ax , where a ( ^ 0) € Fq . Of course the reducibility of xp — ax— b

is well enough known (see [8, pp. 127-129]) but we review it here within the present

context.

From Lemma 1, xp — ax — b can be irreducible over Fq only if xp~1 — a has a root

in Fq. Assume therefore that Ap~1 = a, where A £ Fq, in which case irreducibility is

equivalent to that of xp — x — b/Ap. Replacing b/Ap by b we may thus suppose that

a=A = l.

Let Tk(x) be the linearised polynomial x + xp •+• . . . + xp , the trace function

from Fq to Fp (because xp = x for all x in Fq ). Clearly the image space of the linear

mapping xp — x acting on Fq has dimension k — 1 (because the null space is Fp) and

is contained in the null space of the linear mapping Tfc(x). Indeed these spaces must

be identical because l'k(x) = 0 has (al most) pk~1 solutions x in Fq. We conclude

that b — xp — x for some x in Fq if and only if Ifc(&) = 0.

Suppose that 2fc(6) ^ 0 (so that b = xp — x is insoluble in Fq). Let a be a root

of xp — x — b\ thus a £ Fq. The full set of roots is {a + c \ c £ Fp] and the fields

Fq(a + c), c € Fp are identical. Hence deg[Fq(a): Fq] divides the prime p. The only

conclusion possible is that Fq(ct) = Fqp and xp — x — b is irreducible. We summarise

the above reasoning in a lemma.

LEMMA 2. For any b in Fq, xp — ax - b is irreducible over Fq if and only if
a = Ap~l for some A in Fq and Tk(a/Ap) £ 0.

We deduce the first (and smaller) part of Agou's theorem.
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THEOREM. Part (i) Let P(x) - xm -I- bm^x™'1 + ... + b0 be irreducible over Fq

and (3 be a root of P. Then, for any non-zero a in Fq, P(xp — ax) is irreducible over

Fq if and only if a"" ' ' - 1 ' " ' ' - 1 ' = 1 and Tkm{f3IAp) £ 0. Fere m, = g.c.d.(m,p - 1)

and Ap~i = a, where A e F,m .

In particular, if A is in Fq, then P(xv — Ap~1x) is irreducible over Fq if and

only if Tjt(6m_i /Ap) ^ 0 (or equivalently xp — Ap~1x — 6m_i is irreducible over Fq or,

indeed, insoluble over Fq).

PROOF: Apply Lemma 2 to xp - ax - 0 over F,m . Now, a = A1"'1 for A E Fqm

if and only if

(3) tt(9'

But, since aq~l = 1, then (3) holds if and only if ah = 1, where

Moreover, (qm - l ) / ( g - 1) = q™'1 +qm~2 + . . .+ 1 = m (mod p - 1) and consequently

Finally, i f i g F , , then >!' = yl while /? + /?« + . . . + /?«m"1 = - 6 m _ ! . Hence

Tkm((3/Ap) = rk{-bm_1/A
p) and the proof is complete. D

4. THE CASE n > 1.

Begin with a simple version of the "division algorithm" for linearised polynomials,
not necessarily nionic, as follows.

LEMMA 3. Gi veil a linearised polynomial f over Fq, there exists another linearised

pvlynonu'al g over Fq (g being the zero polynomial if n = 0) and an element r in Fq

such thai

f(x) = y(xp — x) + rx.

PROOF: This is by induction on n, the case n = 0 being trivial. Suppose n ^ 1
and put

f*(x) = f{x) - an(x
p - x ) " " " 1 = («,„_! + an)x

pn~l +...,

another linearised polynomial but of degree (at most) pn~l • By induction, there is

a linearised polynomial g* such that /*(») = g*(xp — x) + rx and we simply define

g(x) = xp + 5*(s) to reach the conclusion desired. U

Next comes a deduction from Lemma 3 also crucial in [12], although used there
for a different purpose.
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LEMMA 4. Suppose that the linearised polynomial f over Fq has a non-zero root

A in Fq. Then there exists a linearised polynomial g over Fq such that f(x) =

g(xP-AP~1x).

PROOF: f(Ax) is a liuearised polynomial over Fq with J. as a root. By Lemma
3, for some linearised polynomial gx and r in Fq, we have f(Ax) = gi(xp — x) + rx.
Actually, r = 0 because x = 1 yields 0 = f(A) = gi(0) + r = r. The result follows,
with g{x) =gi{x/Ap). D

From now on, we suppose that 71 > 2 and / is monic.

LEMMA 5. Suppose that f is a linearised polynomial over Fq with n ^ 2. Then,

for ajiy b in Fq, f(x) — b is irreducible over Fq if and only if p — n — 2, / has the

form

(4) /(«) = x{x + A)(x2 + Ax + B)

vv/iere A and B are (non-zero) elements of Fq and the quadratics x2 + Ax + B and

x2 + Bx + b are both irreducible over Fq .

Note. By Lemma 2, when p = 2, x2 + Ax + B is irreducible over Fq if and only if

— 1 (since 1 is the only non-zero member of F2); similarly x2 + Bx + b is
irreducible if and only if Tk(b/B2) = 1.

PROOF: By Lemrna 1 we may assume that / has a root A in Fq. Using Lemma
4, write /(x) = g(xp - Ap~xx) and put g*(x) = g(x) - b. Then f(x) - b =

g*(xp — Av~lx) . Apply the last assertion of Part (i) of the Theorem with m = deg (7* =
pn~1. Since g is a linearised polynomial, the coefficient 6m_i of xm~l in g* is zero
unless pn~l — 1 = pn~2 which occurs only if p = n = 1. Hence, with this excep-
tion, Tk{bm-i/Ap) — 0 and f(x) — 6 is reducible. Finally, suppose p = n — 2 and
g*(x) = x2 + Bx + b. By Part (i) of the Theorem again, f(x) + 6 is irreducible if and
only if both g*(x) and x2 + Ax + B are. This completes the proof. U

We deduce the major part of the Theorem from Lemma 5.

THEOREM. Part (ii) Let P be an irreducible polynomial of degree m over Fq (as

in Part (i)) and f be a monic linearised polynomial over Fq with n ^ 2. Then P(f)

is irreducible over Fq if and only if p — n = 2, m is odd, f has the form (4) where A

and B are in Fq and both x2 + Ax 4- B and x2 -f Bx 4- 6m_j are irreducible over Fq.

PROOF: Apply Lemma 5 to f(x) - (3 over F,m , where P(/3) = 0. We conclude
that P(f) is irreducible over Fq if and only if p = n = 2 and / has the form (4) where
A, B € Fqm with x2 + Ax + B irreducible over F,m and l\m(f3/B2) = 1. Assuming
therefore that p = n = 2, we show that these last conditions are equivalent to those
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of the theorem. To see this we note that f(x)/x, being a polynomial in i^[a;], has an

irreducible quadratic factor in Fqm if and only if it has one over Fq and m is odd. (Of

course, if f(x)/x is irreducible over Fq it remains so, or is a product of linear factors

over Fqm). Hence x2 + Ax + B is irreducible over Fqm if and only if A and hence B

are in Fq , x2 -f Ax + B is irreducible over Fq and m is odd.

Finally, these last conditions imply that Tkm(/3/B2) = Tk(bm_1/B
2) (as B is in

Fq ); also Tk(bm-i/B2) = 1 if and oidy if x2 -)- Bx + bm-i is irreducible over Fq . This

completes the proof. D
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