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Sturm-Liouville Problems Whose Leading
Coefficient Function Changes Sign

Xifang Cao, Qingkai Kong, Hongyou Wu and Anton Zettl

Abstract. For a given Sturm-Liouville equation whose leading coefficient function changes sign, we es-

tablish inequalities among the eigenvalues for any coupled self-adjoint boundary condition and those

for two corresponding separated self-adjoint boundary conditions. By a recent result of Binding and

Volkmer, the eigenvalues (unbounded from both below and above) for a separated self-adjoint bound-

ary condition can be numbered in terms of the Prüfer angle; and our inequalities can then be used to

index the eigenvalues for any coupled self-adjoint boundary condition. Under this indexing scheme,

we determine the discontinuities of each eigenvalue as a function on the space of such Sturm-Liouville

problems, and its range as a function on the space of self-adjoint boundary conditions. We also re-

late this indexing scheme to the number of zeros of eigenfunctions. In addition, we characterize the

discontinuities of each eigenvalue under a different indexing scheme.

In this paper, we study self-adjoint Sturm-Liouville problems (SLP’s) associated
with regular Sturm-Liouville equations (SLE’s)

(0.1) −(py ′) ′ + qy = λwy on (a, b),

where

−∞ ≤ a < b ≤ ∞,(0.2)

1/p, q, w ∈ L
(

(a, b), R
)
, p changes sign on (a, b), w > 0 a.e. on (a, b),(0.3)

and λ ∈ C is the so-called spectral parameter. Here, for an interval J ⊆ R, we denote
by L( J, R) the space of Lebesgue integrable real functions on J.

As motivation, we first recall some results on other classes of SLP’s. When the
leading coefficient function p is positive, the following inequalities are well known:
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0 < λSP
0 ≤ {λD

0 , λN
1 } ≤ λSP

1 < λP
1 ≤ {λD

1 , λN
2 }

≤ λP
2 < λSP

2 ≤ {λD
2 , λN

3 } ≤ λSP
3 < λP

3 ≤ {λD
3 , λN

4 } ≤ · · · ,

(0.4)

where {λP
n}+∞

n=0, {λSP
n }+∞

n=0, {λD
n }+∞

n=0 and {λN
n }+∞

n=0 are the eigenvalues for the peri-

odic, semi-periodic, Dirichlet and Neumann boundary conditions (BC’s), respec-
tively. Here, for any two numbers c1 and c2, the notation {c1, c2} with bold-faced
braces means each of c1 and c2. The above inequalities have been extended to the
case of an arbitrary coupled self-adjoint BC in [6] (see also [9]). A key point in the

work [6] is the identification of two separated self-adjoint BC’s corresponding to the
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given coupled self-adjoint BC that play, in these general inequalities, the role of the
Dirichlet and Neumann BC’s in the above classical inequalities.

Such inequalities have also been found for singular Sturm-Liouville problems with
positive p and regular or limit circle non-oscillatory end-points [12], and for left-
definite regular Sturm-Liouville problems with positive p and indefinite weight func-

tion w [14].

Now, we start discussing regular self-adjoint SLP’s whose p changes sign. Recently,
using the Prüfer transformation, Binding and Volkmer have established in [4] the ex-
istence and unboundedness, from both below and above, of the eigenvalues for any

separated self-adjoint BC without using operator theory. By their work, the eigenval-
ues for a separated self-adjoint BC can be indexed in terms of the Prüfer angle just
as in the case where p is positive. However, the relationship between the index of an
eigenvalue and the number of zeros of its eigenfunctions is much more complicated.

In this paper we first show the existence and unboundedness, from both below and
above, of the eigenvalues for any coupled self-adjoint BC, also without using opera-
tor theory. Then, we obtain inequalities parallel to the general inequalities mentioned
above. For example, if the eigenvalues {λP

n}n∈Z for the periodic BC and {λSP
n }n∈Z for

the semi-periodic BC are indexed appropriately, then

· · · ≤ λP
−2 < λSP

−2 ≤ {λD
−2, λ

N
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−1 ≤ {λD

−1, λ
N
0 }
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0 < λSP

0 ≤ {λD
0 , λN

1 } ≤ λSP
1 < λP

1 ≤ {λD
1 , λN

2 } ≤ · · · ,

(0.5)

where {λD
n }n∈Z and {λN

n }n∈Z are the eigenvalues (numbered in terms of the Prüfer
angle) for the Dirichlet and Neumann BC’s, respectively. Therefore, the eigenval-
ues for any self-adjoint BC can now be indexed in terms of the Prüfer angle. These
inequalities also imply that an asymptotic formula for the eigenvalues for separated

self-adjoint BC’s (see [1] and [3]) holds for coupled self-adjoint BC’s, too. Next, un-
der this indexing scheme, we characterize the discontinuities of each eigenvalue as a
function on the space of SLP’s studied, and the range of each eigenvalue as a function
on the space of self-adjoint BC’s.

Even though the number of zeros of an eigenfunction can be any integer bigger
than or equal to a certain minimum, one can determine the index of an eigenvalue for
a separated self-adjoint BC via an appropriate count of the zeros of its eigenfunctions.

In this count, the zeros are weighted by the sign of p. When the self-adjoint BC is a
coupled one, the count gives the index with a possible error of ±1.

For these SLP’s, there is already a direct way to index the eigenvalues: the negative
ones are numbered as . . . , λ−3, λ−2, λ−1, while the non-negative ones are indexed

as λ0, λ1, λ2, . . . , all in non-decreasing order. In general, at a self-adjoint BC with 0
as an eigenvalue, these direct indices jump (i.e., do not stay invariant when the self-
adjoint BC varies continuously). The self-adjoint BC’s having 0 as an eigenvalue have
been characterized in [13]. Here we determine how the direct indices of the eigen-

values jump at such a BC. These results are important for numerical computations
of the eigenvalues, since the problems (i.e., the end points a, b of the interval, the
coefficient functions p, q, w of the differential equation, and the coefficients of the
self-adjoint BC) are usually approximated in these computations.
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The organization of this paper is as follows. In Section 1, we introduce our no-
tation and recall some basic results. The inequalities are established in Section 2,

while Section 3 is devoted to the study of the discontinuities and the range of each
indexed eigenvalue. In Section 4, we discuss the relationship between the index of an
eigenvalue and the number of zeros of its eigenfunctions. Finally, in Section 5, we
characterize the jumps in the direct indices of the eigenvalues.

1 Notation and Basic Results

Let J ⊆ R be an interval. A function f ∈ L( J, R) is said to change sign on J if both of

the sets {x ∈ J ; f (x) < 0} and {x ∈ J ; f (x) > 0} have positive or infinite Lebesgue
measures; otherwise, we say that f does not change sign on J.

By a solution of (0.1) we mean a function y on (a, b) such that y and py ′ are abso-
lutely continuous on all compact subintervals of (a, b) and satisfy (0.1) a.e. The regu-

larity conditions in (0.3) imply that every solution y and its quasi-derivative py ′ have
finite limits at the both end-points a and b, and any initial-value problem for (0.1)
on [a, b] has a unique solution. We will abbreviate the SLE (0.1) as (a, b, 1/p, q, w)
and denote by Ω the space of all such differential equations (DE’s), i.e.,

(1.1) Ω = {(a, b, 1/p, q, w) ; (0.2) and (0.3) hold}.

Bold faced lower case Greek letters, such as ω, will be used to stand for elements of

Ω. A natural topology on Ω is the product topology induced from the usual topolo-
gies on R and on L(R, R). More precisely, given ε > 0, each (a0, b0, 1/p0, q0, w0) ∈
Ω with finite a0 and b0 has a neighborhood in Ω consisting of the elements
(a, b, 1/p, q, w) satisfying

(1.2) |a − a0| + |b − b0| +

∫

R

(
|1̃/p − 1̃/p0| + |q̃ − q̃0| + |w̃ − w̃0|

)
< ε,

where 1̃/p is the extension of 1/p to R that equals 0 on R \ (a, b) and 1̃/p0, q̃, q̃0,
w̃, w̃0 have similar meanings; each (−∞, b0, 1/p0, q0, w0) ∈ Ω with finite b0 has a
neighborhood in Ω formed by the elements (a, b, 1/p, q, w) satisfying

(1.3) a < −1

ε
, |b − b0| +

∫

R

(
|1̃/p − 1̃/p0| + |q̃ − q̃0| + |w̃ − w̃0|

)
< ε ;

etc. Such topologies have been used in [15], [10] and [11]. We note that Ω is path-

connected.
For any m, n ∈ N, we use Mm,n(C) to denote the vector space of m by n complex

matrices and M∗
m,n(C) its open subspace consisting of the elements with the maxi-

mum rank min{m, n}, while Mm,n(R) and M∗
m,n(R) are the real analogs of Mm,n(C)

and M∗
m,n(C), respectively. When a capital Latin letter other than Y stands for a ma-

trix, the entries of the matrix will be denoted by the corresponding lower case letter
with two indices. Let GL(2, C) be the set of invertible complex matrices in dimen-
sion 2, and SL(2, R) its subset consisting of the real elements having determinant 1.
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For a complex matrix A, A∗ stands for its complex conjugate transpose. For a solution
y of (0.1), we set

(1.4) Y =

(
y

py ′

)
.

The self-adjoint BC’s are represented by linear algebraic systems of the form

(1.5) AY (a) + BY (b) = 0,

where (A |B) ∈ M∗
2,4(C) satisfies

(1.6) A

(
0 −1
1 0

)
A∗

= B

(
0 −1
1 0

)
B∗.

Following [13], we take the quotient space

(1.7) GL(2, C)\M∗
2,4(C)

=

{
{(TA |TB) ; T ∈ GL(2, C)} ; (A |B) ∈ M∗

2,4(C)
}

as the space of BC’s, i.e., each BC is an equivalence class of coefficient matrices of linear

algebraic systems of the form (1.5) with (A |B) ∈ M∗
2,4(C). The BC represented by (1.5)

will be denoted by [A |B]. Note here that square brackets, not parentheses, are used.
Usual bold-faced capital Latin letters, such as A, will also be used for BC’s. The space
BR of real self-adjoint BC’s consists of the separated real BC’s and the coupled BC’s
of the form [K | − I] with K ∈ SL(2, R). The space BC of complex self-adjoint BC’s

is made of the real self-adjoint BC’s and the non-real BC’s of the form [eiωK | − I]
with ω ∈ (0, π) and K ∈ SL(2, R). By [13], BC can be obtained by “gluing” its open
sets

OC

1 = OC

6 = {[eiωK | − I] ; ω ∈ [0, π), K ∈ SL(2, R)},(1.8)

OC

2 =

{[
1 a12 0 z

0 z −1 b22

]
; a12 ∈ R, z ∈ C, b22 ∈ R

}
,(1.9)

OC

3 =

{[
1 a12 −z 0
0 z b21 −1

]
; a12 ∈ R, z ∈ C, b21 ∈ R

}
,(1.10)

OC

4 =

{[
a11 1 0 −z

z 0 −1 b22

]
; a11 ∈ R, z ∈ C, b22 ∈ R

}
,(1.11)

OC

5 =

{[
a11 1 z 0
z 0 b21 −1

]
; a11 ∈ R, z ∈ C, b21 ∈ R

}
(1.12)

via the coordinate transformations among these open sets. Note that the topology
on the open set in (1.8) is the one induced from the usual topology on M2,2(C), and

each of the four open sets in (1.9)–(1.12) can be identified with R
4. Open sets OR

i , i =

1, . . . , 6, can be defined using (1.8)–(1.12) with ω = 0 and C replaced by R. Then,
BR can be obtained by gluing these open sets via the coordinate transformations
among them, and each of OR

2 , . . . , OR

5 can be identified with R
3.
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For each [A |B] ∈ BC and every K ∈ SL(2, R), we set

(1.13) [A |B]•K = [AK |B].

Note that [A |B]•K ∈ BR if [A |B] ∈ BR .

The space of SLP’s studied in this paper is Ω × BC. The following result is well

known (see, for example, [5, Chapter 7, Theorem 2.1]).

Theorem 1.14 The eigenvalues of any Sturm-Liouville problem in Ω×BC are all real.

For each λ ∈ C, let φ11( · , λ) and φ12( · , λ) be the solutions of (0.1) determined by
the initial conditions

(1.15) φ11(a, λ) = 1, (pφ ′
11)(a, λ) = 0 ; φ12(a, λ) = 0, (pφ ′

12)(a, λ) = 1.

We denote pφ ′
11 by φ21 and pφ ′

12 by φ22. Set

(1.16) Φ(t, λ) =

(
φ11(t, λ) φ12(t, λ)
φ21(t, λ) φ22(t, λ)

)
, t ∈ [a, b], λ ∈ C.

To indicate the dependence of Φ on the SLE ω, we sometimes write Φω. For each

t ∈ [a, b], Φ(t, λ) is an entire matrix function of λ. Moreover, Φ(t, λ) ∈ SL(2, R) for
t ∈ [a, b] and λ ∈ R. The following result is also well known (see, for example, [17,
Lemma 4.2]).

Theorem 1.17 A number λ ∈ R is an eigenvalue of the Sturm-Liouville problem con-

sisting of (0.1) and (1.5) if and only if

(1.18) ∆(λ) := det
(

A + BΦ(b, λ)
)

= 0.

We will call the entire function ∆, unique up to a non-zero constant multiple, the
characteristic function of the SLP for its importance. Recall that the algebraic mul-

tiplicity (or just multiplicity) of an isolated eigenvalue is the order of the eigenvalue
as a zero of ∆. An eigenvalue is said to be simple if it has multiplicity 1, while the
eigenvalues of multiplicity 2 are called double eigenvalues. When we count the (iso-
lated) eigenvalues of an SLP in a domain in C, their multiplicities are taken into ac-

count. The linear space spanned by the eigenfunctions for an eigenvalue is called the
eigenspace for the eigenvalue. The geometric multiplicity of an eigenvalue is defined
to be the dimension of its eigenspace, which is either 1 or 2. The following result is
from Theorem 5.5 in [13].

Theorem 1.19 The algebraic and geometric multiplicities of an eigenvalue of any

Sturm-Liouville problem in Ω × BC are equal.

The next result is a slight generalization of Theorem 3.1 in [15] or Theorem 3.2 in
[10], and can be proved using Rouché’s Theorem from complex analysis.
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Theorem 1.20 Let R ⊂ R be a bounded open set such that its boundary does not

contain any eigenvalue of a given Sturm-Liouville problem in Ω × BC, and n ≥ 0

the number of the problem’s eigenvalues in R. Then there exists a neighborhood N of

the problem in Ω × BC such that any Sturm-Liouville problem in N also has exactly n

eigenvalues in R.

Remark 1.21 Let λ∗ be an eigenvalue of an SLP (ω0, A0) ∈ Ω × BC and n its

multiplicity. Pick a small ε > 0 such that (ω0, A0) has exactly n eigenvalues in the
interval [λ∗ − ε, λ∗ + ε]. Then, by Theorem 1.20, there is a connected neighbor-
hood O of (ω0, A0) in Ω × BC such that each SLP in O has exactly n eigenvalues in
(λ∗ − ε, λ∗ + ε). Thus, there are continuous functions Λ1, . . . , Λn : O → R defined

on O such that

(i) Λ1(ω0, A0) = · · · = Λn(ω0, A0) = λ∗;
(ii) Λ1(ω, A) ≤ · · · ≤ Λn(ω, A) for any (ω, A) ∈ O;
(iii) for each (ω, A) ∈ O, Λ1(ω, A), . . . and Λn(ω, A) are eigenvalues of (ω, A).

From Theorem 1.19 we see that n ≤ 2. By Theorem 4.1 in [13], when n = 2, these are
actually different functions on O. In any case, locally, they are the only such functions

and are called the continuous eigenvalue branches through λ∗.
We can apply the above ideas to any finite number of eigenvalues of an SLP to get

similar conclusions.

Remark 1.22 We can restrict our attention to any connected subspace of Ω × BC,

such as Ω ×BR or just a curve in Ω ×BC, to obtain results similar to Theorem 1.20
and Remark 1.21. These results will be used in Section 2 to prove the existence of
eigenvalues for coupled self-adjoint BC’s without using operator theory.

Each separated self-adjoint BC can be written in the form

(1.23) Sα,β :=

[
cos α − sin α 0 0

0 0 cos β − sin β

]

with α ∈ [0, π) and β ∈ (0, π]. For example, the Dirichlet BC D = S0,π . Note that

the space

(1.24) T = {Sα,β ; α ∈ [0, π), β ∈ (0, π]}

of separated self-adjoint BC’s is diffeomorphic to the torus.
For any non-trivial real solution of (0.1), there are two unique absolutely contin-

uous functions ρ and θ on [a, b] such that ρ(t, λ) 6= 0 for all t ∈ [a, b], and

(1.25) y = ρ sin θ, py ′
= ρ cos θ, 0 ≤ θ(a, λ) < π.

The function θ is called the Prüfer angle of the solution y. The zeros of y in [a, b]
are exactly the points of [a, b] where θ attains an integer multiple of π. Note that y

satisfies the self-adjoint BC (1.23) if and only if

(1.26) θ(a, λ) = α, θ(b, λ) = β + nπ for some n ∈ Z.
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If an eigenvalue has geometric multiplicity 1, then all its eigenfunctions share the
same Prüfer angle. The proof of the following result in [4] does not use operator

theory.

Theorem 1.27 Fix a Sturm-Liouville equation in Ω, and let α ∈ [0, π), β ∈ (0, π].

Then, for each n ∈ Z, there is a unique eigenvalue λn = λn(Sα,β) for Sα,β such that its

Prüfer angle θ satisfies

(1.28) θ(b, λn) = β + nπ.

Moreover, λn → −∞ as n → −∞, and λn → +∞ as n → +∞.

Proof See [4, Theorem 2.2].

For any α ∈ [0, π), β ∈ (0, π] and n ∈ Z, we have that λn(Sα,β) < λn+1(Sα,β),
since w > 0 a.e. on (a, b). We also mention that the derivative formulas in [15]
for continuous eigenvalue branches over T with respect to α and β still hold here.

Similar to the case where p does not change sign, we have the following facts.

Lemma 1.29 Fix a Sturm-Liouville equation in Ω, and let n ∈ Z. As a function of

(α, β), λn(Sα,β) is continuous on [0, π) × (0, π], strictly decreasing in α, and strictly

increasing in β. Moreover, for each α ∈ [0, π),

(1.30) lim
β→0+

λn(Sα,β) = λn−1(Sα,π),

and for each β ∈ (0, π],

(1.31) lim
α→π−

λn(Sα,β) = λn−1(S0,β).

Proof See the proof of the Theorem in [7].

2 Inequalities Among Eigenvalues

In this section, we recall from [6] some information about the characteristic function,
show the existence of eigenvalues for coupled self-adjoint BC’s, establish inequalities
among eigenvalues, and then derive a consequence of these inequalities.

Consider the SLE (0.1), and let K ∈ SL(2, R). For any λ ∈ C we define

(2.1) τ (λ) = τK (λ) = k22φ11(b, λ) − k21φ12(b, λ) − k12φ21(b, λ) + k11φ22(b, λ).

For any ω ∈ [0, 2π), since the characteristic function for the self-adjoint BC
[eiωK | − I] is

(2.2) ∆(λ) = 2 cos ω − τ (λ),
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a number λ is an eigenvalue for [eiωK | − I] if and only if

(2.3) τ (λ) = 2 cos ω.

Associated with the coupled self-adjoint BC [K | −I] are the separated self-adjoint
BC’s

(2.4)

[
1 0 0 0

0 0 k22 −k12

]

and

(2.5)

[
0 1 0 0
0 0 −k21 k11

]
.

Note that (k22,−k12) 6= (0, 0) 6= (−k21, k11), since det K = 1. Thus, (2.4) and (2.5)

are well-defined BC’s. We use {µn = µn(K) ; n ∈ Z} to denote the eigenvalues for the
self-adjoint BC (2.4) and {νn = νn(K) ; n ∈ Z} the eigenvalues for the self-adjoint
BC (2.5), all indexed in terms of the Prüfer angle. Note also that µn(K) = µn(−K)
and νn(K) = νn(−K) for any n ∈ Z. Part of the following lemma motivates the

introduction of the µn’s and νn’s.

Lemma 2.6

(i) For any λ ∈ {µn ; n ∈ Z} ∪ {νn ; n ∈ Z}, we have that |τ (λ)| ≥ 2.

(ii) If λ∗ ∈ R satisfies |τ (λ∗)| < 2, then τ ′(λ∗) 6= 0. Hence, any eigenvalue for a

non-real self-adjoint boundary condition is simple.

(iii) If λ∗ ∈ R satisfies τ (λ∗) = 2, then τ ′ ′(λ∗) < 0; if λ∗ ∈ R satisfies τ (λ∗) = −2,

then τ ′ ′(λ∗) > 0.

Proof See the proofs of Lemma 4.2 Part iii), Corollary 4.1 and Theorem 4.2 in [6].
Although p is assumed positive in [6], the same proofs are valid when p changes sign.

Remark 2.7 Lemma 2.6 (ii) and (iii) imply the following properties of the curve
τ = τ (λ):

(i) it is always strictly monotone between the two lines τ = ±2;
(ii) when it meets the line τ = 2, it is either strictly monotone, corresponding to a

simple eigenvalue for [K | − I], or is concave downward with a local maximum

point on the line τ = 2, corresponding to a double eigenvalue for [K | − I];
(iii) when it meets the line τ = −2, it is either strictly monotone, corresponding to

a simple eigenvalue for [−K | − I], or is concave upward with a local minimum
point on the line τ = −2, corresponding to a double eigenvalue for [−K | − I].
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τ

2

λ
−2(K)

λ
−2(−K) =

λ
−1(−K)

λ
−1(K) =

λ0(K)

λ0(−K) λ1(−K)

λ1(K) λ2(K)

t

−2

From these properties we see that the intersections, with their multiplicities counted,

of the curve with the line τ = 2 move continuously when (a, b, 1/p, q, w) ∈ Ω

and K ∈ SL(2, R) vary continuously, unless some of them disappear at −∞ or +∞.
There is a similar statement for the intersections of this curve with the line τ = −2.

To discuss the dependence of µn(K) and νn(K) on K ∈ SL(2, R), we define

L1 = {K ∈ SL(2, R) ; k11 > 0, k12 ≤ 0} ' R+ × (−∞, 0] × R,(2.8)

L2 = {K ∈ SL(2, R) ; k11 ≤ 0, k12 < 0} ' (−∞, 0] × R− × R,(2.9)

where R+ := (0, +∞) and R− := (−∞, 0). Note that L1 ∩ L2 = ∅, while the
common part of the boundaries of L1 and L2 is

(2.10) ∂L1 ∩ ∂L2 = {K ∈ SL(2, R) ; k11 = 0, k12 < 0} ⊂ L2.

The following lemma is very similar to Lemma 4.3 in [6].

Lemma 2.11 Let n ∈ Z. Then, µn is continuous on L1 ∪ L2, νn is continuous on L1

and on L2, and for any K ∈ ∂L1 ∩ ∂L2,

(2.12) lim
L13L→K

νn(L) = νn−1(K).

Proof From Lemma 1.29, (2.4) and (2.5) we see that µn(K) depends continuously on
K ∈ SL(2, R) as long as k12 6= 0, and νn(K) depends continuously on K ∈ SL(2, R)
as long as k11 6= 0. In particular, νn is continuous on L1.

Let K ∈ L1 ∪ L2 with k12 = 0. Then, K ∈ L1, i.e., k11 > 0, and hence k22 > 0

since now k11k22 = det K = 1. If L ∈ L1 ∪ L2 is sufficiently close to K, then
l11, l22 > 0, which implies that L ∈ L1, i.e., l12 ≤ 0. Hence, l12/l22 ≤ 0. Thus, also by
Lemma 1.29, µn(L) → µn(K) as L → K in L1 ∪ L2. Therefore, µn is continuous on
L1 ∪ L2.
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Let K ∈ L1 ∪ L2 with k11 = 0. Then, K ∈ L2, i.e., k12 < 0, and hence k21 > 0
since now −k12k21 = det K = 1. If L ∈ L1 is sufficiently close to K, then l11, l21 > 0,

which implies that l11/l21 > 0. Therefore, by Lemma 1.29 again, (2.12) is proved.
If L ∈ L2 is sufficiently close to K, then l11 ≤ 0 and l21 > 0, which implies that
l11/l21 ≤ 0. Thus, νn(L) → νn(K) as L → K in L2. Therefore, νn is also continuous
on L2.

Lemma 2.13 Fix a Sturm-Liouville equation in Ω. Then, for any K ∈ L1,

(2.14) τK

(
ν0(K)

)
≥ 2.

Proof Consider the SLE

(2.15) −(py ′) ′ = λy on (−1, 1),

where

(2.16) p(t) =

{
−1 if t < 0,

1 if t > 0.

Then, λ = 0 is an eigenvalue with an eigenfunction y ≡ 1 for both the periodic
BC [I | − I] and the Neumann BC N = Sπ/2,π/2, and the Prüfer angle for 0 as an
eigenvalue for N is θ ≡ π/2. Thus, ν0(I) = 0 since the BC in (2.5) becomes N when
K = I. Direct calculations also show that in this case, Φ(1, 0) = I, which implies

(2.14) for the SLE (2.15) and K = I. Then, we obtain (2.14) for any SLE in Ω and
any K ∈ L1 from the connectedness of Ω and L1, Lemma 2.6 (i) and Lemma 2.11.

Now, we are ready to prove the following results, the idea of whose proof is taken
from [9]. Recall that by Theorem 1.14, the eigenvalues for any SLP in Ω ×BC are all

real.

Theorem 2.17 Fix a Sturm-Liouville equation in Ω.

(i) If K ∈ L1 ∪ L2 and ω ∈ (−π, π), then: µn(K) is not an eigenvalue for

[eiωK | − I] for any even n ∈ Z; for each even n ∈ Z, there are exactly two eigen-

values (counting multiplicity) for [eiωK | − I] in the interval
(
µn(K), µn+2(K)

)
,

to be denoted by λn+1(eiωK) and λn+2(eiωK) in non-decreasing order.

(ii) If K ∈ SL(2, R) \ (L1 ∪ L2), then: µn(K) is not an eigenvalue for [K | − I] for

any odd n ∈ Z; for each odd n ∈ Z, there are exactly two eigenvalues (counting

multiplicity) for [K | − I] in the interval
(
µn(K), µn+2(K)

)
, to be denoted by

λn+1(K) and λn+2(K) in non-decreasing order.

In particular, there are infinitely many eigenvalues, unbounded from both below and

above, for any coupled self-adjoint boundary condition.
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(iii) If K ∈ L1 ∪ L2, then for any ω ∈ (−π, 0) ∪ (0, π), we have that

· · · ≤ λ−2(K) < λ−2(eiωK) < λ−2(−K) ≤ {µ−2(K), ν−1−δ(K)}

≤ λ−1(−K) < λ−1(eiωK) < λ−1(K) ≤ {µ−1(K), ν0−δ(K)}

≤ λ0(K) < λ0(eiωK) < λ0(−K) ≤ {µ0(K), ν1−δ(K)}

≤ λ1(−K) < λ1(eiωK) < λ1(K) ≤ {µ1(K), ν2−δ(K)} ≤ · · · ,

(2.18)

where δ = 0 if K ∈ L1 and δ = 1 if K ∈ L2.

(iv) If K ∈ SL(2, R) \ (L1 ∪ L2), then (iii) applies to −K.

Proof Our claims for the non-real self-adjoint BC’s are consequences of those for the
real self-adjoint BC’s and Lemma 2.6 (ii). So, we only need to prove the claims for
the real self-adjoint BC’s.

For h ∈ (0, 1], consider

(2.19) Kh =

(
1/h −1/h

0 h

)
∈ L1.

Let B = Sπ/4,π/2, i.e.,

(2.20) B =

[
1 −1 0 0
0 0 0 −1

]
,

then we have that as h → 0+,

[Kh | − I] =

[
1 −1 −h 0
0 h 0 −1

]
−→ B,(2.21)

[−Kh | − I] =

[
1 −1 h 0
0 −h 0 −1

]
−→ B.(2.22)

Fix an even integer n ≥ 2. Note that each λi(B) is simple by Theorem 1.19. By
Remarks 1.21 and 1.22, there is a connected neighborhood N of B in BR such that
the simple continuous eigenvalue branch Λi through λi(B) is defined on N if

−n − 1 ≤ i ≤ n + 2, and for each X ∈ N, the only eigenvalues for X in the inter-

val (
λ−n−2(B)+λ−n−1(B)

2
, λn+2(B)+λn+3(B)

2
) are Λ−n−1(X), Λ−n(X), . . . , and Λn+2(X). From

(2.21) and (2.22) we then deduce that for each i ∈ Z satisfying −n − 1 ≤ i ≤ n + 2,

(2.23) lim
h→0+

Λi(Kh) = λi(B) = lim
h→0+

Λi(−Kh).

Note that {µi(Kh) ; i ∈ Z} are the eigenvalues for the BC

(2.24)

[
1 0 0 0

0 0 h 1/h

]
=

[
1 0 0 0

0 0 −h2 −1

]
,
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which converges to

(2.25)

[
1 0 0 0
0 0 0 −1

]
= S0,π/2

as h → 0+, while {νi(Kh) ; i ∈ Z} are the eigenvalues for the BC

(2.26)

[
0 1 0 0
0 0 0 1/h

]
=

[
0 −1 0 0
0 0 0 −1

]
= Sπ/2,π/2.

Set A = S0,π/2 and C = Sπ/2,π/2. From (2.24), (2.25) and Lemma 1.29 we then obtain
that for each i ∈ Z,

(2.27) lim
h→0+

µi(Kh) = λi(A).

Lemma 1.29 also implies that for any h ∈ (0, 1],

· · · < λ−1(C) = ν−1(Kh) < λ−1(B) < λ−1(A)

< λ0(C) = ν0(Kh) < λ0(B) < λ0(A)

< λ1(C) = ν1(Kh) < λ1(B) < λ1(A) < · · · .

(2.28)

Then (2.23), (2.27) and (2.28) together yield that when h > 0 is sufficiently small,
none of ν−n(Kh) and µn+1(Kh) is an eigenvalue for any of Kh and −Kh, the only
eigenvalues for Kh in the interval

(
ν−n(Kh), µn+1(Kh)

)
are Λ−n(Kh), Λ−n+1(Kh), . . . ,

and Λn+1(Kh), similarly for −Kh, and

ν−n(Kh) < {Λ−n(Kh), Λ−n(−Kh)} < µ−n(Kh)

< · · ·
< νn+1(Kh) < {Λn+1(Kh), Λn+1(−Kh)} < µn+1(Kh).

(2.29)

For such an h: since Λ0(−Kh) is simple and is the only eigenvalue for −Kh in(
ν0(Kh), µ0(Kh)

)
, from (2.29) and Lemma 2.6 (i) we see that τKh

(
µ0(Kh)

)
≤ −2;

similarly, τKh

(
ν1(Kh)

)
≤ −2; since there are no eigenvalues for Kh in

(
µ−1(Kh),

ν0(Kh)
]

, we must have τKh

(
µ−1(Kh)

)
≥ 2, . . . ; in total, for i = −n,−n + 2, . . . , n,

τKh

(
νi(Kh)

)
≥ 2, τKh

(
νi+1(Kh)

)
≤ −2,(2.30)

τKh

(
µi(Kh)

)
≤ −2, τKh

(
µi+1(Kh)

)
≥ 2.(2.31)

Note that each µi(Kh) and every νi(Kh) continuously depend on h ∈ (0, 1]. Thus, for
any h ∈ (0, 1], (2.30) and (2.31) are true, and hence (2.29) implies that

ν−n(Kh) < {µ−n(Kh), ν−n+1(Kh)}

< · · ·
< {µn(Kh), νn+1(Kh)} < µn+1(Kh).

(2.32)
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For h ∈ (0, 1], since these hold for an arbitrary even n ∈ N, we have (2.30) and (2.31)
for every even i ∈ N, and

· · · < {µ−2(Kh), ν−1(Kh)} < {µ−1(Kh), ν0(Kh)}

< {µ0(Kh), ν1(Kh)} < {µ1(Kh), ν2(Kh)} < · · · .

(2.33)

Hence, for h ∈ (0, 1], µi(Kh) is not an eigenvalue for Kh (−Kh, resp.) if i is even
(odd, resp.). Let m ∈ Z be even. By Remarks 1.21 and 1.22 together with (2.29),
Λm+1 and Λm+2 have continuous extensions to the whole {Kh ; 0 < h ≤ 1} such

that for each h ∈ (0, 1], Λm+1(Kh) and Λm+2(Kh) are the only eigenvalues for Kh in(
µm(Kh), µm+2(Kh)

)
, while Λm+2 and Λm+3 have continuous extensions to the entire

{−Kh ; 0 < h ≤ 1} such that for each h ∈ (0, 1], Λm+2(−Kh) and Λm+3(−Kh) are
the only eigenvalues for −Kh in

(
µm+1(Kh), µm+3(Kh)

)
. These together with (2.30),

(2.31) and (2.33) yield our claims for Kh with h ∈ (0, 1]. Our claims for the general
K ∈ L1 and for any K ∈ L2 follow from those for Kh together with Remark 2.7,
Lemma 2.6 (i) and Lemma 2.11. Finally, if K ∈ SL(2, R) is not in L1 ∪ L2, then −K

is in L1 ∪ L2. This finishes the proof.

Remark 2.34 By Remark 2.7, Lemma 2.6 (i), Lemma 2.11 and the connectedness of

Ω × BC, we only need to show the inequalities for one particular SLE in Ω, such as
(2.15), and one particular K in SL(2, R), such as I. On the other hand, such a direct
proof may involve some detailed estimates, which are avoided in our proof above.

Remark 2.35 The unboundedness from below of the eigenvalues of any problem in
Ω × BC is proved in [16] using operator theory.

Remark 2.36 Fix an SLE in Ω, and let n ∈ Z. The eigenvalue λn(Sα,β) for a sepa-
rated self-adjoint BC Sα,β can be computed from its Prüfer angle definition given in

Theorem 1.27. Our inequalities in Theorem 2.17 can be used to construct an algo-
rithm for computing the eigenvalue λn(eiωK) for an arbitrary coupled self-adjoint BC
[eiωK | − I]: one finds µn−1(K) and µn(K) first, then λn(eiωK) is the only zero (pos-
sibly double) of τK (λ) = 2 cos ω in the interval [µn−1(K), µn(K)] and can be located

by using a root finder. Note that when n is even, λn(K) 6= λn+1(K) if K ∈ L1 ∪ L2,
and λn(K) 6= λn−1(K) if K ∈ SL(2, R) \ L1 ∪ L2. Such an algorithm has been
implemented in the code SLEIGN2 for the case where p is positive, see [2].

In the following consequence of our inequalities, for any real function f , we use
f− and f+ to denote the positive and negative parts of f , respectively, such that f =

f+ − f−.

Theorem 2.37 The eigenvalues {λn ; n ∈ Z} of any Sturm-Liouville problem (a, b,
1/p, q, w ; A) ∈ Ω × BC satisfy

(2.38) λn ∼ ± n2π2

[∫ b

a
w(t)

p±(t)
dt

] 2
as n → ±∞.
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Proof When the self-adjoint BC in the problem is a separated one, the result has been
proved in [3]; when the BC is a coupled one, the result follows from the separated

case and Theorem 2.17 (i), (ii).

3 Discontinuity and Range of λn

For each n ∈ Z, we now have a function λn on Ω × BC given by Theorem 2.17. In
this section, we characterize the discontinuities of λn on Ω × BC and determine the
range of λn on BC.

To study the discontinuities of λn on BC, we will need the notation

FC

− = {[eiωK | − I] ; K ∈ SL(2, R), k11k12 ≤ 0, ω ∈ [0, π)},(3.1)

GC

− =

{[
a1 1 0 −z

z 0 −1 b2

]
; b2 ≤ 0, a1 ∈ R, z ∈ C

}
,(3.2)

HC

− =

{[
1 a2 −z 0
0 z b1 −1

]
; a2 ≤ 0, b1 ∈ R, z ∈ C

}
,(3.3)

FC

+ = OC

6 \ FC

−, GC

+ = OC

4 \ GC

−, HC

+ = OC

3 \ HC

−,(3.4)

IC

− =

{[
1 a2 0 z

0 z −1 b2

]
; a2, b2 ≤ 0, z ∈ C, a2b2 ≥ zz̄

}
,(3.5)

IC

+ =

{[
1 a2 0 z

0 z −1 b2

]
; a2, b2 > 0, z ∈ C, a2b2 > zz̄

}
,(3.6)

IC

0 = OC

2 \ (IC

− ∪ IC

+),(3.7)

JC
= {[eiωK | − I] ; K ∈ SL(2, R), k12 = 0, ω ∈ [0, π)}

∪
{[

a1 a2 0 0
0 0 b1 b2

]
∈ BR ; a2b2 = 0

}
.

(3.8)

Note that the separated BC’s in JC other than the Dirichlet BC are in GC

− ∪ HC

−. To
discuss the discontinuities of λn on BR, we will use FR

±, GR

±, HR

±, IR

±, IR

0 and JR ,
which can be defined using (3.1)–(3.8) with ω = 0 and C replaced by R. Note that

the coupled BC’s in JR are all in FR

−, and

(3.9) JR ∩ T = (JR ∩ GR

−) ∪ (JR ∩ HR

−) ∪ {D}.

Theorem 3.10

(i) Fix a self-adjoint boundary condition. Then, for any n ∈ Z, the function λn is

continuous on Ω.

(ii) For any n ∈ Z, the function λn is continuous on Ω×(BR\JR) and at each problem

with a coupled boundary condition in JR where λn = λn−1, and discontinuous at

any other point of Ω × JR. More precisely, if n ∈ Z, then we have the following:

for each problem (ω, A) ∈ Ω × JR with a coupled boundary condition A, the
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restriction of λn to Ω × FR

− is continuous at (ω, A), and

(3.11) lim
Ω×FR

+3(σ,B)→(ω,A)
λn(σ, B) = λn−1(ω, A);

for each problem (ω, A) ∈ Ω × JR with A ∈ JR ∩ GR

−, the restriction of λn to

Ω × GR

− is continuous at (ω, A), and

(3.12) lim
Ω×GR

+3(σ,B)→(ω,A)
λn(σ, B) = λn−1(ω, A);

for each problem (ω, A) ∈ Ω × JR with A ∈ JR ∩ HR

−, the restriction of λn to

Ω × HR

− is continuous at (ω, A), and

(3.13) lim
Ω×HR

+3(σ,B)→(ω,A)
λn(σ, B) = λn−1(ω, A);

while for each problem (ω, D) ∈ Ω × JR with the Dirichlet boundary condition

D, the restriction of λn to Ω × IR

− is continuous at (ω, D), and

lim
Ω×IR

0 3(σ,B)→(ω,D)
λn(σ, B) = λn−1(ω, D),(3.14)

lim
Ω×IR

+3(σ,B)→(ω,D)
λn(σ, B) = λn−2(ω, D).(3.15)

(iii) The conclusions of (ii) still hold when all the super indices R are replaced by C.

Proof (i) From the Prüfer angle characterization of the eigenvalues for separated
self-adjoint BC’s we see that λn depends continuously on ω ∈ Ω. For coupled self-

adjoint BC’s, the continuity of λn in ω ∈ Ω is a consequence of Remark 2.7 and
Theorem 2.17.

(ii) and (iii) Fix ω ∈ Ω and let n ∈ Z. From the proof of Lemma 2.11 we
see the following: µn is continuous on FR

−, which yields that so is λn; and for any

K ∈ SL(2, R) with k12 = 0,

(3.16) lim
FR

+3[L|−I]→[K|−I]
µn(L) = µn−1(K),

which implies that

(3.17) lim
FR

+3[L|−I]→[K|−I]
λn(ω, [L | − I]) = λn−1(ω, [K | − I]).

Then, by arguments similar to those in the proof of Theorem 3.76 in [11], the con-

tinuity of λn on FR

− gives the continuity of λn on Ω × FR

−, and (3.17) yields (3.11).
The other claims can be shown similarly (see also the proof of Theorem 3.39 in [11]).

As a direct consequence of Theorem 3.18, we have the following global existence
of continuous eigenvalue branches, which can be directly established using the reality
and unboundedness from both below and above of the eigenvalues. In this result, by
a coordinate subset we mean an open subset that can be used in a coordinate system.
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Corollary 3.18 Fix a Sturm-Liouville equation in Ω, and let O be a coordinate subset

of T or BR or BC. Then, there are continuous eigenvalue branches . . . , Λ−1, Λ0, Λ1, . . .
on O such that for any A ∈ O,

(i) · · · ≤ Λ−1(A) ≤ Λ0(A) ≤ Λ1(A) ≤ . . . ,

(ii) . . . , Λ−1(A), Λ0(A), Λ1(A), . . . are the eigenvalues for A.

Proof This follows from the fact that as A varies in O, none of the eigenvalues for A

disappears, even though the indices of the eigenvalues may change at some BC’s.

Remark 3.19 There are smooth manifold structures on BR and BC [13], and one
can study the differentiability of λn at its continuous points. Since the discontinu-

ities of λn are completely characterized by Theorem 3.10, the derivative formulas (in
[15]) for continuous eigenvalue branches imply derivative formulas for λn and hence
monotonicity results. We omit the details here, and refer interested readers to Sec-
tion 5 in [11] and Section 4 in [14].

Fix an SLE in Ω and consider λn as a function on T or BR or BC. Let λD
n be the

value of λn at the Dirichlet BC D. We have the following results.

Theorem 3.20

(i) For each n ∈ Z, the range of λn on the space T of separated self-adjoint boundary

conditions is (λD
n−2, λ

D
n ].

(ii) For each n ∈ Z, the range of λn on the space BR of real self-adjoint boundary

conditions is the same as that on T, and the range of λn on the space BC of complex

self-adjoint boundary conditions is also the same as that on T.

Proof The proof of Theorem 4.1 in [11] can be used here with only minor and ob-
vious modifications, so we omit the details.

4 Number of Zeros of Eigenfunctions

In this section, we study the number of zeros of eigenfunctions for an arbitrarily fixed
SLE (a, b, 1/p, q, w) ∈ Ω and illustrate our results with examples.

In the case where p is positive, for each n ∈ N, an eigenfunction for the n-th
eigenvalue for a separated self-adjoint BC has exactly n − 1 zeros in the interior of
the SLE’s interval. In the case considered in this paper, an eigenfunction may have
infinitely many zeros (see, for example, the introduction of [1] and Theorem 3.2 in

[4]). In the definition of the Prüfer angle, we used the following ranges of α and β:
α ∈ [0, π) and β ∈ (0, π]. These choices imply that if either n ∈ N0 := {0, 1, 2, . . . }
or both α, β ∈ (0, π), then any eigenfunction yn for λn for a separated self-adjoint
BC has at least |n| zeros in (a, b). For the remaining situations (all with negative

n ∈ Z), the minimum number of zeros of yn is as follows: |n + 1| if either α = 0 and
β ∈ (0, π), or α ∈ (0, π) and β = π; 0 if α = 0, β = π and n = −1; and |n + 2|
if α = 0, β = π and n ≤ −2. These minimum numbers of zeros (even up to |n|
when n < 0) are achieved, and examples can be easily constructed. The following
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example shows that the number of zeros of yn, when finite, can be any integer larger
than the corresponding minimum given above. In this example, for r ∈ R, dre stands

for the smallest integer larger than or equal to r; and for any two constants c and d,
the function fc,d is defined by

(4.1) fc,d(t) =

{
c if 0 < t < 1,

d if 1 < t < 2.

Example 4.2 Let w ∈ L
(

(0, 2), R+

)
, α ∈ [0, π), β ∈ (0, π], n ∈ Z and k ∈ N. If we

set

(4.3) ĉ =

(⌈
min{α, β + nπ}

π

⌉
− k + 1

2

)
π, c = α − ĉ, d = β + nπ − ĉ,

then c, d > 0, the eigenvalue λn of the SLP consisting of

(4.4) −( f−1/c,1/d y ′) ′ + fc,−d y = λwy on (0, 2)

and Sα,β equals 0, and its eigenfunctions have in (0, 2) exactly |n| + k zeros if α 6= 0
and exactly |n + 1| + k zeros if α = 0.

To see these, we just need to notice that from the Prüfer transformation of the SLE
(4.4) with λ = 0 we obtain

(4.5) θ ′
= f−c,d,

and hence

(4.6) θ(t) =

{
α − ct if 0 ≤ t ≤ 1,

ĉ + d(t − 1) if 1 < t ≤ 2.

θ

2π

π

α

0

−π

1

β + π

2

t

Figure 1
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Figure 1 indicates the situation with n = 1 and k = 3. In the figure, the 3 points
corresponding to the “extra” zeros of the eigenfunctions are pointed to by arrows.

Recall that p is said to change sign finitely often if there are an integer k and num-
bers a0 = a < a1 < a2 < · · · < ak+1 = b such that either p < 0 a.e. on each (ai , ai+1)
with an even i and p > 0 a.e. on each (ai , ai+1) with an odd i, or p > 0 a.e. on each

(ai , ai+1) with an even i and p < 0 a.e. on each (ai , ai+1) with an odd i; in this case,
a1, a2, . . . and ak are called the turning points of p, and we sometimes also say that p

changes sign k times.
When p changes sign only finitely often, an asymptotic for the number N(λ) of

zeros of a solution of the SLE is obtained in [1]:

(4.7) N(λ) ∼
√
±λ

π

∫ b

a

√
w(t)

p±(t)
dt as λ → ±∞.

We are interested not only in the number of zeros of an eigenfunction, but also in the
relation between the index of an eigenvalue and the zeros of an eigenfunction for this
eigenvalue. In comparison with the case where p is positive, from the DE

(4.8) θ ′
=

1

p
cos2 θ + (λw − q) sin2 θ on (a, b)

for the Prüfer angle θ of an eigenfunction we see the following new features in the
case where p changes sign:

(i) θ can cross an integer multiple of π downward; on the open subintervals of
(a, b) on which p < 0 a.e., θ is strictly decreasing when passing through an

integer multiple of π;
(ii) at some points in (a, b), θ can have integer multiples of π as local extrema,

corresponding precisely to the zeros of the eigenfunction that are local extreme
points of the eigenfunction; if p changes sign only finitely often, then each zero

that is a local extreme point of the eigenfunction must be a turning point of p;
(iii) θ can take an integer multiple of π infinitely many times, corresponding pre-

cisely to accumulating zeros of the eigenfunction.

Now, we are ready to determine the index of an eigenvalue for a separated self-adjoint
BC from a certain weighted count of the zeros of its eigenfunctions.

Theorem 4.9 Assume that n ∈ Z, a real eigenfunction yn for the eigenvalue λn for a

separated self-adjoint boundary condition has a finite set Z of zeros on (a, b) which are

not local extreme points of yn, and each zero in Z ∪ {a, b} has a neighborhood in [a, b]

on which p does not change sign. Let n+ be the number of zeros of yn in (a, b) having

neighborhoods on which p > 0 a.e., and n− the number of zeros of yn in [a, b] having

neighborhoods in [a, b] on which p < 0 a.e. Then n = n+ − n−.

Proof Let θn be the Prüfer angle of yn, and Z− the set of zeros of yn in [a, b] hav-
ing neighborhoods in [a, b] on which p < 0 a.e. Since yn only has finitely many
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zeros that are not local extreme points, θn crosses integer multiples of π only finitely
many times. Our assumptions also imply that near each of these crossings, θn is ei-

ther strictly decreasing or strictly increasing, depending on the a.e. sign of p on a
neighborhood in [a, b] of the corresponding zero. If neither a nor b is in Z−, then

(4.10) (n+ − n−)π < θn(b) ≤ (n+ − n− + 1)π

as in the case where p is positive. If a ∈ Z− and b /∈ Z−, then α = 0, θn(ε) ∈ (−π, 0)
for any ε > 0 sufficiently small, and hence (4.10) still holds. We can prove (4.10) for
the other subcases similarly. Therefore, n = n+ − n−.

Corollary 4.11 Assume that p changes sign only finitely often, n ∈ Z, and yn is a real

eigenfunction for the eigenvalue λn for a separated self-adjoint boundary condition. Let

n+ be the number of zeros of yn in (a, b) having neighborhoods on which p > 0 a.e., and

n− the number of zeros of yn in [a, b] having neighborhoods in [a, b] on which p < 0

a.e. Then n = n+ − n−.

Remark 4.12 In numerical approximations of an eigenfunction, a zero that is a lo-
cal extreme point is not stable: it may disappear or become two nearby zeros. If p

changes sign only finitely often, the identity n = n+ − n− is not affected by this in-
stability, since such a point must be a turning point of p (and hence n+ and n− are
changed by the same integer during approximations) in this case.

We can extend Theorem 4.9 to cover the situation where eigenfunctions have in-
finitely many zeros that are not local extreme points. This situation needs more care.

The main idea here is that only finitely many of these zeros are essential for our count.
To indicate this idea, we only prove the following result. In this result, for a finite set
S, we will use #S to denote the number of elements in S.

Theorem 4.13 Let n ∈ Z. Assume that a real eigenfunction yn for the eigenvalue λn

for a separated self-adjoint boundary condition has an infinite set Z of zeros on (a, b)
which are not local extreme points of yn, a is the only accumulation point of Z, and each

zero in Z∪{b} has a neighborhood in (a, b] on which p does not change sign. Let Z− be

the set of zeros of yn in (a, b] having neighborhoods in (a, b] on which p < 0 a.e., and

Z+ the set of zeros of yn in (a, b) having neighborhoods on which p > 0 a.e. Then,

(i) for some zero â ∈ (a, b), between any two consecutive points in (a, â]∩Z− there is

a unique point in Z+, and between any two consecutive points in (a, â] ∩ Z+ there

is a unique point in Z−;

(ii) for each zero â ∈ (a, b) satisfying the requirements in (i), we have that

(4.14) n = #
(

(â, b) ∩ Z+

)
− #

(
[â, b] ∩ Z−

)
.

Proof Now we have α = 0. Let θn be the Prüfer angle of yn. Then, there is an
â ∈ (a, b) such that −π < θn(t) < π for t ∈ (a, â]. So, θn = 0 on (a, â] ∩ Z. Let t1

and t2 be two points in (a, â] ∩ Z− satisfying t1 < t2, then for some δ > 0,

(4.15) θn < 0 on (t1, t1 + δ), θn > 0 on (t2 − δ, t2).
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Thus, there is a zero of θn that is not a local extreme point of θn (i.e., a point of Z)
in (t1, t2), and at least one such zero must be in Z+ by (4.15) and our assumptions.

Similarly, we show that between each pair of points in (a, â] ∩ Z+, there is a point in
Z−. Then, between each pair of consecutive points in (a, â] ∩ Z−, there is a unique
point in Z+; between each pair of consecutive points in (a, â] ∩ Z+, there is a unique
point in Z−. Since a is an accumulation point of Z, we can pick a zero of yn as â.

This proves (i).
For any zero â of yn in (a, b) satisfying the requirements in (i), we notice that

the SLP with its interval (a, b) replaced by (â, b) also has yn as an eigenfunction for

the eigenvalue λn (with the index n), since θn(â) = 0. Therefore, (ii) follows from
Theorem 4.9.

Remark 4.16 If there are numbers b1 = b > b2 > b3 > · · · > a such that for each
i ∈ N, p does not change sign on (bi+1, bi), then p satisfies the sign requirement at
the zeros of eigenfunctions in Theorem 4.13. This is the case if p is continuous on

(a, b) and its zeros do not accumulate in (a, b).

The following example illustrates Theorem 4.13 and is taken from Theorem 3.2
in [4].

Example 4.17 Let b > 0,

(4.18)
1

p(t)
= 2t cos

1

t
+ sin

1

t
, q ∈ L

(
(0, b), R

)
, w ∈ L

(
(0, b), R+

)
.

Then, by Theorem 3.2 in [4], any eigenfunction for the SLP consisting of
(0, b, 1/p, q, w) and Sα,β ∈ T has infinitely many zeros (accumulating at 0, of course).
Since p is continuous on (0, b) and its zeros do not accumulate in (0, b), we can apply

Theorem 4.13.
As a particular case of this example, we consider the eigenfunction

(4.19) y∗(t) = t2 cos
1

t

for the eigenvalue λ∗ = 0 when q ≡ 0. Its set of zeros is

(4.20)
({

tk :=
1

kπ + π/2
; k ∈ N0

}
∩ (0, b]

)
∪ {0}.

Since

(4.21) p(tk) = (−1)k 6= 0 for k ∈ N0,

we can take â to be the largest zero in (0, b). Thus, λ−1 = 0 if b ∈ [tk, tk−1] for some
odd k ∈ N, and λ0 = 0 if b ∈ (tk, tk−1) for some even k ∈ N or b ∈ ( 2

π , +∞). (These
claims can also be obtained by directly looking at the Prüfer angle of y∗, which is also
easy in this particular case, since now py ′ ≡ 1.)
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By Theorem 3.4 in [4], under some additional assumptions, the quasi-derivative
py ′

n of an eigenfunction yn for λn for a separated self-adjoint BC has exactly |n| zeros

in (a, b) when |n| is sufficiently large. The main idea in the proof of this fact in
[4] can be used to prove the following partial refinements of (4.7) under additional
assumptions.

Theorem 4.22 Assume that p changes sign k times, and {λn ; n ∈ Z} are the eigen-

values for a separated self-adjoint boundary condition.

(i) If q/w has an essential upper bound λ∗, then λ−2 ≤ λ∗, and for any n ∈ Z such

that λn > λ∗, each eigenfunction for λn has at most |n| + k + 1 zeros in (a, b).

(ii) If q/w has an essential lower bound λ∗, then λ2 ≥ λ∗, and for any n ∈ Z such that

λn < λ∗, each eigenfunction for λn has at most |n| + k + 1 zeros in (a, b).

In particular, if q ≡ 0, then λ−2 ≤ 0, λ2 ≥ 0, and for any n ∈ Z such that λn 6= 0,

each eigenfunction for λn has at most |n| + k + 1 zeros in (a, b).

Proof (i) When λ > λ∗, (4.8) implies that θ is strictly increasing when passing
through an odd integer multiple of π/2 (i.e., one of . . . ,− 3

2
π,− 1

2
π, 1

2
π, 3

2
π, . . . ).

Thus, λ−2 ≤ λ∗. Now, let n ∈ Z such that λn > λ∗. On each open subinterval
of (a, b) on which p < 0 a.e., θ can cross (downward) at most one integer multiple
of π. After each downward crossing of an integer multiple of π, there is exactly one
upperward crossing of the same multiple of π before θ can pass through any other

integer multiple of π, and this upperward crossing must occur in an open subinterval
of (a, b) on which p > 0 a.e. Therefore, θ crosses integer multiples of π at most
|n| + k + 1 times, i.e., yn has at most |n| + k + 1 zeros.

(ii) This can be shown similarly.

All the above results can be generalized to cover coupled self-adjoint BC’s. Here,

we only give the following results, which are similar to some results in the case where
p is positive (see, for example, [11, Theorem 4.8]).

Theorem 4.23 Let n ∈ Z.

(i) Assume that a real eigenfunction yn for the eigenvalue λn for a real coupled self-

adjoint boundary condition has a finite set Z of zeros on (a, b) which are not local

extreme points of yn, and each zero in Z ∪ {a, b} has a neighborhood in [a, b] on

which p does not change sign. Let n+ be the number of zeros of yn in (a, b) having

neighborhoods on which p > 0 a.e., and n− the number of zeros of yn in [a, b]
having neighborhoods in [a, b] on which p < 0 a.e. Then, either n− 1 = n+ − n−

or n = n+ − n− if λn ≤ λD
n−1, and either n = n+ − n− or n + 1 = n+ − n− if

λn > λD
n−1.

(ii) Assume that yn is an eigenfunction for the eigenvalue λn for a non-real coupled

self-adjoint boundary condition. Then, under the same assumptions on Re yn (or

Im yn) as in (i), we have the same conclusions for Re yn (or Im yn) as in (i). More-

over, yn is never zero on [a, b].
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Proof (i) By Theorem 3.20, λD
n−2 < λn ≤ λD

n . Let θn be the Prüfer angle of yn,
α = θn(a), and θn(b) = β + mπ, where β ∈ (0, π] and m ∈ Z. Then, α ∈ [0, π),

λm(Sα,β) = λn, and yn is an eigenfunction for λm(Sα,β). Thus, by Theorem 4.9, we
have that m = n+−n−. On the other hand, by Theorem 3.20 again, either m = n−1
or m = n if λn ≤ λD

n−1, and either m = n or m = n + 1 if λn > λD
n−1. Therefore, our

claims are proved.

(ii) Note that Re yn and Im yn are nontrivial solutions to the SLE in the problem
with λ = λn. Thus, our conclusions about the index can be shown as in (i). Since

λn does not have a real eigenfunction, Re yn and Im yn are linearly independent on
(a, b), and hence, Re yn and Im yn do not have a common zero on [a, b]. Therefore,
yn does not have a zero on [a, b].

Remark 4.24 In the situation of Theorem 4.23, we can also show the following: if
λn ≤ λD

n−1 and n = n+ − n−, or (λn > λD
n−1 and) n + 1 = n+ − n−, then neither a

nor b is a zero of the function in question, i.e., yn for (i) and Re yn or Im yn for (ii).

The proof uses Lemma 1.29.

5 Jumps of the Direct Indices

In this section, we index the eigenvalues directly: the negative ones are numbered as

. . . , λ−3, λ−2, λ−1, while the non-negative ones are indexed as λ0, λ1, λ2, . . . , all in
non-decreasing order. Note that this indexing scheme is independent of the Prüfer
angle, i.e., independent of the indexing scheme used in Sections 1–4. We character-
ize the discontinuities of each λn under this indexing scheme on the space of SLP’s

considered.

Since the direct indices jump only at SLP’s having 0 as an eigenvalue, the set of

these problems plays a key role here. For a given SLE (a, b, 1/p, q, w) ∈ Ω, the set
SC

0 of self-adjoint BC’s having 0 as an eigenvalue has been characterized in [13] and
is given by SC

•Φ(b, 0), where

(5.1) SC
= {[A |B] ∈ BC ; det(A + B) = 0}.

The sets SR and SR

0 are defined similarly.

Lemma 5.2 We have that SR ⊂ OR

2 ∪ OR

3 ∪ OR

5 and SC ⊂ OC

2 ∪ OC

3 ∪ OC

5 .

Proof If K ∈ SL(2, R), then either k11 6= 0 or k12 6= 0, and hence [K |−I] ∈ OR

3 ∪OR

5 .
Thus, OR

1 = OR

6 ⊂ OR

3 ∪ OR

5 , and BR
=

⋃5
i=2 OR

i . Direct calculations yield that

(5.3) OR

4 \ (OR

2 ∪ OR

3 ) =

{[
0 1 0 0
0 0 −1 b2

]
; b2 ∈ R

}
,

which does not overlap with SR. Therefore, SR ⊂ OR

2 ∪OR

3 ∪OR

5 . Similarly, we show
the other claim.
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For a1, a2, b1, b2 ∈ R and z ∈ C, we set

K(a2, b2, z) =

[
1 a2 0 z

0 z −1 b2

]
,(5.4)

M(a2, b1, z) =

[
1 a2 −z 0
0 z b1 −1

]
,(5.5)

P(a1, b1, z) =

[
a1 1 z 0
z 0 b1 −1

]
,(5.6)

which are the general elements of OC

2 , OC

3 and OC

5 , respectively. By definition and

direct calculations,

SR ∩ OR

2 = {K(a2, b2, r) ; a2, b2, r ∈ R, a2 + b2 + 2r = 0},(5.7)

SR ∩ OR

3 = {M(a2, b1, r) ; a2, b1, r ∈ R, a2b1 + (r − 1)2
= 0},(5.8)

SR ∩ OR

5 = {P(a1, b1, r) ; a1, b1, r ∈ R, a1 + b1 + 2r = 0}.(5.9)

When dealing with the discontinuities of λn on BC, we will need the notation

KC

− = {K(a2, b2, z) ; a2, b2 ∈ R, z ∈ C, a2 + b2 + 2 Re z < 0},(5.10)

MC

− =

{
M(a2, b1, z) ;

a2 < 0, b1 > 0, z ∈ C

|z|2 − 2 Re z + 1 < −a2b1

}
,(5.11)

MC

+ =

{
M(a2, b1, z) ;

a2 ≥ 0, b1 ≤ 0, z ∈ C

|z|2 − 2 Re z + 1 ≤ −a2b1

}
,(5.12)

PC

− = {P(a1, b1, z) ; a1, b1 ∈ R, z ∈ C, a1 + b1 + 2 Re z ≤ 0},(5.13)

KC

+ = OC

2 \ KC

−, MC

0 = OC

3 \ (MC

− ∪ MC

+), PC

+ = OC

5 \ PC

−.(5.14)

When discussing the discontinuities of λn on BR , we will need KR

±, MR

±, MR

0 and
PR

±, which can be defined using (5.10)–(5.14) with C replaced by R. By Lemma 5.2
and (5.7)–(5.9),

(5.15) SR ⊂ KR

+ ∪ MR

0 ∪ MR

+ ∪ PR

−.

By Lemma 5.2 again and three identities similar to (5.7)–(5.9), (5.15) is still true
when all the super indices R in it are replaced by C. If X is any of the sets in (5.10)–

(5.14) or any of KR

±, MR

±, MR

0 , PR

±, SR and SC, then we set

(5.16) ΩX = {(ω, A) ; ω = (a, b, 1/p, q, w) ∈ Ω, A ∈ X•Φω(b, 0)}.

The discontinuities of the direct indices are completely characterized in the following

theorem, the main ideas of whose proof are from [8].

Theorem 5.17 Index directly the eigenvalues of the Sturm-Liouville problems in

Ω × BC.
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(i) Let n ∈ Z. Then, the function λn is continuous on (Ω × BR) \ ΩSR and dis-

continuous at each point of ΩSR. More precisely about the discontinuities, let

(ω = (a, b, 1/p, q, w), A) ∈ ΩSR, then we have the following: for A ∈
KR

+•Φω(b, 0), the restriction of λn to ΩKR

+ is continuous at (ω, A), and

(5.18) lim
ΩKR

−
3(σ,B)→(ω,A)

λn(σ, B) = λn+1(ω, A);

for A ∈ MR

0 •Φω(b, 0), the restriction of λn to ΩMR

0 is continuous at (ω, A), and

(5.19) lim
ΩMR

−
3(σ,B)→(ω,A)

λn(σ, B) = λn+1(ω, A);

for A ∈ MR

+•Φω(b, 0), the restriction of λn to ΩMR

+ is continuous at (ω, A), and

lim
ΩMR

0 3(σ,B)→(ω,A)
λn(σ, B) = λn+1(ω, A),(5.20)

lim
ΩMR

−
3(σ,B)→(ω,A)

λn(σ, B) = λn+2(ω, A) when A = [Φω(b, 0) | − I];(5.21)

for A ∈ PR

−•Φω(b, 0), the restriction of λn to ΩPR

− is continuous at (ω, A), and

(5.22) lim
ΩPR

+3(σ,B)→(ω,A)
λn(σ, B) = λn+1(ω, A).

(ii) The conclusions of (i) still hold when all the super indices R are replaced by C.

Proof (i) Fix an SLE (a, b, 1/p, q, w) ∈ Ω and set C = Φ(b, 0). Among the sepa-
rated self-adjoint BC’s of the form

(5.23) K(0, b2, 0)•C =

[
c11 c12 0 0
0 0 −1 b2

]
,

the only one in SR

0 is the one with b2 = 0. Define α0 ∈ [0, π) in terms of

(5.24) K(0, 0, 0)•C = Sα0,π.

By the derivative formula in [15] for the continuous eigenvalue branches over

(5.25) {Sα0,β ; π/2 < β < 3π/2},

λ0

(
K(0, b2, 0)•C

)
is continuous and strictly increasing in b2 on [0, +∞), and

(5.26) lim
b2→0−

λ−1

(
K(0, b2, 0)•C

)
= λ0

(
K(0, 0, 0)•C

)
.

Now, we consider the open subset OR

2 •C . The plane (SR ∩ OR

2 )•C divides it
into two (open) halves. The half in KR

+•C will be denoted by UR
•C . By Corol-

lary 3.18, there is a continuous eigenvalue branch Λ on the whole OR

2 •C through
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λ0

(
K(0, 1, 0)•C

)
> 0. Then, Λ does not change sign on each half. By what we have

proven in the previous paragraph,

(5.27) Λ
(

K(0, b2, 0)•C
)

= λ−1

(
K(0, b2, 0)•C

)
< 0 if b2 < 0.

Thus,

(5.28) Λ > 0 on UR
•C, Λ = 0 on (SR ∩ OR

2 )•C, Λ < 0 on KR

−•C.

Since [C | − I] /∈ OR

2 •C , 0 is always a simple eigenvalue on (SR ∩OR

2 )•C . So, we must
have that

(5.29) λ0 = Λ on KR

+•C, λ−1 = Λ on KR

−•C.

Hence, if A ∈ (SR ∩ OR

2 )•C ⊂ KR

+•C , then

(5.30) lim
KR

−•C3B→A
λn−1(B) = λn(A) = lim

KR
+•C3B→A

λn(B).

Next, we look at the open subset OR

3 •C . The cone (SR ∩ OR

3 )•C cuts it into three
parts, i.e., the open back half cone MR

−•C , the closed front half cone MR

+•C and the
remaining part MR

0 •C . For r ∈ R,

(5.31) M(1,−1, r) = K(1 − r2,−1, r),

which is in KR

+ ∩ MR

+ if r ∈ [0, 2] and in KR

− ∩ MR

0 if r < 0. Thus, the proven case
implies that for any A on (SR ∩ MR

+)•C ,

(5.32) lim
MR

0 •C3B→A
λn−1(B) = λn(A) = lim

MR
+•C3B→A

λn(B).

For r ∈ R,

(5.33) M(−1, 1, r) = K(r2 − 1, 1,−r),

which is in KR

+ ∩ MR

0 if r ≤ 0 and in KR

− ∩ MR

− if r ∈ (0, 2). Thus, for any A in

(SR ∩ MR

0 )•C ,

(5.34) lim
MR

−•C3B→A
λn−1(B) = λn(A) = lim

MR

0 •C3B→A
λn(B).

From (5.32) and (5.34) we deduce that

(5.35) lim
MR

−•C3B→A
λn−2(B) = λn(A) when A = [C | − I].

Finally, we handle the open subset OR

5 •C . The plane (SR ∩OR

5 )•C splits it into two

parts, i.e., PR

−•C and PR

+•C . For r ∈ R,

(5.36) P(1,−1, r) = K

(
1

1 + r2
,

−1

1 + r2
,

−r

1 + r2

)
,

https://doi.org/10.4153/CJM-2003-031-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2003-031-0


Sturm-Liouville Problems 749

which is in KR

+∩PR

− if r ≤ 0 and in KR

−∩PR

+ if r > 0. Thus, for any A on (SR∩PR

−)•C ,

(5.37) lim
PR

−•C3B→A
λn(B) = λn(A) = lim

PR
+•C3B→A

λn−1(B).

From (5.30), (5.32), (5.34), (5.35), (5.37) and Theorem 1.20 we obtain the claims
in our theorem (see also the proof of Theorem 3.76 in [11]).

(ii) These claims can be shown similarly.
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