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Abstract
Contagion across various types of connections is a central process in the study ofmany political phenomena

(e.g., democratization, civil conflict, and voter turnout). Over the last decade, the methodological literature

addressing the challenges in causally identifying contagion in networks has exploded. In one of the foun-

dational works in this literature, Shalizi and Thomas (2011, Sociological Methods and Research 40, 211–239.)

propose a permutation test for contagion in longitudinal network data that is not confounded by selection

(e.g., homophily). We illustrate the properties of this test via simulation. We assess its statistical power under

various conditions of the data, including the nature of the contagion, the structure of the network through

which contagion occurs, and the number of time periods included in the data. We then apply this test to an

example domain that is commonly considered in the context of observational research on contagion—the

international spread of democracy. We find evidence of international contagion of democracy. We conclude

with a discussion of the practical applicability of the Shalizi and Thomas test to the study of contagion in

political networks.

Keywords: social networks, contagion, homophily

1 Introduction

Contagion has been found to characterize, for example, individuals’ decisions to vote (e.g., Bond

et al. 2012; Rolfe 2012), the emergence of civil conflicts across countries (e.g., Maves and Braith-
waite 2013), and the spread of democracy across countries (e.g., Starr 1991). It is, however, well

known that inferences regarding contagion can be confounded by other dynamics that lead

connected units to behave in similar ways (Franzese, Hays, and Kachi 2012). Shalizi and Thomas

(2011) formalize and analyze the problem of inferring contagion in the presence of homophily.

Contagion refers to the influence connected units have on each other, whereas homophily refers

to the tendency for similar units to be connected due to their common traits. The arguments

presented by Shalizi and Thomas (2011) apply to any type of dependence of connections on

units’ traits (e.g., heterophily, whereby dissimilar units tend to form ties)—generally referred to

as “selection.” We follow their terminology and use “homophily” as synonymous with selection.

As a running example, we focus on the spread of democracy across countries. The spread of

democracy is a question of contagion versus homophily; do connected states influence each

other to develop democratic institutions or do similarly governed states tend to be connected

to each other over time? It is also possible that a state’s governing choices are a result of an

unquantified blend of contagion and homophily. The methods we present and illustrate in this

note allow the researcher to test for contagion in a way that is not confounded by the presence of

homophily.

Given the need to estimate contagion separately from network homophily, it is important

to recognize the circumstances where these two effects are confounded. Shalizi and Thomas

(2011) explore this idea in detail, specifically considering the problem of identifying contagion

in observational longitudinal network data. They analyze the problem within the causal diagram
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framework (Pearl 1995) and show that in observational social network data, latent homophily—tie
formation that is attributable to unmeasured attributes of units—and contagion are “generically

confounded” and cannot be identifiedwithout strongparametric assumptions. It is helpful here to

build conceptual bridges between what Shalizi and Thomas (2011) refer to as “latent homophliy”

and conceptual characterizations of the confounding of influence and homophily in political sci-

ence, specifically by Franzese, Hays, andKachi (2012). Franzese, Hays, andKachi (2012) distinguish

between two tie formationmechanisms that confound contagion inferences—common exposure,

which occurs when an exogenous variable effects both tie formation and the outcome variable,

and endogenous selection (or behavior homophily/heterophily), which occurs when tie values at

one timepoint dependonoutcomevalues fromprevious timepoints. AlthoughShalizi andThomas

(2011) do not explicitly model endogenous selection, the identification problems presented

by endogenous selection are equivalent to those presented by latent homophily. Considering

our running example, suppose a researcher sought to model the spread of democracy through

diplomatic networks (Duque 2018). Latent homophily would confound inferences if, for example,

the researcher failed tomeasure any important cultural, geographic, economic, or security factors

that shaped diplomatic relations between countries and future regime type developments—

including countries’ histories of regime type developments. More broadly, as political networks

research commonly focuses on the factors that explain tie formation (e.g., Minozzi et al.
2020), we suspect that the presence of latent homophily in political network data is quite

prevalent.

Shalizi and Thomas (2011) present a few ideas regarding how to make inferences on contagion

in observational dynamic network data despite the presence of latent homophily. One of these

is a permutation test that requires minimal assumptions regarding the structure of contagion

and no assumptions regarding the structure of homophily. Specifically, since the test relies on

associations across time-lagged data, it must be assumed that contagion does not completely

manifest and then dissipate within a single time period—that the contagion effects persist for

more than at least one time period. The test does not condition at all on any network structure,

and does not rely on any assumptions regarding the structure of homophily/selection. In this

paper, we implement this permutation test and show, through simulation, that it provides a

sensible first step to uncover the presence of contagion in longitudinal social network data. We

illustrate the use of the test on the dynamics of contagion of democracy, for which we find

evidence.

2 Shalizi and Thomas Test

Shalizi and Thomas (2011) present a test for contagion that does not condition on the ties between

nodes (units). The process is to randomly permute the nodes in a social network into two groups

(J1 and J2), and estimate the relationship between the outcome variable in one group and the

time-lagged counterpart of the other group while controlling for the time-lagged outcome of the

current group. By iterating over all possible (or a large number of) partitions, and averaging over

all iterations, “there will be a nonzero predictive ability if and only if there is actual contagion,” in

the social network. While the power of this test is low when the time series is short, the random

partition of nodes into bins assures that the analysis is not confounded by conditioning on ties

(i.e., two-node groups) that are themselves potentially formed according to homophily.

The steps of the test are as follows:

1. Given longitudinal network data, randomly partition the nodes into two bins, J1 and J2.

2. Aggregate, by, for example, taking themeanof the outcomevariable Y over all the bin nodes,
at each time step, resulting in an aggregated time series of ȲJ1 (t ),ȲJ1 (t −1), . . . ,ȲJ1 (1) for bin

J1 and time series ȲJ2 (t ),ȲJ2 (t −1), . . . ,ȲJ2 (1) for bin J2.
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3. Estimate the relationship between ȲJi (t ) and ȲJk (t −1), adjusting for ȲJi (t −1), where (i ,k ) ∈

{(1,2), (2,1)}. We use ordinary least squares regression, but other estimators could be used.

4. Repeat Steps 1–3. The total number of partitions possible for equal bin sizes is
( n
n/2

)
.

5. The test for contagion is conducted by calculating empirical p-values with respect to the
distribution of estimated relationships between ȲJi (t ) and ȲJk (t − 1). A left(right)-tailed

p-value is given by the proportion of estimated relationships that are less(greater) than zero.

Intuitively, this test is designed to detect a diffuse contagion signal whereby, due to the

presence of contagion between some of the nodes in the two randomly partitioned groups,

the aggregated values across the two groups are not independent. This indirect form of signal

detection is necessary to avoid conditioning the contagion estimate on the network structure,

which activates the confounding presented by latent homophily.

The Shalizi and Thomas test is a valuable tool in the study of contagion through political net-

works. It does, however, have a few limitations that are important to note. First, it is a hypothesis

test only, allowing one to evaluate the sharp null hypothesis of no contagion. It does not offer

estimates of contagion parameters, or even the capacity to test for contagion through specific

networks. Second, the contagion signal that the test relies on is the association of outcome values

in J1(J2) with recent values of J2(J1), controlling for recent values of J1(J2). The presence of this

signal requires that the system embeds memory of the contagion effect. If contagion manifests

and then dissipates completely within one time period—something that could happen if the time

units are too aggregated—the test will fail to detect a signal. Third, the test can fail in the presence

of a form of quasi-contagion that behaves like “interference” as discussed in the experimental

literature (Bowers, Fredrickson, and Panagopoulos 2013). If one unit’s covariate value affects the

outcomevalueofanotherunit, this can look, to theShalizi andThomas test, likecontagion through

the outcome variables, but it is actually a more subtle form of cross-unit dependence. To give

an example of this dynamic, major policy decisions (e.g., business or trade shut downs due to

the COVID-19 pandemic) made in a country may affect the economy of the country making the

decision as well as the economies of other countries (Cronert 2022). This dynamic would look

like economic contagion to the Shalizi and Thomas test, but it is actually a form of cross-border

economic dependence based on policymaking effects.

3 Simulation

To evaluate the performance of the Shalizi and Thomas test, we conduct a simulation study.1 We

vary the time lengths, homophily and contagion conditions, and network structure, in order to

understand the performance of the Shalizi and Thomas test. The test was implemented on four

separate simulation conditions—one that includes contagion only, one that includes endogenous

homophily only, one that includes both contagion and endogenous homophily, and one that

includes endogenous homophily plus a time shock to outcomevalues. The last condition, the time

shock, is included toevaluate the test’s performancewith time-basedcommonexposure. The time

shock is tuned to create, on average, a correlation of 0.5 in the Y values of units at the same time.
The data generationmodels we use are similar to the ones used by Shalizi and Thomas (2011). We

set the parameter values to assure that all of the data generating processes result in stationary

outcome data.2 The data generation models are outlined below.

Contagion only data:

1. Begin with n nodes in a network, and each node i is assigned a scalar latent variable Xi ∼

U(0,1).

1 Replication code to reproduce the simulation data and results is available in Uppala and Desmarais (2022)
2 We thank anonymous reviewers for pointing out that our initial simulation design created non-stationary data. We use the

pCADFtest function in the R package punitroots to test for stationarity.

Medha Uppala and Bruce A. Desmarais � Political Analysis 474

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
2.

35
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2022.35


2. Generatedirected tiesbetweeneverypairofnodes (i , j )withprobability l og i t−1(−3|xi −xj |).

The smaller the difference between xi and xj , the higher the probability of a tie between i
and j. This produces an n ×n adjacency matrix A, whereAi ,j = 1 represents a directed tie.3

3. Initiate a starting value for the time series data. We useYi (0) = 0.25xi +N (0,0.062).

4. Given theadjacencymatrix fromStep2, contagion incorporated timeseriesdata is simulated

asYi (t ) = 0.25xi +0.3Yi (t −1)+0.7Yk (t −1)+N , where k = 1, . . . ,n and Ai ,k = 1.

Homophily only data:

1. Begin with n nodes in a network and each node i is assigned a scalar latent variable Xi ∼

U(0,1).

2. Initiate a starting value for the time series data. We useYi (0) = 0.25xi +N (0,0.062).

3. Generatedirected tiesbetweeneverypair of nodes (i , j )withprobability l og i t−1(−3|Yi −Yj |).

This produces an n ×n adjacency matrix A, whereAi ,j = 1 represents a directed tie.

4. Produce the values for the next time step asYi (t ) = 0.25xi +0.3Yi (t −1)+N (0,12).

5. Update theadjacencymatrixwhile keeping the current numberof network ties constant and

the probability of the tie is proportional to the similarity ofYi (t ) andYj (t ).4 This results in a

dynamic network where the ties are correlated with the outcome variable.

6. Repeat Steps 4 and 5 for each timepoint.

Contagion and homophily data:

1. Begin with n nodes in a network, and each node i is assigned a scalar latent variable Xi ∼

U(0,1).

2. Initiate a starting value for the time series data. We useYi (0) = 0.25xi +N (0,0.062).

3. Generatedirected tiesbetweeneverypair of nodes (i , j )withprobability l og i t−1(−3|Yi −Yj |).

This produces an n ×n adjacency matrix A, whereAi ,j = 1 represents a directed tie.

4. Given the ties in theadjacencymatrix, contagion incorporated timeseriesdataare simulated

asYi (t ) = 0.25xi +0.3Yi (t −1)+0.7Yk (t −1)+N (0,12), where k = 1, . . . ,n andAi ,k = 1.

5. Update theadjacencymatrixwhile keeping the current numberof network ties constant and

the probability of the tie is proportional to the similarity ofYi (t ) andYj (t ).5

6. With the updated adjacency matrix, repeat steps 4 and 5 until the desired length of time

series data is achieved.

Homophily and time shock data:

1. Begin with n nodes in a network, and each node i is assigned a scalar latent variable Xi ∼

U(0,1).

2. Initiate a starting value for the time series data. We useYi (0) = 0.25xi +N (0,0.062).

3. Generatedirected tiesbetweeneverypair of nodes (i , j )withprobability l og i t−1(−3|Yi −Yj |).

This produces an n ×n adjacency matrix A, whereAi ,j = 1 represents a directed tie.

4. Produce the values for the next time step asYi (t ) = 0.25xi +0.3Yi (t −1)+N (0,12).

5. Add a temporal shock at each timestep asY (t ) =Y (t )+N (0,12).

6. Repeat Steps 3–5 until the desired length of time series data is achieved.

These simulation parameters result in networks with density of 0.3–0.4, tie reciprocity levels

of 0.5–0.6, and first-order autocorrelation in Y of 0.3–0.8. Descriptive visualizations are presented
in the SupplementaryMaterial. The contagion versus homophily-only data generationmodels are

outlined as directed acyclic graphs in Figure 1.

3 Technically, this represents generating data according to homophily, but Y does not cause A in this simulation, and thus
cannot induce confounding.

4 We use the simulate function from the R package ergm to update the adjacency matrix while keeping the tie count and
in turn, the network density constant.

5 Ibid.
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Figure 1.DAGs for the contagion versushomophily-onlydata generationmodels used for the simulationdata.

3.1 Results
All of the results presented in this paper reflect a Shalizi and Thomas test run comprising of 10,000

partition iterations. The results of our simulation study are presented in Figures 2 and 3. The

implementation of the test on the contagion-only data and the contagion-plus-homophily data

shows that the test identifies a positive contagion signal. On the homophily-only data and the

datawithhomophily-plus-timeshock (presented in theSupplementaryMaterial), the testdoesnot

identify a consistent contagion signal, that is, it estimates a signal centered on zero, and actually

some negative bias with short time series—a result that is consistent with the negative “Hurwicz”

bias that arises with dynamic models fit to short time series data (Franzese, Hays, and Cook 2016;

Nickell 1981). In the homophily-only case, the standard deviation of the signal begins to stabilize

after around 30 time steps of data.

When there is contagion in the data, the test is more variable the lower the time series lengths.

For time series lengths greater than 20 steps, the signal converges to approximately 0.35, with or

without endogenous homophliy in the data. In Figure 3, we present summary estimates of the

performance of the Shalizi and Thomas test. We summarize the test’s performance at the 0.05

and 0.10 (two-tailed) significance levels, and consider both power and Type-1 error. With fewer

than 10 time steps, Type-1 error is high, and power is quite low, suggesting that this test should

simply not be used with a relatively short time series. As a point of comparison, we estimated the

correctly specified regression model on the simulated data using ordinary least squares (shown

in the Supplementary material), and found the power to exceed 0.90 even with one timepoint.

With more than 10 time steps, Type-1 error is slightly above the nominal significance levels and

converges to the nominal levels with a longer time series. Statistical power converges to 1.0 with

a long time series.

In addition to the true strength of the contagion effect, we expect the performance of the

Shalizi and Thomas test to improve as the network becomes more dense, as density determines

the degree to which nodes are subject to contagion effects. The results from the contagion-only

simulation at varying levels of network density are presented in the SupplementaryMaterial. With

relatively low density (0.05) the signal is weaker, but the signal strength levels out with densities

of 0.30 or greater.

4 Application: The Spread of Democracy

When it comes to contagion dynamics, one of the domains of political science that would benefit

most from the use of an observational hypothesis test that is not confounded by selection is the

studyof the contagionof country-level outcomesacross international networks. Examples include

the spread of specific policies (Towns 2012), civil conflict (Forsberg 2014), and democracy (Epstein

2005). Due to their national scales and substantial human effects, it is difficult and unethical
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Figure 2. Results from the Monte Carlo simulation study of the Shalizi and Thomas test.
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Figure 3.Theplot summarizes power and Type-1 error of the Shalizi and Thomas test in our simulation study.

to design randomized experiments that would provide design-based tests for dynamics such as

conflict or democracy contagion. The necessity of working with observational data in this context

underpins the importance of the Shalizi and Thomas test.

We focus on the international contagion of democracy through the analysis of Polity scores.

The Polity IV Annual Time Series, 1800–2018 (Center for Systemic Peace, n.d.) is a database that

tracks and compiles regime changes and regime authority in countries with a total population

greater than 500,000 in 2018. This database is extensively used in political science to study regime

changes and effects of regime authority in countries over time. This is also a classic database

used to study the contagion of democracy among networked countries over time, and hence the

implementation of the Shalizi and Thomas test on this database is highly relevant.

We implemented the test on a 50-year subset of the democracy “democ” score in the Polity IV

data from 1969 to 2018 comprising of 118 countries. This democracy index (on a 11-point scale)

scores how “institutionalized” democracy is within a nation. While there are different indices

that characterize regime type, the democ score is one of the common indices used to study

the degree of democracy in countries’ governments (Marshall et al. 2002). Due to substantial
evidence that the panel of democracy scores is non-stationary, we apply the test to the panel of

first differences in democracy scores. The distribution of 10,000 contagion estimates is visualized

in the Supplementary Material. The contagion signal was 0.169, and the proportion of estimates

under zero (the one-tailed p-value) was 0.005. We find reliable evidence of positive contagion of
democracy. This is an important finding, as it compliments and replicates the result from several

model-based observational studies that democracy spreads through international networks, but

we do not rely on a methodology that requires us to (a) identify the network through which it

spreads, or (b) select the other, potentially confounding, factors for which to adjust our estimates.

5 Discussion

The presence of contagion dynamics in political processes can have substantive implica-

tions. For example, the adoption of an innovative policy solution in one state/city/country

would lead to innovation elsewhere, democratic reforms in one country could eventually

lead to a more democratic future beyond that country’s borders. Contagion in political

turnout means that get-out-the-vote efforts have effects beyond those voters who are directly

engaged by activists. As researchers are often limited in their material or ethical capacities

to answer questions about contagion experimentally, we are forced to make inferences with
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observational data. In this paper, we study and apply a hypothesis test for contagion proposed

by Shalizi and Thomas that is not confounded by homophily. The test has limitations, but it is, to

the best of our knowledge, the only testing framework that can reliably differentiate contagion

and homophily in observational data. We see this test as a compliment to the use of methods

that rely on structural parametric assumptions to model contagion (e.g., Snijders 2017), offering

researchers a non-parametric robustness check in testing for contagion. In an application to the

international contagion of democracy, we reject the null hypothesis of no contagion, and find

evidence for the international spread of democracy.

Data Availability Statement

Replication code is available in Uppala and Desmarais (2022) at https://doi.org/10.7910/DVN/

TFQPCM.

Supplementary Material

For supplementary material accompanying this paper, please visit https://doi.org/10.1017/

pan.2022.35.
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