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Turbulence in the restricted nonlinear (RNL) dynamics is analysed and compared with
direct numerical simulations (DNS) of Poiseuille turbulence at Reynolds number R =
1650. The structures are obtained by proper orthogonal decomposition (POD) analysis of
the two components of the flow partition used in RNL dynamics: the streamwise mean flow
and fluctuations. POD analysis of the streamwise mean flow indicates that the dominant
POD modes, in both DNS and RNL dynamics, are roll-streaks harmonic in the spanwise
direction. However, we conclude that these POD modes do not occur in isolation but
rather are Fourier components of a coherent roll-streak structure. POD analysis of the
fluctuations in DNS and RNL dynamics reveals similar complex structures consisting in
part of oblique waves collocated with the streak. The origin of these structures is identified
by their correspondence to POD modes predicted using a stochastic turbulence model
(STM). These predicted POD modes are dominated by the optimally growing structures
on the streak, which the STM predicts correctly to be of sinuous oblique wave structure.
This close correspondence between the roll-streak structure and the associated fluctuations
in DNS, RNL dynamics and the STM implies that the self-sustaining mechanism operating
in DNS is essentially the same as that in RNL dynamics, which has been associated
previously with optimal perturbation growth on the streak.
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1. Introduction

The proper orthogonal decomposition (POD) analysis of a time-dependent velocity field
proceeds by first obtaining a time mean flow and then forming the average spatial
covariance of the components of the velocity fluctuations about this mean flow. The
eigenfunctions of this covariance are the POD modes of the flow (Lumley 1967; Aubry
et al. 1988; Moin & Moser 1989; Sirovich, Ball & Keefe 1990; Berkooz, Holmes &
Lumley 1993; Moehlis et al. 2002; Hellström, Sinha & Smits 2011; Hellström & Smits
2017). The Eckart–Young–Mirsky theorem (Eckart & Young 1936; Mirsky 1960) assures
that the POD modes constitute an optimal basis for the fluctuation covariance consistent
with which the POD modes comprise an orthogonal basis ordered in contribution to
the fluctuation variance, which can be used to study and compare simulations to other
simulations or to observations. POD modes have also been proposed as a means to
identify structures appearing in the flow, and in particular coherent structures. However,
caution is needed in the use of POD modes for purposes other than the optimally compact
representation of a covariance obtained from a dataset, which is the purpose validated
by the Eckart–Young–Mirsky theorem. One reason for using caution when interpreting
POD modes is that there is arbitrariness in the structures that produce a given covariance.
As Cantwell (1981) points out, there is no unique relationship between the covariance
obtained from a dataset and the states that produced it. Indeed, the most general class of
states that produce the same covariance is that of a unitary transformation of the POD
modes (Schroedinger 1936; Farrell & Ioannou 2002). It follows that while the POD modes
provide a basis for representing optimally the fluctuation variance, there is no reason to
expect that the members of this basis will resemble structures appearing in the flow, and
ancillary information is required to connect the POD modes to structure. A trivial example
of such ancillary information would be a rank one covariance in which a single POD mode
identifies the only structure that appears in the flow. This example is perhaps not as trivial
as it seems because often a single POD mode does dominate the variance, as revealed
by its eigenvalue being substantially larger than the others, in which case one can expect
this dominant mode to be seen prominently in the flow. Unfortunately, a second structure
cannot in general be identified with the POD mode having the next largest eigenvalue.
This is because, except in the special cases such as the Langevin system mentioned in
the next paragraph, the structure of the second most prominent contributor to variance
appearing in the flow will not in general be orthogonal to the first, so its structure will
be influenced by the requirement that it be projected onto the subspace orthogonal to
the first, and so on for all other POD modes. Given that the POD modes form a basis,
what is needed as ancillary information to obtain structure identification are the amplitude
and displacement among the POD modes so that their superposition is accounted for in
forming the structure. From this viewpoint, the POD modes are regarded as constituting a
compact basis, but the structure of the individual POD mode is not regarded as providing
complete structure information, which requires accounting properly for the superposition
of the POD modes. For a turbulence that arises from a dynamics that is homogeneous
in a given coordinate, random perturbations eventually mix any coherent structures that
arise in that homogeneous coordinate so that the POD modes comprise a Fourier basis in
that coordinate, and structure information is encoded in the amplitudes and phases of the
harmonics. If one makes the random phase assumption, then the fluctuations have minimal
coherence, and in that coordinate take the form of a spatially stochastic process; while if
one makes the zero phase assumption, then a compact structure is obtained in which the
harmonics add coherently at the chosen origin.

962 A16-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

27
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.274


POD structure and dynamics in turbulent Poiseuille flow

A case for which explicit interpretation of the POD modes can be made is that of a
normal linear dynamical system of Langevin form forced white in space and time. In this
case, the POD modes identify the eigenmodes of the system and the real parts of their
eigenvalues (North 1984). This example has led to the inference that the POD modes can
be used to infer information about both structure and dynamics in turbulent flows. This
inference is misleading except under the highly restricting assumptions mentioned. Not
only are the individual POD modes not necessarily structures that appear in the flow,
but neither do they provide an optimal basis for the flow dynamics. In particular, as the
dynamics in wall-bounded flows is non-normal, the growing structures that give rise to
the POD modes are very different from the POD modes themselves, and exploiting POD
modes to reduce the dimension of the system maintaining the turbulence requires retaining
a separate set of growing structures in addition to the set of retained POD modes when
forming the basis supporting the dynamics (Farrell & Ioannou 1993, 2001; Rowley 2005).

POD analysis was originally advanced as a method for identifying coherent structures
in wall turbulence and investigating their dynamics (Lumley 1967; Berkooz et al. 1993).
It was presumed that as the coherent structures represent a substantial fraction of the
variance, the POD modes would identify these structures. However, this project of
associating the POD modes with coherent structures faced the difficulties mentioned
above, and in addition issues specific to the wall turbulence problem. The model
problems addressed in studies of wall turbulence are homogeneous in the streamwise
and spanwise directions. Consistent with the above discussion, the structures in these
turbulent flows explore all spanwise and streamwise locations equally, resulting in a time
mean flow and covariance that are asymptotically homogeneous in the spanwise and
streamwise directions. The mean flow then depends only on the cross-stream direction,
and the covariance depends only on the relative separation of points in the spanwise and
streamwise directions. This implies that the POD modes are harmonic in the spanwise
and streamwise coordinates, and eigenanalysis of the covariance can only identify the time
mean variance of these harmonic POD modes together with their associated cross-stream
structure, the cross-stream being the only inhomogeneous direction, but leaves their
amplitude, phase, and therefore their structure in the spanwise and streamwise directions
undetermined. This absence of information about the amplitude and phase of the POD
modes in the spanwise and streamwise directions renders the POD modes incapable of
identifying coherent structures, which, ironically, was the original motivation for studying
them. This was recognized by Lumley (1981), who proposed to obtain relative phase
information in the homogeneous coordinates from higher-order statistics, and in this way
to complete the identification of the coherent structures using POD analysis. In the pursuit
of this goal, of particular interest are the results and methods of Moin & Moser (1989),
who used statistical methods for estimating the POD modes in a turbulent channel flow, by
which they identified a dominant coherent structure consisting of a compact streamwise
elongated low-speed streak flanked by a pair of compact rolls, which they associated with
the coherent structure that arises in the bursting process; Jiménez (2018) contains a recent
review of these methods. The result of these attempts to obtain the phases of the POD
modes by statistical means is to elicit structure similar to that predicted by the minimum
entropy assumption of aligning the phases among the modes to produce a maximally
compact structure. A related problem of identifying travelling coherent structures using
POD analysis was addressed using slicing and centring methods (Rowley & Marsden 2000;
Froehlich & Cvitanović 2012; Willis, Cvitanović & Avila 2013). An analogous procedure
is employed in this paper to isolate the low-speed streak and its associated fluctuation
field.
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We have reviewed the conceptual basis for, as well as the limitations of, POD-based
analyses. Our objective in this work is to adapt POD-based analysis to facilitate the
study of aspects of the dynamical mechanism supporting the turbulence. We do this by
applying modified POD analysis methods to compare structure and dynamics between
the restricted nonlinear (RNL) quasi-linear system and the associated direct numerical
simulations (DNS). The motivation for doing this comparison is that the RNL system is
obtained directly from the Navier–Stokes equations with only the omission of the nonlinear
interaction of the streamwise-varying components of the flow. This elimination of the
nonlinear perturbation term greatly simplifies the turbulence dynamics while retaining the
essential mechanisms supporting turbulence, which facilitates study of these mechanisms.
Important for our study is that the RNL system sustains a realistic turbulence despite
its highly simplified dynamics. Also, as we will describe further, the RNL system is to
a substantial degree characterized analytically (Farrell et al. 2016). It follows that if a
convincing case can be made for essential similarity in the structure, and by extension
the dynamics underlying turbulence in DNS and RNL systems, then the simplicity of the
dynamics of RNL turbulence can be exploited to provide insight into the mechanism of
wall turbulence.

We proceed by reviewing briefly the formulation of RNL dynamics as a quasi-linear
approximation of the Navier–Stokes (N–S) equations, the simplifications that result from
this approximation, and the insights that this approximation provides for understanding
the mechanism of wall turbulence (Farrell, Gayme & Ioannou 2017a). To obtain the
RNL approximation, the N–S equations are first decomposed into equations governing the
streamwise mean flow and the fluctuations from the streamwise mean. At this point, no
approximations have been made to the Navier–Stokes equations. The RNL approximation
consists in neglecting the fluctuation–fluctuation interactions in the fluctuation equations.
It follows that RNL dynamics comprises the quasi-linear interaction between the
time-dependent streamwise mean flow and the fluctuation field. It is important to recognize
that the fluctuation equation, which has been isolated from the nonlinear streamwise mean
equation by this partition of the dynamics, is linear in the fluctuations. However, while
the fluctuation equation is linear in the fluctuations, it is also time-dependent due to the
time dependence of the streamwise mean flow, and therefore it can extract energy from
the mean flow through the parametric mechanism, which is supported by concatenation
of non-normal growth events. This time-dependent parametric interaction with the mean
flow provides periods of fluctuation growth and decay. Given that the fluctuation field is
bounded, its time mean growth must be exactly zero, or equivalently, the top Lyapunov
exponent of fluctuations growing on the time-varying streamwise mean flow must be
exactly the real number zero, which requires that the time-varying mean flow be regulated
to neutral Lyapunov stability by the Reynolds stresses of the fluctuations. This implies that
the fluctuation field of RNL turbulence lies in the subspace of the Lyapunov vectors of
the time-varying streamwise mean flow that have zero Lyapunov exponent, and the mean
flow is regulated by feedback from the Reynolds stresses of these Lyapunov vectors to
neutral Lyapunov stability. This simplification of the turbulence to a subset of analytically
characterized fluctuations supported by as few as a single streamwise-varying harmonic
occurs spontaneously in the RNL system. The fact that RNL dynamics is supported on the
small set of Lyapunov vectors with precisely zero Lyapunov exponent, and that the time
mean state is feedback-regulated to exact Lyapunov neutrality, provides comprehensive
analytic characterization of both the fluctuations and the regulation of the statistical mean
state of RNL turbulence.
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POD structure and dynamics in turbulent Poiseuille flow

It is interesting to note that this quasi-linear adjustment to neutral stability constitutes
a solution for the statistical state of the turbulence to second order that vindicates the
program of Malkus (1956) to obtain a quasi-linear equilibration identifying the statistical
mean state of turbulence in shear flow – it being required to recognize only that it is not the
inflectional or the viscous instability of the time mean turbulent profile that is neutralized,
as proposed by Malkus (1956) and critiqued by Reynolds & Tiederman (1967), but rather
the parametric instability of the streamwise mean flow, which arises from the temporal
variation of the roll-streak (R-S) structure. An important insight, inherent in the RNL
formulation, arises from isolation in the mean equation of the primary coherent structure,
which is the R-S. This partition of structure in the turbulence into mean and fluctuation,
with the R-S forming spontaneously in the mean equation, poses a fundamental constraint
on mechanistic theories of wall turbulence. The necessary inference is that the R-S in
RNL dynamics is maintained by fluctuation Reynolds stresses arising from a non-normal
parametric growth process and not by a fluctuation–fluctuation scattering regeneration
as proposed by Trefethen et al. (1993), Farrell & Ioannou (1993) and Gebhardt &
Grossmann (1994). In these regeneration mechanisms, optimal perturbations that have
been recycled from turbulent debris, typically ascribed in the case of wall turbulence to
streak breakdown, sustain the turbulence through their growth (Jiménez & Moin 1991;
Jiménez 2018). Another example of the regeneration mechanism sustaining turbulence
is the baroclinic turbulence of the mid-latitude atmosphere (DelSole 2007; Farrell &
Ioannou 2009). It was shown recently by Lozano-Durán et al. (2021) that non-normal
amplification of fluctuations regenerated through fluctuation–fluctuation interactions in
an externally maintained stable time-independent mean flow can sustain a turbulent
fluctuation field. Clearly, the nonlinear scattering regeneration mechanism is available
to support turbulence. However, RNL turbulence makes a radical departure from this
regeneration mechanism by sustaining turbulence without any fluctuation–fluctuation
nonlinearity. The mechanism sustaining turbulence in RNL dynamics is consistent
conceptually with the self-sustaining process (SSP) mechanism advanced in Hamilton,
Kim & Waleffe (1995) and illustrated by the toy-model-based studies of Waleffe (1997),
in that the streak in RNL dynamics is similarly supported by roll-induced lift-up with
the roll in turn being maintained by torques from Reynolds stresses produced by the
associated fluctuation field. However, in understanding the SSP, the origin, maintenance
and collocation with the streak of the roll-inducing torques is the central dynamical
problem. The primary mechanisms advanced to account for the roll-inducing torques are
Reynolds stresses arising from modal structures (Waleffe 1997, 2001; Hall & Sherwin
2010) and Reynolds stresses arising from optimally growing transient structures (Schoppa
& Hussain 2002; Farrell & Ioannou 2012). This question of the mechanism underlying
the SSP has been addressed in recent work that verified that turbulence maintenance
is essentially unaffected when modal instability is suppressed at every time step in
DNS of constant mass flux pipe flow or in RNL simulations of Couette turbulence,
which provides constructive proof that instability is not related to turbulence, at least
in these systems (Farrell & Ioannou 2012; Lozano-Durán et al. 2021). In this work, we
provide evidence that in both DNS and RNL systems, the Reynolds stresses that induce
torques maintaining the SSP arise from transiently growing structures. However, in RNL
dynamics, the non-normal fluctuations arise from parametric interaction with the mean
flow rather than from fluctuation–fluctuation nonlinearity. Regardless of how the SSP is
maintained, the SSP mechanism for sustaining the R-S is fundamentally different from the
mechanism proposed by e.g. Jiménez (2013a,b); Jiménez (2022), in which streaks arise as
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scars left in the streamwise velocity from the linear growth of episodically excited optimal
perturbations (Encinar & Jiménez 2020).

The goal of this work is to use POD-based diagnostics to demonstrate that DNS
and RNL turbulence exhibit compellingly similar dynamical structures, which suggests
similarity in the dynamics underlying these structures. This dynamics is maintenance of
streak-collocated roll circulations by Reynolds stress torques arising from the transient
growth of optimal perturbations. This is the universal mechanism by which optimal
perturbations induce streak-collocated roll circulations (Farrell & Ioannou 2012; Farrell,
Ioannou & Nikolaidis 2017b, 2022a). This mechanism will be also the subject of a
companion paper focusing on the dynamics of R-S formation using the same DNS and
RNL dataset (Nikolaidis, Ioannou & Farrell 2023).

In this paper, we first compare the POD modes of the streamwise mean flow predicted
under the assumption of spanwise homogeneity in DNS and RNL dynamics. We then
obtain a converged estimate, in both DNS and RNL dynamics, of the coherent R-S by
collocating the observed streaks in both systems. Having obtained the coherent R-S in
DNS and RNL, we compare their structures, which are found to be remarkably similar.
Having a converged estimate of the R-S structures in these systems, we next verify
that the POD amplitudes obtained under the assumption of spanwise homogeneity are
convincingly coincident with the Fourier amplitudes arising from Fourier analysis of these
R-S structures. In this way, we verify that the collocation process correctly identifies the
phases of the POD modes. Together, these results verify that the spontaneous symmetry
breaking in the spanwise direction by the emergence of the R-S instability, as predicted
by the stability analysis of the statistical state dynamics (SSD) closed at second order in
the framework of the stochastic structural stability theory (S3T), is occurring in both DNS
and RNL systems (Farrell & Ioannou 2012; Farrell et al. 2017b).

Having obtained the time mean R-S structure in both DNS and RNL systems, we turn
next to obtaining POD analyses of the streamwise inhomogeneous fluctuations about the
mean R-S in both DNS and RNL systems, and verify that the fluctuation fields educed
by this fluctuation component POD analysis are consistent with the prediction of oblique
waves as being responsible for maintaining the coherent streamwise roll in the SSP (Farrell
et al. 2022a). The fluctuation POD modes are then shown to be consistent with predictions
for optimally growing structures over typical temporal correlation times in these turbulent
flows by comparing them with the average structure of stochastically excited evolving
fluctuations over 30 advective time units. This identification of wave-like structures
maintaining the R-S in DNS and RNL systems with optimally growing perturbations
constitutes a compelling argument that the turbulence in both systems is supported by the
SSP that has been identified analytically in RNL dynamics, and that this SSP is maintained
by Reynolds stress torques produced by optimally growing perturbations.

2. DNS and their RNL approximation

We study a pressure-driven constant mass flux plane Poiseuille flow in a channel that is
doubly periodic in the streamwise (x) and spanwise (z) directions. The incompressible
non-dimensional Navier–Stokes equations governing the channel flow are decomposed
into equations for the streamwise mean flow, U = (U, V, W), and the fluctuations, u =
(u, v, w), as follows:

∂tU + U · ∇U − G(t) x̂ + ∇P − R−1 �U = −u · ∇u, (2.1a)

∂tu + U · ∇u + u · ∇U + ∇p − R−1 �u = −(u · ∇u − u · ∇u), (2.1b)

962 A16-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

27
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.274


POD structure and dynamics in turbulent Poiseuille flow

Abbreviation [Lx, Ly, Lz] [L+
x , L+

y , L+
z ] Nx × Nz × Ny Rτ R

NL100 [4π, 2, π] [1264, 201, 316] 128 × 63 × 97 100.59 1650
RNL100 [4π, 2, π] [1171, 186, 293] 16 × 63 × 97 93.18 1650

Table 1. Simulation parameters. Here, [Lx, Ly, Lz]/h, where h is the channel half-width, is the domain size
in the streamwise, wall-normal and spanwise directions. Similarly, [L+

x , L+
y , L+

z ] indicates the domain size in
wall-units. Also, Nx, Nz are the numbers of Fourier components after dealiasing, and Ny is the number of
Chebyshev components; Rτ = uτ h/ν is the Reynolds number of the simulation based on the friction velocity
uτ = √

ν d〈U〉/dy|w, where d〈U〉/dy|w is the shear at the wall.

∇ · U = 0, ∇ · u = 0. (2.1c)

No-slip impermeable boundaries are placed at y = 0 and y = 2, in the wall-normal
variable. The pressure gradient G(t) x̂ is adjusted in time to maintain constant mass
flux, and x̂ is the unit vector in the streamwise direction. An overline, e.g. u · ∇u,
denotes averaging in x. Capital letters indicate streamwise-averaged quantities. Lengths
have been made non-dimensional by h, the channel’s half-width, velocities by 〈U〉c, the
centre velocity of the time mean flow, and time, by h/〈U〉c. The Reynolds number is
R = 〈U〉ch/ν, with ν the kinematic viscosity.

The corresponding RNL equations are obtained by suppressing nonlinear interactions
among streamwise-varying flow components in the fluctuation equations, resulting in the
right-hand side of (2.1b) being neglected. The RNL equations are

∂tU + U · ∇U − G(t) x̂ + ∇P − R−1 �U = −u · ∇u, (2.2a)

∂tu + U · ∇u + u · ∇U + ∇p − R−1 �u = 0, (2.2b)

∇ · U = 0, ∇ · u = 0. (2.2c)

Under this quasi-linear restriction, the fluctuation field interacts nonlinearly only with the
mean flow U , and not with itself. This quasi-linear restriction of the dynamics results in
the spontaneous collapse of the support of the fluctuation dynamics to a small subset
of streamwise Fourier components. It is important to recognize that this restriction in
the support of RNL turbulence to a small subset of streamwise Fourier components is
not imposed but rather is a property of the dynamics with significant implication. The
components that are retained spontaneously by the RNL dynamics identify the streamwise
harmonics that are dynamically active in the sense that this subset of streamwise harmonics
participates in the parametric instability that sustains the fluctuation component of the
turbulent state (Farrell & Ioannou 2012, 2017; Thomas et al. 2014, 2015; Nikolaidis &
Ioannou 2022).

The data were obtained from DNS of (2.1) and from simulation of the associated RNL
system governed by (2.2). The Reynolds number R = 〈U〉ch/ν = 1650 is imposed in both
the DNS and RNL simulations. A summary of the parameters of the simulations is given
in table 1. The time-averaged streamwise mean flow 〈U〉 = 〈U〉 x̂ and its associated shear
in the DNS and RNL simulation are shown in figure 1, and the time-averaged root mean
square (r.m.s.) profiles of the fluctuations from the mean flow 〈U〉, u′ = u − 〈U〉 x̂, are
shown in figure 2. The RNL simulation reported here is supported by only three streamwise
components, with wavelengths λx/h = 4π, 2π, 4π/3, which correspond to the three
largest streamwise Fourier components of the channel, nx = 1, 2, 3. These streamwise
Fourier components sustained in the RNL system are not imposed, but rather the RNL
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Figure 1. (a) The mean velocity profile of the DNS (red) and RNL simulations (blue) normalized to the
average centreline velocity 〈U〉c. (b) The corresponding normalized mean shear in the two simulations.
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Figure 2. Wall-normal profiles of the r.m.s. of velocity fluctuations (a–c) and the tangential Reynolds stress
(d) for the DNS (red) and RNL simulations (blue).

962 A16-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

27
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.274


POD structure and dynamics in turbulent Poiseuille flow

system spontaneously selects the streamwise Fourier components that are retained in the
turbulent state. We have included 16 streamwise wavenumbers in the integration of the
RNL system in order to allow freedom for it to select the streamwise wavenumbers that it
sustains.

For the numerical integration, the dynamics was expressed in the form of evolution
equations for the wall-normal vorticity and the Laplacian of the wall-normal velocity,
with spatial discretization and Fourier dealiasing in the two wall-parallel directions and
Chebyshev polynomials in the wall-normal direction (Kim, Moin & Moser 1987). Time
stepping was implemented using the third-order semi-implicit Runge–Kutta method.

3. Analysis method used in obtaining the POD modes

POD analysis requires the two-point same-time spatial covariance of the flow variables.
The perspective on turbulence dynamics adopted in this work is that of the S3T statistical
state dynamics (SSD) closed at second order (Farrell & Ioannou 2012) and its RNL
approximation (Thomas et al. 2014). The insights on turbulence dynamics obtained by
using this SSD proceed from its formulation, which is based on using the streamwise mean
and associated fluctuations to express the dynamics. The choice of the streamwise mean
in the cumulant expansion of this SSD serves to isolate the dynamics of the dominant
coherent structure supporting turbulence, which is the R-S, in the mean equation. If the
R-S were not supported by the Reynolds stress torque mechanism, then it would appear
in the fluctuation equation. In order to further isolate the R-S structure, the kx = 0 POD
analysis is confined to deviations of the streamwise mean flow from its spanwise mean.
Adopting the notation 〈·〉 for the time average, [·] for the spanwise average, and (·)T for
transposition, the covariance of deviations of the streamwise mean velocity field from its
spanwise mean is

C = 〈UUT 〉
, (3.1)

in which

U = [Us, Vs, Ws]T (3.2)

is the column vector comprising deviations of the three streamwise mean components
from their spanwise mean, ([U]( y, t), [V]( y, t), [W]( y, t)), i.e. Us = U − [U], Vs = V −
[V] and Ws = W − [W]. A requirement for C to be a covariance is that 〈Us〉 = 0, 〈Vs〉 =
0 and 〈Ws〉 = 0, which demands that 〈[U]〉 = 〈U〉, 〈[V]〉 = 〈V〉 and 〈[W]〉 = 〈W〉. This
condition places a requirement of homogeneity on the velocity components in z, which
was verified.

The dominant structures in the fluctuation field are localized about the streamwise
streak. In order to isolate these structures, the fluctuations are obtained by first collocating
the dominant streak together with its associated fluctuation field in the flow prior to
extracting the fluctuations from the dominant streak. These fluctuations are used to form
the covariance on which the POD analysis of fluctuations from the streamwise mean
R-S structure is done, as described in § 5. The covariance of the fluctuation flow field
is expressed as

c = 〈U ′U ′T〉
, (3.3)

with

U ′ = [u, v, w]T, (3.4)
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which is the column vector of the three velocity components of the streamwise-varying
flow, i.e. the components of the velocity deviations from the average streak structure in the
flow.

The POD modes for the mean flow fluctuations and for the fluctuations from the
dominant streak are obtained by eigenanalysis of the two-point covariances C and c. The
resulting orthonormal set of eigenvectors is then ordered by descending eigenvalues. The
eigenvalue of each POD mode is its time-averaged contribution to the variance of the
velocity.

To obtain a sufficiently converged covariance to identify the primary POD modes for the
streamwise mean flow requires a long time series of the turbulent flow field. Convergence
is further facilitated by assuming the statistical symmetries of the flow fields: homogeneity
in the x and z directions, mirror symmetry in y about the x–z plane at the channel centre,
and mirror symmetry in z about the y–x plane at the channel centre. Because of the mirror
symmetry in y, the POD modes come in symmetric and antisymmetric pairs about the
y–x plane at the channel centre. Details of the implementation of these symmetries in
calculating the POD modes are given in Appendix A. Because the R-S structure appears at
the upper and lower boundaries randomly in spanwise position and time, it is appropriate
to concentrate our analysis on the R-S at a single boundary. The modes appropriate for
composing the R-S at the lower boundary are obtained by adding the symmetric and
antisymmetric y components of the POD mode pairs.

Statistics of flow quantities have been verified to approach asymptotically these
symmetries, as the averaging time increases. These statistical symmetries are not necessary
consequences of the translation and mirror symmetry of the Navier–Stokes equations in
a periodic channel because the turbulent flow field may undergo symmetry breaking.
For example, stability analysis of the S3T SSD of wall-bounded flows in periodic
domains predicts symmetry breaking of spanwise homogeneity before the turbulent state
is established, and an imperfect manifestation of this symmetry breaking is seen clearly in
the related DNS (Farrell & Ioannou 2012; Farrell et al. 2017b). Casting the Navier–Stokes
equations in SSD form permits identification of the instability underlying this symmetry
breaking, an instability without counterpart in the Navier–Stokes equations written in
traditional velocity–pressure component state variables (Farrell & Ioannou 2019).

If an underlying symmetry breaking instability exists in a turbulent system but
stochastic fluctuations cause the equilibrated modes of this instability to random walk
in a homogeneous coordinate so that in the limit of long time the phase information
localizing the mode is lost, rendering the phase random, then one approach to identifying
the symmetry breaking mode in a simulation is to obtain an approximation to the
covariance over short enough times that the phase randomization is not complete.
Another approach is to collocate the symmetry breaking structures in the flow so the
effect of the random walk is removed. We employ the latter method in this work,
which is equivalent to the centring or slicing method for unveiling coherent structure in
data in dynamics with continuous symmetries (Rowley & Marsden 2000; Froehlich &
Cvitanović 2012).

4. POD modes of the DNS and RNL streamwise mean flow

The POD basis for the kx = 0 component of the deviations from the time and spanwise
mean velocity in the DNS and the RNL simulation will first be described under the
assumption of spanwise statistical homogeneity. Accepting the assumption of statistical
homogeneity in z implies that the eigenvectors of C, which are the POD modes, are single
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Fourier harmonics in the spanwise direction (Berkooz et al. 1993). Under this assumption,
the POD mode nz with spanwise wavenumber kz = 2πnz/Lz is given by

Φkz =
⎛
⎝Akz( y)

Bkz( y)
Γkz( y)

⎞
⎠ eikzz, (4.1)

where Akz( y) is the streamwise component of the velocity field associated with the POD,
Bkz( y) is the wall-normal component, and Γkz( y) is the spanwise component. All these
components are specified as Ny-dimensional column vectors, with Ny the number of
discretization points in y. At each sampling time, the 3Ny column vector of a kz /= 0 Fourier
component Ukz(t) of the flow field U is obtained and used to form Nkz average covariances:

Ckz =
〈
Ukz(t)U†

kz
(t)

〉
, (4.2)

where Nkz is the number of kz /= 0 Fourier components retained in the simulation, and
† is the Hermitian transpose. Eigenanalysis of these covariances determines 3Ny × Nkz
eigenvectors comprising the POD orthonormal basis of the kx = 0 flow field taking into
account the restriction to deviations from the spanwise mean mentioned above. These POD
modes are ordered by decreasing eigenvalue, which corresponds to variance.

As discussed above, because of the statistical homogeneity of the flow in the z direction,
the kx = 0 POD modes come in sin(kzz) and cos(kzz) pairs, and these modes contribute
equally to the variance. The first three spanwise harmonics of the POD modes of both the
DNS and RNL simulation account for 75 % of the kx = 0 variance, as in figure 3, which
shows both the streak velocity and vectors of the corresponding roll velocity field for each
POD mode. Note that the POD modes obtained from the DNS and the RNL simulation
exhibit a similar structure, consisting of a streamwise velocity collocated with a supporting
roll. The variances explained by the first three POD modes are similar, and the structures
of the modes are also similar, as shown in figure 4, although the variance accounted for by
the individual modes is not identical. The result of importance is the structural similarity
of the modes, which is indicative of the underlying dynamics.

Of dynamical significance is the systematic correlation between the wall-normal
velocity Vs of the roll and the corresponding streak velocity in these POD modes: positive
Vs is correlated with low-speed streaks (defects in the streamwise average flow), and vice
versa, in all the POD modes. That all the POD modes exhibit this correlation is consistent
with the interpretation that the rolls and the streaks form a coherent structure in which
the lift-up mechanism arising from the roll is acting to maintain the streak. Consistently,
previous work has revealed that the Reynolds stress from streak-induced organization of
turbulence in S3T and RNL simulation results in a lift-up process supporting an R-S with
the same structure as these POD modes (Farrell & Ioannou 2012; Farrell et al. 2016).
Note that the first three DNS POD modes with kx = 0 have R-S structure nearly identical
to those in the RNL model, as shown in figure 3. The wall-normal velocities of the roll
component of the POD modes in both DNS and RNL are approximately 1/10 the streak
velocity, which, assuming an average non-dimensional mean flow shear of magnitude 2
(cf. figure 1), is consistent with the emergence of the associated streak through the lift-up
mechanism over 5 time units.

This similarity of the DNS and RNL streamwise mean POD modes suggests that the
same dynamics is operating. In the case of RNL systems, this dynamics is known to be
that the streaks organize the fluctuations so that their associated Reynolds stresses produce
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Figure 3. (a,c,e) The structure of the first three POD modes of the streamwise mean flow appropriate for
the lower boundary obtained from 310 000 advective time units DNS. (b,d, f ) The corresponding modes of
the streamwise mean flow from 83 000 advective time units RNL simulation. The contours show levels of the
streamwise Us velocity, and the arrows show the cross-stream spanwise velocity vector (Vs, Ws). The ratio
Us/Vs is in all cases approximately 10. Notice that in DNS, the POD mode with the largest contribution to the
variance is the nz = 2 mode, while in RNL simulations it is the nz = 1 mode. The contour level is 0.2 in all
plots.

streamwise torque configured to force rolls collocated with the streak in such a manner as
to reinforce the preexisting streak by the lift-up process. This reinforcement mechanism
is manifest persuasively in the idealized problem of the instability of a background of
spanwise homogeneous turbulence to the formation of streamwise streaks. Statistical
state dynamics calculations closed at second order identify this instability – which is the
fundamental instability underlying the dynamics of turbulence in shear flow – by showing
that the R-S is the streamwise mean component of the most unstable eigenfunction in the
SSD. Moreover, this unstable eigenfunction has the same form as the POD modes that we
have identified in both DNS and RNL simulation. Furthermore, these eigenfunctions have
the property of destabilizing the R-S structure at all scales, indicating that the mechanism
of R-S formation is intrinsically scale-independent (Farrell & Ioannou 2012; Farrell et al.
2017b).

5. POD modes of the streamwise-varying fluctuations from the dominant streak
occurring in flow realizations

A fundamental dynamical property of turbulence in wall-bounded flows is the spontaneous
breaking of the spanwise symmetry by the formation of the R-S structure. Although there
is no instability associated with this symmetry breaking in the traditional formulation
of the Navier–Stokes equations using velocity components for the state, this symmetry
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Figure 4. (a) Percentage variance of the streamwise mean (kx = 0) flow explained by the POD modes in the
DNS and RNL simulation as a function of mode index. (b) Cumulative variance accounted for by the POD
modes in the DNS and RNL simulation as a function of the number of POD modes included in the sum. In
DNS, the first POD mode has spanwise wavenumber nz = 2, and the second POD mode has nz = 1. In RNL
simulation, the first POD mode has spanwise wavenumber nz = 1, and the second POD mode has nz = 2.

is broken by the most unstable mode of the simplest non-trivial SSD, which is a
cumulant expansion closed at second order using streamwise mean velocity and fluctuation
covariance for the state variables (Farrell & Ioannou 2012; Farrell et al. 2017b). While the
underlying R-S symmetry breaking instability is analytic in pre-transitional flow analyses
made using the S3T SSD, the manifestation of this symmetry breaking instability is made
imperfect by time dependence in both the pre-transitional and post-transitional DNS and
RNL solutions, so that the R-S structure, while prominent, is randomly displaced spatially
rather than persisting at a fixed spanwise location. Nevertheless, the existence of the
underlying symmetry break in the spanwise by the R-S S3T instability is clearly manifest in
the substantial spatial extent in the streamwise direction and persistence in time of the R-S
structure in DNS and RNL simulation, indicative of the underlying analytical bifurcation.
Informed by the existence of an analytic bifurcation to a time- and space-independent R-S
structure in pre-transitional flow, we wish to isolate structures underlying this fundamental
mechanism of R-S maintenance from the secondary property of random variation of the
streak location in the spanwise direction. By this simplification, we are able to concentrate
on the interaction of the R-S with streamwise fluctuations, which is widely recognized
to be associated with the maintenance of turbulence, although the dynamics of this
interaction remains controversial (cf. Jiménez & Moin 1991; Hamilton et al. 1995; Waleffe
1997; Jiménez & Pinelli 1999; Schoppa & Hussain 2002; Farrell & Ioannou 2012, 2017;
Farrell et al. 2017a; Lozano-Durán et al. 2021). A point of agreement of these studies
is that the streak and fluctuations are collocated to form a dynamical structure. Thus an
accurate statistical description of the kx /= 0 structures will be sought by performing at
every instant of time a spanwise translation of the entire flow field data so that the dominant
streak together with its associated fluctuations is at the centre of the channel, z/h = π/2.
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A reliable indicator of the streak location is the spanwise z/h coordinate of min(Us)

associated with the dominant low-speed streak structure (figures 5a,b). We proceed to
identify this location in the flow realizations by finding the z coordinate of this minimum
velocity at a fixed distance from the wall, y/h = 0.21, where | min(Us)| attains its largest
values, and translate the total flow field so that the Us minima occur at the same spanwise
locations at the centre of the channel at z/h = π/2, while retaining the time order. The
effect of this operation on the streamwise average Us velocity is shown in the top plots
of figures 5(c) and 5(d) for NL100 and RNL100, respectively. The modified time series
of Us produces an aligned slow-speed region at z/h = π/2 in both cases, while further
away from this core region, the uncorrelated high- and low-speed streaks cancel out. The
streamwise mean streak Us on the plane y/h = 0.21 resulting from this procedure is shown
in the bottom plots of figures 5(c) and 5(d). The structure in the y–z plane of the R-S for
NL100 and RNL100 is shown in figures 6(a) and 6(b) using contours for Us and vectors
for (Ws, Vs).

5.1. Relating POD modes to R-S structures in the flow
There are alternative explanations for the striking appearance of POD modes for kx = 0
that differ in spanwise wavenumber while exhibiting R-S structure (cf. figure 3). One
interpretation of these structures is that they correspond to stable linear S3T modes that
are maintained by fluctuations in the homogeneous background of turbulence. Due to
the scale insensitivity of the R-S formation process, a spectral hierarchy of self-similar
R-S structures is supported as modes by the turbulence as revealed by S3T (Farrell &
Ioannou 2012). These R-S modes have different scales and damping rates, and are therefore
expected to be excited at different amplitudes. This interpretation of the POD modes is
appropriate in the case of an R-S that emerges in pre-transitional flow, as discussed in
Farrell et al. (2017b). Also, in beta-plane turbulence, one observes intermittent emergence
of jets with structure corresponding to stochastically excited S3T modes, manifestations of
which are referred to in observations as latent jets (Constantinou, Farrell & Ioannou 2014;
Farrell & Ioannou 2019). In this interpretation of the POD modes with various spanwise
wavenumbers, the POD modes are identifying structures that are regarded in the traditional
manner as being independent harmonic structures in z, as is appropriate for a homogeneous
coordinate in the flow.

However, there is an alternative interpretation, which is that the dominant structure
in the flow is the finite-amplitude localized low-speed streak of figure 6. In this
interpretation, the POD modes reflect the amplitude and structure of the spanwise Fourier
components collocated to comprise the Fourier synthesis of this R-S structure rather than
corresponding to structures with independent existence. The assumption underlying this
interpretation is that a mode has arisen in the flow that results in a spontaneous symmetry
breaking; in the example under analysis here, the S3T R-S instability is implicated.

In order to determine which of these alternative explanations for the POD structure
at kx = 0 is correct, we obtain the spanwise Fourier decomposition of the three velocity
components of the mean streak and roll velocities shown in figure 6. We now compare
the spanwise Fourier decomposition of the R-S (cf. figure 6) with the POD modes that
have necessarily Fourier structure in z. The percentage variance accounted for by the first
10 spanwise harmonics in the Fourier decomposition of the streak, and the percentage
variance of the POD modes with the same spanwise wavenumber, are compared in
figure 7. These spectra are similar enough to suggest that the POD modes are the Fourier
components of the streak, and indeed, if the POD modes are used to compose a structure by
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Figure 5. (a) Top plot: a snapshot of the streamwise velocity u at t[U]c/h = 177 768 from the NL100
simulation at the wall-normal plane y/h = 0.21. Bottom plot: the Us component of the above snapshot. The
white dashed line in both plots indicates the spanwise location of the Us minimum. (b) Same as (a) for a
snapshot of the RNL100 simulation at t[U]c/h = 76 827. (c) Top plot: a temporal sequence of Us snapshots
for which the streak minima have been aligned at the channel half-width z/h = π/2. The total flow snapshot is
also subjected to the same shift. Bottom plot: the ensemble average Us converges to a negative central streak
region with weak positive regions on its flanks, whereas the remaining flow is almost spanwise homogeneous.
(d) Same as (c) for the ensemble average Us of the RNL100 simulation.

using the corresponding POD variances collocated at zero phase, then this produces a close
correspondence to the streak in figure 6 (not shown). Consistent with this interpretation
is the comparison of structure between the POD modes shown in figure 3 and the Fourier
modes of the streak shown in figure 8. This agreement is expected given that in our DNS,
65 % of the kx = 0 fluctuation energy is accounted for by the mean streak structures in
figure 6 (the low-speed streak accounts for 40 %, and the high-speed streak for 25 %, not
shown; the RNL percentages are similar). The agreement shown in these figures leads us
to conclude that the second of these explanations, that the POD spectrum arises primarily
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Figure 6. Contours of the time-averaged collocated Us and vectors of the roll (Ws, Vs) velocity on the z–y plane
for: (a) the NS100, with max(|Us|) = 0.21, max(Vs) = 0.024; and (b) the RNL100, with max(|Us|) = 0.32,
max(Vs) = 0.03. The contour level step is 0.025 in both panels.
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Figure 7. The percentage variance accounted for by the first Fourier spanwise components of the mean streaks
in figure 6. Solid red line for the mean streak of the DNS; solid blue line for the mean streak of the RNL
simulation; dashed lines with the corresponding colours for the percentage variances of the corresponding
POD modes with spanwise wavenumbers nz = 1, . . . , 10.

from Fourier decomposition of the low-speed R-S, is correct. In summary, we conclude
that while POD analysis is consistent with identification of independent R-S structures, the
alternative interpretation that the POD modes rather identify the individual components
comprising the Fourier synthesis of a nonlinearly equilibrated localized coherent structure
with complex R-S form, requiring many Fourier modes in its representation, is clearly
preferable.

5.2. Determining the kx /= 0 POD modes associated with the collocated low-speed streak
flows

Having isolated the streamwise mean R-S structure in DNS and RNL simulation, and
identified the kx = 0 POD modes as consistent with Fourier synthesis of this coherent

962 A16-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

27
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.274


POD structure and dynamics in turbulent Poiseuille flow

0.5y/h

y/h

y/h

z/h z/h

1.0

0 0.5 1.0 1.5

DNS nz = 1, Fourier component 34.9 % RNL nz = 1, Fourier component 40.8 %

DNS nz = 2, Fourier component 28.3 % RNL nz = 2, Fourier component 29.9 %

DNS nz = 3, Fourier component 18.9 % RNL nz = 3, Fourier component 17.6 %

2.0 2.5 3.0

2

0

–2

0.5

1.0

0 0.5 1.0 1.5 2.0 2.5 3.0

2

0

–2

0.5

1.0

0 0.5 1.0 1.5 2.0 2.5 3.0

1

0

–1

0.5

1.0

0 0.5 1.0 1.5 2.0 2.5 3.0

2

0

–2

0.5

1.0

0 0.5 1.0 1.5 2.0 2.5 3.0

1

0

–1

0.5

1.0

0 0.5 1.0 1.5 2.0 2.5 3.0

2

0

–2

(a) (b)

(c) (d )

(e) ( f )

Figure 8. Contours of Us and vectors of the roll (Ws, Vs) velocity on the z–y plane of the first three spanwise
Fourier components of the mean streaks of figure 6: (a,c,e) DNS, (b,d, f ) RNL simulation. The contour level
step is 0.2 in all panels.

structure, we turn now to exploiting POD analysis to obtain and interpret dynamically
the fluctuations about the mean flow containing the streak structures of figure 6. We first
Fourier decompose the fluctuation velocity U ′ = [u(x, t), v(x, t), w(x, t)]T in x so that
U ′ = U ′

kx
( y, z) eikxx The POD modes are obtained from eigenanalysis of the two point

spatial covariance

Ckx( yi, zi, yj, zj) =
〈
U ′

kx
( yi, zi)U ′†

kx
( yjzj)

〉
, (5.1)

where 〈·〉 denotes the time mean, and † indicates the Hermitian transpose. Each POD mode
is of the form [αkx( y, z), βkx( y, z), γkx( y, z)]T eikxx, with αkx( y, z), βkx( y, z) and γkx( y, z)
determining the ( y, z) spatial structure of the velocity components of the POD mode. Note
that the nx component of the velocity field has streamwise wavenumber kx = nxα,

The flow fields shown in figure 6 reveal spanwise localized R-S structures symmetric
about z/h = π/2. In order to isolate the streamwise-varying POD modes associated with
the localized low-speed streaks while avoiding contamination by the far field, we weight
the data used to calculate the covariances Ckx with a spatial filter that suppresses the
variance in the far field. We have chosen a Tukey filter in the interval z = [0, π] with
equation

f (z) =

⎧⎪⎨
⎪⎩

0.5
[
1 + cos (π/δ ((π − 2z)/π + (1 − δ)))

]
, (π − 2z)/π < δ − 1,

1, |(π − 2z)/π| ≤ 1 − δ,

0.5
[
1 + cos (π/δ (((π − 2z)/π − (1 − δ)))

]
, (π − 2z)/π > 1 − δ.

(5.2)
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Figure 9. Percentage variance accounted for by the POD modes as a function of the order of the mode:
(a) in NL100, and (b) in RNL100. POD modes with streamwise Fourier component nx = 1 are in blue; those
with streamwise Fourier component nx = 2 are in red; and those with streamwise Fourier component nx = 3
are in green. The sinuous modes are indicated with S, the varicose with V . The corresponding streamwise
wavenumber is kx = 2πnx/Lx.

The parameter δ dictates the width of the filter and is chosen to sample the fluctuation
field in the vicinity of the streak. The values δ = 0.7 and 0.55 are selected for NL100 and
RNL100, respectively, since the RNL100 streak covers a wider area of the spanwise flow.

5.3. Results for the POD modes with kx /= 0 associated with the collocated low-speed
streak flows

The energy density accounted for by the first 10 POD modes for each of the first three
nx wavenumbers is shown in figure 9(a) for NL100, and in figure 9(b) for RNL100.
Similarly, in figures 10, 11 and 12 are shown the corresponding structures of the first three
sinuous POD modes with streamwise wavenumbers nx = 1, 2, 3. Note that the dominant
POD modes in both DNS and RNL are characterized by a similar intricate complex
three-dimensional structure that reflects the complexity of the underlying dynamics.

In the y–z cross-sections (figures 10a,b, 11a,b, 12a,b), the POD modes exhibit
streamwise streaks produced by lift-up, which are seen to be coincident with supporting
roll circulations. Similar roll circulation and associated streak structures were educed
from analysis of DNS data to arise in association with sweep and ejection events by
Lozano-Durán, Flores & Jiménez (2012) (cf. their figure 12d) and Encinar & Jiménez
(2020) (cf. their figure 12). Note that these streaks and associated rolls are located at the
flanks of the central streamwise streak and are harmonic in the streamwise direction, and
should not be confused with the entirely different R-S structure that arises from lift-up
induced by the Reynolds stresses of the fluctuations, and which, in contrast, forces the
central streak with kx = 0.

In the x–y cross-sections (figures 10c,d, 11c,d, 12c,d), the POD modes exhibit the tilted
structure indicative of linear amplification by the Orr mechanism. This characteristic Orr
structure has been associated with sweep and ejection events in wall turbulence by Encinar
& Jiménez (2020) (cf. their figure 1), and evolution of these structures was found to accord
with the linear evolution of optimal perturbations with Orr form on the cross-stream shear
(Jiménez 2013a; Encinar & Jiménez 2020).
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Figure 10. The first sinuous POD mode with streamwise Fourier component nx = 1 in (a,c,e) NL100 and
(b,d, f ) RNL100. (a,b) Contours of the u velocity of the POD mode in the z–y plane at x = 0, and vectors
of (w, v) velocity on this plane. (c,d) Contours of the w velocity in the x–y plane at the centre of the streak
where the u and v velocities vanish. (e, f ) Contours of the v velocity in the x–z plane at the centre of the
streak, and vectors of (u, w) velocity on this plane. The mean flow structure is indicated by the solid black
line. The black contours in (a,b) show the streak contours in the interval [−0.35, −0.1] at contour intervals
of 0.05. All other quantities have been normalized to 1, and the contour level is 0.2. The first sinuous DNS
POD mode accounts for 9.8 % of the total variance of the streamwise-varying velocity fluctuations of the flow
(which includes all kx /= 0), while the first sinuous RNL POD mode accounts for 21.6 % of the total fluctuation
variance (cf. figure 9).

In the x–z cross-sections (figures 10e, f , 11e, f, 12e,f ), the POD modes exhibit orientation
with the streak indicative of an energy-extracting sinuous oblique wave collocated with
the streak. Sinuous structure of streak fluctuations has been associated with inflectional
instability (Waleffe 1997) and with optimally growing perturbations (Schoppa & Hussain
2002).

The dominance of the top sinuous structure variance, shown in figure 9(a), indicates that
it is preferentially expressed relative to the other components of the fluctuation field in both
DNS and RNL simulations. The second in variance POD mode is usually varicose, and it
also exhibits a similar structure in DNS and RNL (not shown). The sinuous and varicose
ordering of the POD modes is indicated in figures 9(a) and 9(b).
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Figure 11. As in figure 10 for the first sinuous POD mode with streamwise Fourier component nx = 2. A single
streamwise wavelength of the POD mode has been plotted. The first sinuous DNS POD mode (which is the
first in variance POD) accounts for 5.7 % of the total variance of the streamwise-varying velocity fluctuations
of the flow, while the first sinuous RNL POD mode (which is also the first in variance POD) accounts for 7.6 %
of the total fluctuation variance.

Qualitative agreement in structure between the top POD modes of the DNS and
RNL simulations is apparent. Despite differences such as the greater extent in y of the
streak structure of the RNL POD modes (cf. figures 10a,b, 11a,b, 12a,b), the compelling
similarity in structural features, and the phasing between fluctuation fields revealed by
the DNS and RNL POD modes argues for the operation of a parallel dynamics in these
two systems. The exact statistical steady state, including the amplitude and spatial extent
of the similar structures, is determined by the nonlinear feedback regulation between the
mean and fluctuation fields (Farrell & Ioannou 2012). In particular, the feedback regulation
produces an RNL equilibrium with a 50 % greater spatial extent in the fluctuation streak
shown in the aforementioned figures, which is consistent with a similarly greater V velocity
in the RNL simulation (cf. figure 6). While similarity of the R-S structure between DNS
and RNL simulation is manifest, there is no simple argument for the exact amplitude of the
mean velocity components that the associated nonlinear regulator settles on. Intuitively,
this can be understood from considering that the feedback regulation is using the Reynolds
stresses to adjust the R-S to Lyapunov neutrality, and this can be accomplished by adjusting
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Figure 12. As in figure 10 for the first sinuous POD mode with streamwise Fourier component nx = 3. A single
streamwise wavelength of the POD mode has been plotted. The first sinuous DNS POD mode (which is the
first in variance POD) accounts for 5.7 % of the total variance of the streamwise varying velocity fluctuations
of the flow, while the first sinuous RNL POD mode (which is also the first in variance POD) accounts for 1.2 %
of the total fluctuation variance.

the amplitude, structure and temporal variation of the R-S in many ways, so that a single
easily predicted equilibrium structure is not to be expected.

5.4. Relation of the POD modes of the fluctuations in DNS to the POD modes of the
fluctuations in a linear stochastic turbulence model

As remarked earlier, the striking structural similarity in the POD modes of fluctuations on
the streamwise mean streak in DNS and RNL simulations suggests a common dynamical
origin. Given that the streak is modally stable, the default explanation would be excitation
of transiently growing fluctuations to the streamwise streak by the turbulent background
velocity field. Transient growth of optimal perturbations on a cross-stream shear has been
shown recently to accord reasonably with the short-time evolution of the structures that
arise during sweep–ejection events (Encinar & Jiménez 2020). These structures, when
evolved, assume the characteristic tilt of the POD modes shown in figures 10(c,d), 11(c,d)
and 12(c,d). Within the context of POD analysis, the appropriate extension of the optimal
transient growth analysis of Encinar & Jiménez (2020) would be calculation of the POD
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modes arising from the ensemble mean fluctuation covariance excited by the background
turbulence.

This can be implemented by calculating the covariance using the stochastic turbulence
model (STM) governed by the equations

∂tu + U ∂xu + (u · ∇)Ux̂ + ∇p − R−1 �u = f , ∇ · u = 0, (5.3a,b)

with no-slip boundary conditions at the channel walls, and periodic boundary conditions
in x and z, where U( y, z) x̂ is the equilibrium low-speed streak of the DNS (or the RNL
simulations). The equations are the fluctuation equations of the DNS (2.1b) in which
the fluctuation–fluctuation nonlinearity has been replaced by a state-independent forcing
f , white in space and time. This simplest parametrization imposes the least a priori
assumption on the structures arising from the dynamics, and is adequate for our purpose.
The time-dependent streamwise mean flow, U , of the DNS has been replaced by the
time-independent flow U( y, z) x̂, obtained by collocating and averaging the low-speed
streak. This mean streak is shown in figure 6.

Stability of the mean flows shown in figure 6 assures the asymptotic approach of the
covariance of the fluctuations governed by (5.3a,b) to a statistical equilibrium covariance
C∞, satisfying in matrix form the Lyapunov equation

AC∞ + C∞A† = −I, (5.4)

where A is the operator, in matrix form, governing the linear dynamics associated with
(5.3a,b), A† is the Hermitian transpose of A, and I is the spatial covariance 〈 f f †〉
appropriate for the white in space stochastic excitation f , with the implication that equal
energy input is imparted to each degree of freedom (cf. Farrell & Ioannou 1993, 1996).
As mentioned above, this choice of excitation has the attribute that the forcing does not
impart a bias to the structure.

However, in turbulence the mean flow is time-dependent, and the time-invariant
formulation of the STM producing the infinite horizon fluctuation covariance C∞ is
not an appropriate model for the covariance arising in a time-dependent mean flow. In
DNS and RNL simulations, the coherence time for fluctuation growth is limited by the
temporal coherence of the mean flow. Typical temporal coherence of the mean flow is of
the order Td = 1 h/uτ (Lozano-Durán et al. 2021), which corresponds in our simulation to
Td = O(20h/U), and it is therefore appropriate to restrict the fluctuation development to
extend over a time interval Td consistent with this coherence time. In relating the POD
mode structure to the STM, this coherence time is appropriate for both DNS and the
RNL simulations. However, while in the DNS the excitation term f has traditionally been
related to the fluctuation–fluctuation nonlinearity, in the case of the RNL simulations, a
similar excitation arises from the effective nonlinear scattering of the fluctuations by their
interaction with the time-dependent mean flow.

It can be shown (cf. Farrell & Ioannou 1998) that the covariance of the dynamics
governed by (5.3a,b) when restricted in time to Td is

CTd = eATd I eA†Td +
∫ Td

0
ds eAs I eA†s

= eATd eA†Td + C∞ − eATd C∞ eA†Td . (5.5)

An alternative to limiting the temporal extent over which fluctuations develop is the
inclusion in (5.3a,b) of an appropriate eddy viscosity (del Álamo & Jiménez 2006).
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Either intervention in the linear dynamics of (5.3a,b) has been shown to result in
dynamical structures and spectra commensurate with those observed (Butler & Farrell
1993; Farrell & Ioannou 1998; del Álamo & Jiménez 2006; Hwang & Cossu 2010;
Madhusudanan, Illingworth & Marusic 2019).

Eigenanalysis of the covariance CTd determines the POD modes as predicted by the
STM. This covariance is obtained by integration of (5.5), in which the initial state
covariance I is evolved over a time Td while also being continuously excited with
covariance I . We have obtained best agreement with the observed POD modes in both
DNS and RNL simulations when we choose a disruption time Td = 30 in the STM. The
covariance obtained from (5.5) reflects the influence of the transient growth of an unbiased
initial state as well as the accumulated transient growth of an unbiased excitation over the
coherence interval Td. We find that in this problem for Td = 30, the initial condition does
not influence the covariance appreciably.

Because the streamwise mean streak is mirror-symmetric in the spanwise direction, the
POD modes of the STM will be either sinuous or varicose. We find that in both DNS and
RNL simulations, as well as in the STM, the top POD modes are sinuous. This result is
consistent with the optimally growing perturbation to a low-speed streak being of sinuous
form. It is worth noting the further consistency in the coincidence of the sinuous optimal
with the low-speed streak arising from the fact that the Reynolds stresses of the sinuous
fluctuations are configured favourably to amplify the low-speed streak through the lift-up
process (Farrell et al. 2022a; Nikolaidis et al. 2023).

The top POD modes with streamwise wavenumbers nx = 1, 2, 3 of the STM are shown
in figures 13, 14 and 15 next to the corresponding POD modes of the DNS. The STM POD
modes obtained from the RNL mean flow are similar to those obtained from the DNS
mean flow and are not shown. This similarity in structure is expected because the mean
low-speed streaks in DNS and RNL simulations have similar structure, as seen in figures 6
and 7.

The dominant POD modes of the STM (cf. figures 13, 14 and 15) exhibit complex
three-dimensional velocity fields that are striking similar in structure and phasing to those
of DNS and RNL simulations (cf. figures 10, 11 and 12), which is indicative of a parallel
mechanism underlying their dynamics. This similarity in the dynamical structure of the
POD modes among STM, DNS and RNL simulations argues strongly for identifying
the dynamical origin of the fluctuation variance in DNS and RNL simulations with the
growth of optimal perturbations in the mean flow streak. This identification of the origin
of perturbations on the R-S with optimally growing structures explains the similarity in
structure of the POD modes in DNS and RNL simulations as consistent with the robust
dynamics of optimal perturbation growth in shear flow.

6. Discussion and conclusion

POD analysis was carried out on DNS of turbulent Poiseuille flow at R = 1650 and
the corresponding quasi-linear RNL simulation. The RNL system was chosen for this
comparison because it is dynamically similar to S3T so that the S3T → RNL → DNS
sequence of dynamical systems forms a conceptual bridge connecting the analytically
comprehensive characterization of turbulence in S3T to DNS turbulence, which lacks a
similarly complete analytic characterization. The motivation for this work is to exploit this
conceptual bridge to extend the comprehensive understanding of S3T dynamics to obtain
a similar comprehensive understanding of the dynamics of DNS.

962 A16-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

27
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.274


M.-A. Nikolaidis, P.J. Ioannou, B.F. Farrell and A. Lozano-Durán

0.5

1.0

0
1.0 1.5 2.0

0.5

1.0

0
1.0 1.5

DNS nx = 1 DNS STM nx = 1

z/h = 1.57 z/h = 1.57

y/h = 0.17 y/h = 0.17

z/h

y/h

y/h

x/h x/h

z/h z/h
2.0

0.5

1.0

0 5 10 0 5 10

0.5

1.0

1.5

2.0

1.0

0 5 10

1.5

2.0

1.0

0 5 10

(a) (b)

(c) (d )

(e) ( f )

Figure 13. Comparison of (a,c,e) the first sinuous POD mode in NL100 with streamwise Fourier component
nx = 1 with (b,d, f ) the first sinuous and first POD mode of the STM with Td = 30 on the DNS mean low-speed
streak shown in figure 6(a). The velocity fields are as in figure 10. The POD with the largest variance is the
sinuous mode in both DNS and STM.

The POD modes analysed were chosen to correspond to the first and second cumulants
of the S3T SSD, these being the streamwise mean flow and the covariance of fluctuations
from it. In general, this SSD is closed by parametrizing the third cumulant using
stochastic excitation. In the present case, this stochastic excitation has been set to zero.
In RNL simulations, the equivalent to the covariance in S3T is the covariance of the
Lyapunov vectors, with zero Lyapunov exponent of the time-varying linear operator
linearized about the fluctuating streamwise mean flow. The Lyapunov vectors that are
spontaneously emergent in the dynamics of RNL turbulence are analogous to neutral
eigenmodes supporting a time-independent mean state. The structure of the first cumulant
corresponds to the streamwise mean dynamics subject to forcing arising from the Reynolds
stresses of the analytically known structures of the second cumulant. And finally, the
statistical state of the turbulence is regulated by feedback from the second cumulant to
bring the time-varying streamwise mean flow to neutral stability, in the sense that the
characteristic Lyapunov exponent of the linear operator governing the second cumulant is
exactly zero. As an illustrative example of the power and utility of being in possession
of an analytic theory for the dynamics of wall turbulence, consider the problem of
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Figure 14. As in figure 13 for nx = 2 fluctuations. A single streamwise wavelength of the POD mode has
been plotted.

understanding the mechanism determining the statistical mean state of the turbulence.
Of all the possible mechanisms that one might hypothesize, this mechanism is identified
analytically in S3T-RNL dynamics to be modification of the time-dependent streamwise
mean state by Reynolds stress feedback arising from the fluctuations specifically to bring
the characteristic Lyapunov exponent of the linear fluctuation equation to the real number
zero. Extensive study of DNS data has verified that the characteristic exponent of the DNS
streamwise mean state corresponds to this parametric growth stabilization mechanism
(Nikolaidis, Farrell & Ioannou 2018; Farrell et al. 2022b). It is worth noting that this
mechanism of regulating turbulence to its statistical mean state by feedback regulation
operating between the fluctuations and the mean state such as to stabilize the mean state
to linear instability is similar to that hypothesis by Malkus (1956), who posited that the
statistical state of turbulence is determined by feedback regulation to neutrality of the mean
state’s inflectional modes. This hypothesis was not verified for the case of wall-bounded
turbulence (Reynolds & Tiederman 1967), but needed, as we have seen above, only
substitution of parametric neutrality of the time- and spanwise-varying streamwise mean
flow for the posited inflection mode neutrality of the temporal mean flow to correspond
with the mechanism regulating the statistical mean state of wall turbulence.
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Figure 15. As in figure 13 for nx = 3 fluctuations. A single streamwise wavelength of the POD mode has
been plotted.

In our study of the POD modes, we considered first the streamwise mean component of
the turbulence. We found close correspondence in structure between the POD modes of
the DNS and RNL fields. An initial interpretation of this similarity suggested that the
scale-invariant R-S formation mechanism identified analytically in the S3T-RNL SSD
is also operating in DNS. Although scale-invariant R-S dynamics provides a possible
explanation for the POD modes found in both DNS and RNL simulations, the random
phase assumption – which is traditionally taken to characterize the POD modes in
directions in which solutions to the equations are statistically homogeneous – is not
necessarily valid when a mechanism of symmetry breaking is active. In the present case,
an instability process, which has analytic expression in the SSD stability analysis of
the stability of streamwise and spanwise homogeneous mean flows, occurs to break the
spanwise symmetry, resulting in R-S structures (Farrell & Ioannou 2012; Farrell et al.
2017b). If this process is active, then it would imply that the random phase assumption in
the spanwise for the POD kx = 0 modes is not valid. In order to examine this possibility,
we aligned the most prominent low-speed streak of the flow to obtain a spatially coherent
time-averaged low-speed streak, and determined the spanwise Fourier components of this
coherent streak. We then verified that the Fourier components of this coherent streak
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corresponded to the structure and the amplitudes of the POD modes that were obtained
making the random phase assumption. Furthermore, we have verified that removing the
random phase assumption among the POD modes of harmonic form by aligning them to
zero phase difference revealed that the POD modes constituted the Fourier components of
the coherent non-harmonic R-S structure educed by aligning the low-speed streak in the
turbulence simulation.

After having determined the temporal mean structure of the R-S by collocation, it
remained to identify the kx /= 0 POD modes associated with this R-S. In order to isolate
the POD modes of the kx /= 0 fluctuations that are associated with the R-S structure,
the associated fluctuation velocity fields were also translated to be aligned with the
collocated low-speed streak. POD analysis of the aligned velocity fields revealed close
correspondence between the kx /= 0 POD modes in DNS and RNL simulations. The
dominant streamwise-varying POD modes in both DNS and RNL simulations were found
to be characterized by a prominent component of streak-localized sinuous oblique waves
that had been identified previously in analysis of the S3T SSD (Farrell & Ioannou 2012). In
those studies, sinuous oblique waves were shown to give rise to Reynolds stresses properly
collocated with the streak to force roll circulation that amplify the streak through the
lift-up process. Moreover, these sinuous oblique waves are exactly the structures that are
predicted to arise from a turbulent background flow field because they are the optimally
growing perturbations. In this paper, it was confirmed using an STM that the sinuous
POD modes found in both our DNS and RNL simulations similarly correspond closely to
the time-average response to unbiased stochastic excitation and are therefore consistently
dominated by the optimally growing perturbations. In a companion paper (Nikolaidis et al.
2023), we show, using the same DNS and RNL dataset, that the Reynolds stress of the
sinuous POD modes in both DNS and RNL simulations sustains the low-streak streak,
while the varicose POD modes suppress it, and that the effect of the sinuous and varicose
POD modes is reversed in the case of high-speed streaks.

Although we have connected the POD modes in both DNS and RNL simulations to
the growth of optimal perturbations through the STM analysis, we have not addressed in
this paper the mechanism by which these optimal perturbations are excited. In the case
of RNL systems, this is the parametric growth process, while in the case of DNS, it is a
combination of the parametric growth process and excitation by the fluctuation–fluctuation
nonlinearity. This question is of importance because, to the extent that parametric growth
dominates the fluctuation dynamics in DNS turbulence, DNS turbulence inherits the
analytic characterization of RNL turbulence. While this paper does not settle this question,
ongoing work indicates that the parametric growth mechanism does dominate in DNS
(Nikolaidis et al. 2018; Farrell et al. 2022b).
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Figure 16. The 1-norm of the difference Ckz − ŜyCkz Ŝ
†
y between the covariance matrix Ckz (see (4.2)) and

the covariance of the reflected flow about the x–z plane at the centre of the flow ( y = 1) as a function of the
averaging time Tav , for hkz = 2, 4, 6, 8 for DNS of NL100, where Ŝy is defined in (A8). This plot verifies
that reflection symmetry about the centreline is a statistical symmetry of the flow, and that this symmetry
is approached at the rate 1/Tav , consistent with the law of large numbers for quadratic statistics. Time is
non-dimensionalized by h/U.

Appendix A. Construction of the covariances with symmetry restrictions

Homogeneity in the streamwise and spanwise directions allows the decomposition of
velocity field snapshots into sums of plane waves with Fourier coefficients that depend
on the wall-normal direction. Application of mirror-symmetries in y and z incorporates
the 2-point statistics from the total flow field into a single covariance for each |kx|, |kz|
wavenumber pair. Convergence towards these statistical symmetries is slow. For example,
in figure 16, we demonstrate the slow convergence of the statistics to the asymptotic
mirror-symmetric state about the wall-normal plane at the centre of the channel.

For a single kz, kx pair, the three components of the velocity field are given by two
independent plane waves:

Φkx exp(ikxx) =

⎛
⎜⎝

Akx,kz( y)
Bkx,kz( y)
Γkx,kz( y)

⎞
⎟⎠ exp(i(kxx + kzz)) +

⎛
⎜⎝

Akx,−kz( y)
Bkx,−kz( y)
Γkx,−kz( y)

⎞
⎟⎠ exp(i(kxx − kzz)).

(A1)
With A, we denote the streamwise component of the velocity field, B the wall-normal
component, and Γ the spanwise component. A special case is the kx = 0 component for
which the coefficients of kz and −kz will be complex conjugates. The two symmetries that
we consider are mirror-symmetry in y with respect to the half-channel x–z plane at y = 1,
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and in z with respect to the half-width x–y plane at z = π/2. Those produce a fourfold
increase in the amount of data that will be included in the covariance matrix.

First, we consider the spanwise mirroring operation. This will transform z to π − z and
change sign in the spanwise velocity component:

ŜzΦkxeikxx =

⎛
⎜⎝

Akx,−kz( y)
Bkx,−kz( y)

−Γkx,−kz( y)

⎞
⎟⎠ exp(i(kxx + kz(z − π)))

+

⎛
⎜⎝

Akx,kz( y)
Bkx,kz( y)

−Γkx,kz( y)

⎞
⎟⎠ exp(i(kxx − kz(z − π))). (A2)

The −ikzπ phase that appears in the plane wave will cancel out when the covariance is
formed.

In the wall-normal mirroring, the effect is to transform y to 2 − y and change sign in the
wall-normal velocity component:

ŜyΦkx exp(ikxx) =

⎛
⎜⎝

Akx,kz(2 − y)
−Bkx,kz(2 − y)
Γkx,kz(2 − y)

⎞
⎟⎠ exp(i(kxx + kzz))

+
⎛
⎝ Akx,−kz(2 − y)

−Bkx,−kz(2 − y)
Γkx,−kz(2 − y)

⎞
⎠ exp(i(kxx − kzz)). (A3)

What the 2 − y coordinate implies is that the wall-normal structure will be inverted
for each component. Summarizing the above operations, the total covariance will
be comprised of the individual covariances obtained for each of the following four
components:

Φkz =

⎛
⎜⎝

Akz( y)
Bkz( y)
Γkz( y)

⎞
⎟⎠ eikzz, ŜzΦkz =

⎛
⎜⎝

A−kz( y)
B−kz( y)

−Γ−kz( y)

⎞
⎟⎠ eikzz,

ŜyΦkz =

⎛
⎜⎝

Akz(2 − y)
Bkz(2 − y)
Γkz(2 − y)

⎞
⎟⎠ eikzz, ŜzŜyΦkz =

⎛
⎜⎝

A−kz(2 − y)
−B−kz(2 − y)
−Γ−kz(2 − y)

⎞
⎟⎠ eikzz,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A4)

where the kx subscript has been omitted.
We form the covariance obtained from the initial wave. To highlight the inner structure

of this covariance due to the different velocity components, the following representation
is chosen:

Ckz =

⎛
⎜⎝

Cuu
kz

Cuv
kz

Cuw
kz

Cvu
kz

Cvv
kz

Cvw
kz

Cwu
kz

Cwv
kz

Cww
kz

⎞
⎟⎠ , (A5)
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with C
uiuj
kz

= (C
ujui
kz

)†. In the following, the kz subscript will be omitted where possible,
and instead of uiuj, the superscript ij will be used. So the covariance can be written as

C =

⎛
⎜⎝

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎞
⎟⎠ . (A6)

Statistical symmetry in reflections of the velocities in z merge the covariance of the −kz
component with that of kz. The negative kz covariance will be modified to account for this
symmetry:

ŜzC−kz Ŝ
†
z =

⎛
⎜⎝

(C11) (C12) −(C13)

(C21) (C22) −(C23)

−(C31) −(C32) (C33)

⎞
⎟⎠ . (A7)

Reflections in y require us to reverse the order of the row and column indexes in each
individual covariance, and if this operation is noted as ŜyCijŜ†

y = Cij
R, then we have

ŜyCŜ†
y=

⎛
⎜⎝

C11
R −C12

R C13
R

−C21
R C22

R −C23
R

C31
R −C32

R C33
R

⎞
⎟⎠ . (A8)

The total covariance will be comprised of the following components:

Ct
kz

= (Ckz + ŜyCkz Ŝ
†
y+ŜzC−kz Ŝ

†
z +ŜyŜzC−kz Ŝ

†
z Ŝ†

y)/4. (A9)

To account correctly for the relative energy between kz = 0 and kz /= 0 components, the
eigenvalues of covariances with kz /= 0 are doubled in the ordering process.
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