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Abstract

High-level specification of patterns of communications such as protocols can be modeled

elegantly by means of session types (Honda et al., 1998). However, a number of examples

suggest that session types fall short when finer precision on protocol specification is

required. In order to increase the expressiveness of session types we appeal to the theory of

correspondence assertions (Clarke & Marrero, 1998; Gordon & Jeffrey, 2003b). The resulting

type discipline augments the types of long-term channels with effects and thus yields types

which may depend on messages read or written earlier within the same session. This new type

system can be used to check:

• source of information,

• whether data is propagated as specified across multiple parties,

• if there are unspecified communications between parties, and

• if the data being exchanged has been modified by the code in an unspecified way.

We prove that evaluation preserves typability and that well-typed processes are safe. Also,

we illustrate how the resulting theory allows us to address shortcomings present in the pure

theory of session types.

Capsule Review

This paper unifies prior work on session types with that on correspondence assertions.

Session types were introduced by Honda et al. to provide a static approximation of the

possible interactions of a concurrent system. Correspondence assertions were introduced by

Woo and Lam as a model of authenticity in a cryptographically secured communication

protocol. In this paper, these two systems are unified to provide a model of authenticated

interacting processes.
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1 Introduction

Distributed and concurrent programming paradigms are increasingly popular, es-

pecially since the Internet entered the public domain. This has brought along

new challenges, including the specification and implementation of these programs

together with techniques for the formal verification of their properties. One such

specification method is that of protocol specification. This consists of identifying

the sequence of message interchanges that take place between a number of parties

in order to carry out some specific task. Recently, the use of type systems to

formalize protocols has interested many researchers. In particular, the use of session

types Honda et al., 1994, 1998) has emerged as a promising approach. Interaction

between a number of parties is achieved by specifying sequences of reciprocal

interchanges of messages through private channels. Such sequences are modeled

as types, the two parties at each end of the channel having dual such types. This

pair of dual types constitutes a session type. Session types are assigned to long-term

channels and are shared among processes, where a long-term channel is a port whose

communication protocol is prespecified. An example of a session type is:

(↓ Int; ↓ Int; ↑ Int; 1, ↑ Int; ↑ Int; ↓ Int; 1)

The first component, namely ↓ Int; ↓ Int; ↑ Int; 1, indicates the expected behavior at

one session point: the process must read an integer from the channel, then another

one, and then write an integer to the channel (one may think of an “adding” server

that reads in two numbers and writes out their sum), and finally close. In order for

the other party to interact correctly, it is assigned a dual type expression (the second

component of the pair).

Note that session types specify the pattern of interaction between two parties.

However, in a multi-party network consisting of three or more parties, no information

is provided by these types as to how the interactions between different sessions are

related. As a consequence, a process which implements a protocol specified by

a system of session types may behave in a manner that cannot be tamed by

session types alone. A detailed example, involving processes Client, ATM and Bank,

is developed in section 1.1. It illustrates examples of situations which cannot be

captured by session types such as:

• When Client requests a deposit operation from ATM, ATM may redirect some

of the funds to a different account without violating the session-type based

protocol description.

• ATM may forward an amount which does not coincide with the one it read in

from Client.

• ATM may receive a deposit from Client and never contact Bank.

This paper addresses a strengthening of session types by incorporating a theory

of correspondence assertions (cf. section 1.2). We shall discuss a number of examples

in which the shortcomings of session types are illustrated and shall exhibit how

correspondence assertions successfully overcome these difficulties. The resulting type

discipline is strictly richer than the pure theory of session types. More precisely, a
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Client(idC, amtC, a) = request a(k) in k![idC]; k� deposit; k![amtC ]; k?(balC) in stop

ATM(a, b) = accept a(k) in k?(idA) in

k� { deposit: request b(h) in k?(amtA) in

h� deposit; h![idA]; h![amtA]; h?[balA] in k![balA]; ATM[a, b]

� withdraw: request b(h) in k?(amtA) in

h� withdraw; h![idA]; h![amtA]; h?(OKedAmtA) in

k![OKedAmtA]; ATM[a, b] }
Bank(b) = accept b(h) in

h� {̄ deposit: h?(idB ) in h?(amtB ) in h![getNewBal (idB , amtB )];

Bank[b] � withdraw: h?(idB ) in h?(amtB ) in

h![getOKAmt(idB )]; Bank[b] }

Fig. 1. The ATM example.

number of “unsafe” programs which are well-typed in the theory of pure session

types shall be rejected by our typing rules.

1.1 Motivation

Consider the following example, illustrated in Figure 1, consisting of three parties:

Client, ATM, and Bank (Honda et al., 1998) which we briefly describe below:

Client. On receiving a session request (through the shared name a), Client sends its

id number (idC ), selects a deposit operation, tells the amount of the deposit,

and then waits for the new account balance.

ATM. The ATM first listens on name a for a client to request a session, then it reads

in the client’s id number (idA) and waits for the client’s selection of one of two

available operations: deposit or withdraw. In the case of a deposit operation,

ATM requests a session with the bank (on name b), reads in the amount the client

wishes to deposit (from a) and then selects the deposit operation of Bank. It then

sends Bank the client’s id and the deposit amount, gets the new balance, reports

it back to the client, and returns to the starting point. The ATM’s withdraw

operation is similar.

Bank. The bank listens on name b (shared with ATM) for requests for a session,

and then waits for ATM to indicate the operation it wishes to perform (either

deposit or withdraw). If it is a deposit operation, it reads in the id and the

amount, updates its data, sends back the new balance, and then returns to its

starting point. In the case of withdraw it proceeds accordingly.

Let the expression ATM[a, b]|Client[idC, amtC, a]|Bank[b] denote the code for the

concurrent execution of the indicated parties. The type system presented in (Honda

et al., 1998) asserts that this expression is well-typed. Indeed, assigning the following

session types to a and b (where σ(α) is an abbreviation for the pair consisting of α

and its dual) we may type ATM[a, b]|Client[idC, amtC, a]|Bank[b].
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Fig. 2. Well-behaved execution sequence.

a : σ(↓ Int; &{deposit :↓ Int; ↑ Int; 1,

withdraw :↓ Int; ↑ Int; 1})
b : σ(&{deposit :↓ Int; ↓ Int; ↑ Int; 1,

withdraw :↓ Int; ↓ Int; ↑ Int; 1})

The first type says that all communication sessions established on a must abide by

the communication pattern described by the argument of σ on one endpoint and its

dual on the other. The inner argument type may be read as follows: after an integer

is input, wait for one of two operations to be selected at the opposite endpoint:

deposit or withdraw; if deposit is selected, then input an integer, output an

integer and disallow further communication, and likewise if the operation selected

is withdraw. Figure 2 exhibits a sample execution sequence, written in message

sequence chart-style notation (Z.120, 1996), complying with these types. Note that

these types express how the long-term channels a and b behave independently of each

other, even though they both belong to a common specification, namely that of the

protocol specifying how Client, ATM, and Bank should interact in order to carry out

a specific operation (a deposit or withdrawal). This fact may be witnessed as follows.

Consider ATM’ resulting from ATM by replacing deposit with the following variant:

Example 1.1 (Deposit I)
deposit:

request b(h) in k?(amtA) in h� deposit; h![idA]; h![amtA− 10 ]; (1)

h?(balA) in k![balA];

request b(h′) in h′� deposit; h′![diffId ]; h′![10 ]; h′?(balA′) (2)

in ATM[a, b]
This version of the deposit operation deposits into the client’s account 10 units

less than the amount told by Client (1), and deposits the remaining 10 units in some

account different from the client’s by means of a new deposit request (2) to Bank

which was not present in the original ATM.
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Fig. 3. Unwanted execution sequences.

One of the possible execution sequences of the resulting system is depicted to the

left, in Figure 3. Unfortunately, this modified ATM is typable under the same type

assumptions as the previous one.

Likewise, if the deposit operation of ATM were replaced by the same one except

that the bank was not notified, then the resulting ATM would also type under the

same type assumptions as the good one. In terms of execution sequences, the one

shown to the right in Figure 3 is permitted under the same type assumptions. Here

is the code that generated such a sequence.

Example 1.2 (Deposit II) The following variant of deposit allows ATM to keep the

deposit of Client without depositing it in the account. If we call the resulting system

ATM”, then ATM”[a, b]|Client[idC, amtC, a]|Bank[b] is well-typed under exactly the

same type assumptions as ATM[a, b]|Client[idC, amtC, a]|Bank[b].

deposit: k?(amtA) in k![1000 ]; ATM[a, b]

These examples suggest that, although session types elegantly encode communic-

ation patterns of message interchange, they cannot restrict interaction between ses-

sions or enforce consistency of forwarded values (those received and then sent again).

This paper introduces a type system based on correspondence assertions (Woo &

Lam, 1993; Gordon & Jeffrey, 2003b) in which ATM may be distinguished from the

variants depicted above.

1.2 Correspondence assertions

Correspondence assertions were introduced in (Woo & Lam, 1993) for reasoning

about authentication protocols. In Gordon & Jeffrey (2001a), a type system for

correspondence assertions is presented for the spi-calculus; a lucid account in the

setting of an asynchronous π-calculus is presented by the same authors in Gordon &

Jeffrey (2001b). Intuitively, correspondence assertions are used to formalize the idea

that some point of execution in some process P must have been preceded by some

other point of execution in some other process Q, in all possible executions of P |Q.

Assertions are used to mark execution points in processes. As in Gordon & Jeffrey

(2001b), the assertions in this paper may have one of two forms: begin L or end L

where L is an assertion label. A process is said to be safe if, for every end L assertion
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Fig. 4. Effects of Example 1.3.

reached in any execution, there is a corresponding begin L assertion which was

reached sometime before, possibly in some other process.

By inserting appropriate correspondence assertions in untrusted code (including

code communicating with the suspect code) and asking if the resulting code is safe,

we may test for unexpected or malicious behavior in the communicating parties.

Safety may be determined by a type system, hence allowing us to perform such

checks statically.

Example 1.3 (Deposit I (continued)) Correspondence assertions allow us to show

that the variant of ATM in Example 1.1 is unsafe, if we assert that the amount

to be deposited in the bank is the same as the amount given by Client and we

appropriately augment the types of the sessions a and b. To show this, first we

replace the code of Client by code including a begin assertion to obtain Client’:

request a(k) in begin 〈idC , amtC 〉; k![idC]; k� deposit; k![amtC ]; k?(balC) in

stop

Note that the label of the begin assertion contains an occurrence of the

expressions idC and amtC . These are values generated by Client and passed to

ATM. Next we add an end assertion to the deposit operation of Bank (2) in

Figure 1 obtaining Bank’:

deposit: h?(idB ) in h?(amtB ) in end 〈idB , amtB〉; h![getNewBal (idB , amtB )];

Bank[b]

Finally, the session types of a and b are augmented with appropriate effects (see

Figure 9 in section 3) such that, if ATM requests a deposit operation of the bank

and sends some values for idB and amtB , then the incurred debt shall have to be

relieved by a corresponding communication with the client; the client will have had

to supply these values. This is depicted in Figure 4.

Now, the system ATM[a, b]|Client’[idC, amtC, a]|Bank’[b] shall be safe if every

time the bank’s deposit operation is executed for an id number idB and amount
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amtB , the client requested the same operation on ATM, and idB = idC , the id

entered by the client, and amtB = amtC , the amount entered by the client.

We may address Example 1.2 similarly by forcing ATM to engage in communica-

tion with the bank and, moreover, requiring that the deposit operation be selected.

This is achieved by forcing interaction with the corresponding operation from the

bank. In this case, the begin assertion is inserted in the Bank and the end assertion

in the Client. Example 3.6 provides further details.

The type rules we present in section 2 allow us to show that the system of

Example 1.3 is unsafe for the given correspondence assertions. The question of how

the type system forces the end assertion in Bank’ to be executed only after the

corresponding begin assertion in Client’ has been executed is answered by means of

latent effects on channels. To “reach” the end assertion, Bank’ must have previously

executed the read operations of deposit, namely h?(idB ) and h?(amtB ). Now, h is a

channel that is shared between Bank’ and ATM’|Client’ (via ATM’). As a consequence

of the placement of latent effects on the channel h, Bank’ may pass back to whomever

tries to send values on that channel the obligation of matching the end assertion.

Similarly, ATM’ can use latent effects on the channel it shares with Client to further

pass along the obligation. In fact, since the ATM’ code has no assertions of its own,

that is all it can do with the obligation. As the obligation is passed back through

latent effects, it must be translated with respect to the substitution taking place as a

result of the message passing on the channel. Indeed, as the obligation is passed back

from Bank’ to ATM’, it becomes 〈idA, amtA− 10 〉, since these are the amounts sent

for idB and amtB . As we pass the obligation back to Client, it is further transformed

to 〈idC , amtC − 10 〉, which does not match with the assertion begin 〈idC , amtC 〉.
We may conclude, therefore, that the program is not safe. It is worth noting that

if we changed the begin assertion to begin 〈idC , amtC − 10 〉, then the program

would type-check and be declared safe. We would, in effect, be acknowledging that

ATM’ had a right to charge a 10 unit fee for a deposit transaction.

1.3 Contribution

In this paper we introduce a type-based theory of correspondence assertions for

session types.

• In contrast to previous type systems for such assertions, session types allow

the effects of an input/output type to depend on messages which were

exchanged prior in the same session. We also include the branching/selection

and delegation constructs from (Honda et al., 1998) in our analysis. The

resulting type system shall allow us to distinguish the three above-mentioned

variants of ATM. This is achieved by introducing appropriate type directives

(i.e. assertions) in the code and assigning appropriate types to names and

channels, and then type-checking using the type discipline presented in this

paper. Our type system can be used:
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— to check the source of information. In our example, we can check that the

balance that Client receives always comes from Bank, and that the amount

to be deposited received by Bank always comes from Client.

— to verify whether data is propagated as specified across multiple parties.

In our example, ATM should behave as a forwarder that does not alter the

data received from Bank or Client.

— to check if there are unspecified communications between parties. In our

example, we can detect that ATM’ is attempting a deposit not instructed

by Client.

— and to check if the data being exchanged has been modified by the code

in an unspecified way. In our example, ATM’ tries to deposit a smaller

amount than the one specified by Client.

• The combination of session types and correspondence assertions yields a

dependently typed system that introduces a number of technical difficulties.

For example, the usual representation of environments as sequences of as-

sumptions (Barendregt, 1992; Gordon & Jeffrey, 2003b) fails to yield a calculus

with basic properties such as admissibility of the Exchange structural rule (cf.

Remark 2.6), a basic ingredient required in proofs of the so-called Subject

Reduction property. Also, recording of effects in closed channels is crucial in

order to benefit from properties such as Subject Congruence (cf. section 2.2.1

and 3).

• We show that evaluation preserves typability and that processes typable under

empty effects are safe.

1.4 Related work

This work may be included among others in which type systems for the π-calculus

are studied (Pierce & Sangiorgi, 1996; Kobayashi, 1998; Kobayashi et al., 1999;

Turner, 1995). Work on session types includes the study of: subtypes (Gay & Hole,

1999), bounded polymorphism (Hole & Gay, 2003), component-based software de-

velopment (Vallecillo et al., 2003) and formulations in a λ-calculus with input/output

operations (Gay et al., 2003). Although Yoshida (1996) and Puntigam (1996) do not

explore session types they too aim at restricting process communication: the first

studies a typing scheme for processes based on graph types and the second a type

system for restricting communication in concurrent objects. The relation of these to

session types is discussed in Honda et al. (1998).

While Gordon & Jeffrey (2001b) shares a fair amount in common with this

work, there are a number of differences. Our language is targeted as a high-

level specification language for protocols based on the notion of a session as

a fundamental abstraction for structuring interactions. Such abstractions are not

available in Gordon & Jeffrey (2001a, 2001b), where the authentication of low-level

protocols such as those for key-exchange is dealt with. Indeed, there is no notion

of session types or channel types. Correspondence assertions alone cannot capture

deadlock due to inconsistency in the communication protocol: in Gordon & Jeffrey

(2001b) channels are assigned a type independent of their use to send or receive
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data, and so two processes trying to receive data on the same channel at the same

time will deadlock. On the other hand, adding session types we may prevent such a

situation since two communicating processes will be synchronized by a session type

that specifies that while one process sends data the other process receives data.

Introducing linearity or dependent type systems does not suffice for encoding

session types, since the key notion of dual types (cf. section 2.2.1) and compatibility

(cf. Definition 2.3) of such types is not subsumed by these features. However, we

could attempt to encode just channels into the type system of (Gordon & Jeffrey,

2003b; Gordon & Jeffrey, 2003a) in the following style

T(k![v];P ) = (νk′ : Ty)(k![v, k′];T(P ){k ← k′})
T(k?(a) in P ) = (νk′ : Ty)(k?(a, k′) in T(P ){k ← k′})

where the type expression Ty may be obtained from the channel type of k. However,

it is not clear how to extend this translation to branching.

Recently, type systems where CCS-like processes are used for typing process

expressions have appeared. The generic type system of Igarashi & Kobayashi

(2001) is an example, although it does not incorporate correspondence assertions.

Another approach is that of Chaki et al. (2002), in which models (types as CCS-

processes) of π-calculus expressions are obtained and the validity of temporal

formulas are analyzed through model-checking techniques in order to deduce

properties of the process expressions. They propose a type-and-effect system which

incorporates correspondence assertions; however no long-term channel types are

available.

1.5 Structure of the paper

Section 2 defines Iris, a system combining session types (Honda et al., 1998) and

correspondence assertions (Gordon & Jeffrey, 2003b). Section 2.2.1 presents a type

system with effects for Iris. The proof of safety is given in section 3 by introducing

an appropriate labeled transition semantics. Finally, we conclude and suggest further

research directions.

2 The Iris-calculus

2.1 Syntax

This section describes the syntax of Iris. We begin with a set of names x, y, z, . . .

We distinguish two distinct kinds of names: expression names, for which we will

use a, b, c, . . . (and which range over sessions and integers), and channel names, for

which we will use k, h, k′, . . . We also have integer constants . . . ,−1, 0, 1, . . . ranged

over by n, branching labels l, l′, . . . and process variables written X,Y , . . . and also

ATM,Bank, . . . A value is an expression name or an integer constant and is denoted

with letters v, v′, . . . Assertion labels, written L,L′, . . . , are tuples of values and

are written 〈v1, . . . , vn〉. Process expressions, denoted with P ,Q, . . . , are defined as

follows:
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P ::= request a(k) in P session request

accept a(k) in P session accept

k?(a) in P receive value

k![v];P send value

catch k(k′) in P receive channel

throw k[k′];P send channel

(νa : T )P expression name restriction

(νk : ⊥e)P channel restriction

k � l;P label selection

k � {l1 : P1� . . .� ln : Pn} label branching

stop null process

P |Q parallel composition

def D in P process definition

X[�v] process variables

begin L;P begin assertion

end L;P end assertion

D ::= X1(�a1 : �T1) = P1 and . . . and Xn(�an : �Tn) = Pn process declarations

Remark 2.1 The notation �v stands for v1, . . . , vn, and likewise for �ai and �Ti with

i ∈ 1..n. Parentheses are binding constructs. Any two process expressions that differ

only in the names of their bound names (called α-equivalent) shall be considered

equal. We use the notation P {a← v} for the result of substituting all free occurrences

of a in P by v, and similarly for P {k ← k′}. Note that for the benefit of a clear

presentation we have chosen to present a monadic calculus; an extension to the

polyadic case should be straightforward.

The request primitive requests a session on name a. When this session is

established, the fresh private channel k shall be used for message interchange. The

accept receives a request on the same name a and generates a new private channel

for message interchange to be used once the session is established. The request

and accept constructs each bind all free occurrences of the immediately following

channel variable, k, in the subsequent process, P . The synchronous sending and

receiving of messages is achieved with k![v];Q and k?(a) in P respectively, although,

as in Honda et al. (1998), a translation to an asynchronous calculus with branching

is possible. Controlled side-stepping of linearity constraints on channel usage is

achieved by means of channel delegation throw k[k′];P and catch k(k′) in Q.

We write (νa : T )P or (νk : ⊥e)P for the usual constructs for name hiding; the

former is for expression names and the latter for channel names. T denotes a

type expression (Definition 2.1) and ⊥e is the “closed” channel type with effect e

(Definition 2.1). A mechanism for selection of a label and branching is available as

k � l;P and k � {l1 : P1� . . .� ln : Pn}. We use stop for inaction, and the notation

P |Q has already been explained. Definitions of processes are also allowed through

the def D in P construct, possibly introducing recursion. They are used by the
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application of a previously defined process variable to appropriate values, X[�v]. The

begin and end assertions shall be used as type directives in the type system for Iris

(section 2.2.1): begin L;P simply asserts begin L and then behaves as P , likewise

end L;P asserts end L and then behaves as P .

The set of free names of process expressions and assertion labels is defined in the

usual manner. Recall that parentheses denote variable binding. A few cases of the

definition are:

fn(accept a(k) in P ) = fn(request a(k) in P )
def
= {a} ∪ (fn(P ) \ {k})

fn(k � {l1 : P1� . . .�ln : Pn})
def
= {k} ∪

⋃
i=1..n fn(Pi)

fn((νk : ⊥e)P )
def
= fn(⊥e) ∪ (fn(P ) \ {k})

fn(X[�v])
def
=

⋃
i=1..n fn(vi)

fn(begin L;P ) = fn(end L;P )
def
= fn(L) ∪ fn(P )

fn(X1(�a1 : �T1) = P1 and . . . and Xn(�an : �Tn) = Pn)
def
=⋃

i=1..n fn(Pi) \ {�ai} ∪
⋃
i=1..n fn((�ai :

�Ti))

The set of free process variables of a process P and a process declaration D, written

fpv(P ) and fpv(D), respectively, may be defined in a similar manner.

2.2 The type discipline

The present section enriches the type system of Honda et al. (1998) with correspond-

ence assertions in order to address the shortcomings mentioned in the introduction.

2.2.1 Session types and effects

The type system shall assign an effect to a process under a given set of type

assumptions. The effect of a process reflects the pending obligations it has. An

assertion of the form begin L shall reduce these obligations by withdrawing the

assertion label L from the current effect; likewise end L shall augment the current

effect with L. Thus effects determine lower-bounds of the number of begin assertions

that must be present. If the process has an empty effect, then each end assertion

corresponds to a matching begin assertion.

As explained above, effects also have to be attached to channel types for two

or more processes to share information on their pending effects. Effects added to

channels are thus called latent effects.

Definition 2.1 (Types with Effects) Assertion labels, effects and types are given by

the following grammar:

Plain Type T ::= Int | σ(α)

Channel Type α, β ::= ↓ [a : T ]e; α | ↑ [a : T ]e; α | ↓ [α]e; β

| ↑ [α]e; β | &{l1 : α1, . . . , ln : αn}e
| ⊕{l1 : α1, . . . , ln : αn}e | 1 | ⊥e

Effect e, e′ ::= (|L1, . . . , Ln |)
Assertion Label L,Li ::= 〈v1, . . . , vn〉
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A type is either a plain type or a channel type; we use U,Ui to range over types.

The base type Int is the type of integer constants. Session types are represented as

σ(α) and may informally be seen to denote a pair consisting of a channel type α and

its dual α:

↓ [a : T ]e; α
def
= ↑ [a : T ]e; α ↑ [a : T ]e; α

def
= ↓ [a : T ]e; α 1

def
= 1

↓ [α]e; β
def
= ↑ [α]e; β ↑ [α]e; β

def
= ↓ [α]e; β

&{li : αi}e
def
= ⊕{li : αi}e ⊕{li : αi}e

def
= &{li : αi}e

The types α and α shall be assigned to the two endpoints of a communication session.

Note that ⊥e is not defined. A channel type consists of a sequence of input/output

types of values or channels, or branch/selection types; the sequence is assumed to

terminate with the channel type terminator 1. The type ↓ [a : T ]e; α is that of a

channel that reads in a value v of type T and then behaves according to the type

α{a ← v}. The e is called a latent effect; an effect is a multi-set of assertion labels.

The result of executing the input operation is that of removing e{a ← v} from the

current effects (cf. the typing rule Type Rcv). The type ↑ [a : T ]e; α is similar except

that latent effects are added. The type ↓ [α]e; β is that of a channel that reads in a

channel of type α and then behaves according to the type β. The result of executing

the input operation is removing e from the current multi-set of effects (cf. the typing

rule Type Cat). Likewise for ↑ [α]e; β, except that the latent effect is added. The

type &{l1 : α1, . . . , ln : αn}e is that of a process that expects to receive a selection

of one of the operations labeled l1 to ln. Once li is selected, the resulting process

behaves as described by the type expression αi. Also, the latent effect e is removed

from the current effects (cf. typing rule Type Brnch). The type ⊕{l1 : α1, . . . , ln : αn}e
is that of a process that makes a selection of one of the operations li. Once li is

selected, the resulting process behaves as described by the type expression αi. Also,

the latent effect e is added to the current effects (cf. typing rule Type Sel). The type

expression 1 simply terminates the sequence of types that conforms to a channel

type, as already described above. The special type ⊥e is that of a channel that is

used at two dual channel types (if at all) as described by the Type Par typing rule

and the notion of composition (Definition 2.4).

As already mentioned, we use (| . . . |) for the multi-set constructor. Multi-set

subtraction, e \ e′, is the smallest multi-set e′′ such that e � e′ + e′′, where “+” is

multi-set union. The set of free names of a type U is defined as expected; the only

interesting cases are:

fn(� [a : T ]e; α)
def
= fn(T ) ∪ ((fn(e) ∪ fn(α)) \ {a})

fn(� [β]e; α)
def
= fn(β) ∪ fn(e) ∪ fn(α)

fn((ε))
def
= {}

fn((�a : �T , a′ : T ′))
def
= fn((�a : �T )) ∪ (fn(T ′) \ {�a}

where � [a : T ]e denotes both ↓ [a : T ]e and ↑ [a : T ]e, and likewise for � [β]e.

Regarding the definition of substitution, some representative cases are:
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σ(α){a← v} def
= σ(α{a← v})

(� [b : T ]e; α){a← v} def
= � [b : T {a← v}]e{a← v}; α{a← v}

⊥e{a← v} def
= ⊥e{a←v}

2.2.2 Typing rules

An environment Γ is a set of type assumptions x1 : U1 · . . . · xn : Un where x1, . . . , xn
are distinct names. We use letters Γ,∆, . . . for environments. The domain of Γ,

written dom(Γ), is the set {x1, . . . , xn}, and the range of Γ, written ran(Γ), is the set

{U1, . . . , Un}. Also, we write domCh(Γ) for the subset of names to which Γ assigns

channel types and domPl(Γ) for the subset of names to which Γ assigns plain types.

The free names of Γ, written fn(Γ), is the set of names occurring either in the domain

of Γ, or free in a type in the range of Γ, i.e. fn(Γ) = dom(Γ) ∪
⋃
U∈ran(Γ) fn(U). In

an assumption x : U, x is called the subject; if the type assigned to the subject is

a plain type then the assumption is said to be a plain assumption, otherwise it is a

channel assumption. We write Γ · x : U for the environment resulting from extending

Γ with the type assumption x : U for x /∈ dom(Γ). The notation Γ \ x : U stands for

the environment resulting from dropping the assumption x : U from Γ (assuming it

exists).

Definition 2.2 (Depends on) xi : Ui depends directly on xj : Uj in Γ (written (xj :

Uj) ↪→d (xi : Ui)), if xj ∈ fn(Ui). We say xi : Ui depends on xj : Uj in Γ if

xi : Ui ↪→ xj : Uj , where ↪→ denotes the transitive closure of ↪→d.

We say that an environment is well-formed if it satisfies the following three

conditions:

C1. For each x ∈ domPl(Γ), x is an expression name, and for each y ∈ domCh(Γ), y

is a channel name.

C2. For each i ∈ 1..n, fn(Ui) ⊆ dom(Γ) \ {xi}.
C3. The relation ↪→ is irreflexive, that is, xi : Ui �↪→ xi : Ui for all xi : Ui ∈ Γ.

The first condition, C1 requires that only channel types be assigned to channel

names, and only plain types be assigned to expression names. Condition C2 requires

that all free names in types assigned by Γ must be declared within Γ. Also, it states

that in an assumption x : U, x may not occur free in U. The second condition,

C3, requires that Γ have no cyclic dependencies. This is usually guaranteed by

the representation of environments as sequences of type assumptions, in which an

assumption x : U depends only on those appearing to its left. Such a representation

seems unfit in a setting where channel types are present since basic results on

admissibility of some structural rules fail (Remark 2.6).

Remark 2.2 Note that since channel names may not appear in assertion labels,

types may only depend on names which are assigned plain types. For example,

environments such as k :↓ [a : Int](| |); 1 · k′ :↓ [b : T ](| 〈k〉 |); 1 are not permitted

since channel names (in this case k) may not be present in effects. Since interaction
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Γ · a : T �Θ �
Wf Val EName

Γ · a : T �Θ a : T

Γ �Θ � n ∈ Z
Wf Val Int

Γ �Θ n : Int

Γ �Θ �
Wf PP Nil

Γ �Θ () : ()

Γ �Θ (�v) : (�a : �T ) Γ �Θ v : T {�a←�v}
b /∈ {�a} ∪ dom(Γ)

Wf PP Cons
Γ �Θ (�v, v) : (�a : �T , b : T )

Fig. 5. Well-formed values and process parameters.

through channel names is restricted by linearity conditions in the sense of linear

logic (Girard, 1987) (see explanation of Type Par rule below), this restriction states

that we do not allow types depending on linear assumptions (in contrast to shared

assumptions). The intended application of our type discipline is not disturbed by

such a restriction and it is not clear whether the technical complications of the meta-

theory resulting from lifting it outweighs its benefits. In fact this restriction already

appears in other settings in which linear and intuitionistic (or shared) assumptions

live together such as the linear logical framework of Cervesato & Pfenning (2002).

Iris’s type system defines the following four judgments:

Γ �Θ � well-formed environment Γ and process protocol Θ

Γ �Θ v : T well-typed value v of type T

Γ �Θ (�v) : (�a : �T ) well-typed process parameters�v of type (�a : �T )

Γ �Θ P : e well-typed process P with effect e

We shall often use J for the fragments of judgments �, v : T , (�v) : (�a : �T ), or

P : e. The letter Θ stands for a process protocol : a set of expressions of the form

Xj : (�aj : �Tj), for j ∈ 1..n, where each �aj : �Tj is an environment indicating the

types of process parameters to Xj . The judgment Γ �Θ � holds if Γ is a well-formed

environment and also each environment �aj : �Tj in the process protocol Θ is well-

formed. The rules for well-formed environments and process protocols, well-typed

values, and well-typed process parameters are found in Figure 5.

The type rules of Iris are presented in Figure 6. The rules Type Acpt and Type Rcv

introduce a new channel name in the environment thus guaranteeing that a private

channel is being used for the session. Note that dual channel types are used for the

requesting and accepting parties. Type Bgn and Type End affect process effects by

eliminating or adding a new assertion label. The rules Type Snd and Type Rcv allow

the typing of the communication primitives for sending and receiving data. Note that

data is sent and received over channels only. Also, note that the type of k in the upper

right-hand judgment of Type Snd is α{a ← v} reflecting the fact that the “rest” of

the channel type, namely α, may depend on the output value v. In the Type Snd rule,

the latent effect associated to the ouput type of k becomes a credit. In other words, it

becomes a “payment” obligation that must be met by some prior begin assertion or

some prior receive operation. Similar comments apply to Type Rcv. Note, however,

that this time the latent effect of the type of the parameter of the input (i.e. “b”)
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Γ · a : σ(α) · k : α �Θ P : e
Type Acpt

Γ · a : σ(α) �Θ accept a(k) in P : e

Γ · a : σ(α) · k : α �Θ P : e
Type Requ

Γ · a : σ(α) �Θ request a(k) in P : e

Γ �Θ P : e fn(L) ⊆ dom(Γ)
Type Bgn

Γ �Θ begin L;P : e \ (|L |)

Γ �Θ P : e fn(L) ⊆ dom(Γ)
Type End

Γ �Θ end L;P : e+ (|L |)

Γ �Θ v : T Γ · k : α{a← v} �Θ P : e fn(e′) ⊆ dom(Γ) ∪ {a}
Type Snd

Γ · k :↑ [a : T ]e′; α �Θ k![v];P : e+ e′{a← v}

Γ·b :T ·k :α{a← b} �Θ P : e b /∈ fn(e \ e′{a← b}) ∪ fn(α,Γ) fn(e′) ⊆ dom(Γ) ∪ {a}
Type Rcv

Γ · k :↓ [a : T ]e′; α �Θ k?(b) in P : e \ e′{a← b}

Γ · k : α1 �Θ P1 : e1 . . . Γ · k : αn �Θ Pn : en fn(e) ⊆ dom(Γ)
Type Brnch

Γ · k : &{l1 : α1, . . . , ln : αn}e �Θ k � {l1 : P1, . . . , ln : Pn} : (
∨
ei) \ e

Γ · k : αj �Θ P : e lj ∈ {l1, . . . , ln} fn(⊕{l1 : α1, . . . , ln : αn}e′) ⊆ dom(Γ)
Type Sel

Γ · k : ⊕{l1 : α1, . . . , ln : αn}e′ �Θ k � lj;P : e+ e′

Γ · k : α �Θ P : e β �= 1 fn(β, e′) ⊆ dom(Γ) k′ /∈ dom(Γ) ∪ {k}
Type Thr

Γ · k′ : β · k :↑ [β]e′; α �Θ throw k[k′];P : e+ e′

Γ · k′ : β · k : α �Θ P : e fn(e′) ⊆ dom(Γ)
Type Cat

Γ · k :↓ [β]e′; α �Θ catch k(k′) in P : e \ e′

Γ �Θ � ranCh(Γ) ⊆ {1,⊥e}
Type Stop

Γ �Θ stop : (||)

Γ · a : T �Θ P : e a /∈ fn(Γ, e)
Type NRes

Γ �Θ (νa : T )P : e

Γ · k : ⊥e′ �Θ P : e
Type CRes

Γ �Θ (νk : ⊥e′ )P : e

Γ �Θ P : e Γ′ �Θ Q : e′ Γ � Γ′

Type Par
Γ ◦ Γ′ �Θ P |Q : e+ e′

Γ �Θ P : e e � e′ fn(e′) ⊆ dom(Γ)
Type Subsum

Γ �Θ P : e′

Γ �Θ (�v) : (�a : �T ) X : (�a : �T ) ∈ Θ ranCh(Γ) ⊆ {1,⊥e}
Type PVar

Γ �Θ X[�v] : (||)

Γ \ chan(Γ) · �ai : �Ti �Θ Pi : (||) Θ(Xi) = (�ai : �Ti) Γ �Θ Q : e
Type Def

Γ �Θ\�X def X1(�a1 : �T1) = P1 . . . and . . . Xn(�an : �Tn) = Pn in Q : e

Fig. 6. Well-formed process expressions.
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becomes a debit or payment. Type Brnch and Type Sel type the branching and

selection primitives, respectively; if pending effects are seen as credits, then it is clear

that the effects of each branch in Type Brnch must be joined in the sense of taking

the least upper bound. Channel delegation is achieved by means of the throw and

catch primitives which are typed by means of Type Thr and Type Cat. The rule

Type Thr is subject to the restriction that β �= 1; this restricts delegation of channels

to those through which communication is possible i.e. no “dead” channels.1 Channel

and name restriction (for non-channel names) are typed as expected. Type Stop

types the inaction stop; it requires all communication through channel names to

have been completed. The rules Type NRes and Type CRes introduce a new private

expression name and a new private channel name, respectively.

The Type Par rule types the parallel execution of two processes. A channel may

be used by one of the two processes P or Q. The only exception to this rule is

when both P and Q use a channel k of dual types. Since channel usage must be

restricted to guarantee such linear usage the environments Γ and Γ′ are required to

be compatible.

Definition 2.3 (Compatibility �) The relation � is defined as follows: ∅ � ∅, and

Γ � Γ′ implies

1. Γ · a : T � Γ′ · a : T

2. Γ · k : α � Γ′ · k : α

3. Γ · k : α � Γ′, if k /∈ dom(Γ′)

4. Γ � Γ′ · k : α, if k /∈ dom(Γ)

Note that the notion of compatibility makes sense for two sets of assumptions

which not necessarily constitute well-formed environments. Once this notion of

compatibility is in place we may define how two environments are combined through

environment composition.

Definition 2.4 (Composition ◦) Let Γ,Γ′ be two environments such that Γ � Γ′. We

define Γ ◦ Γ′ as follows: ∅ ◦ ∅ = ∅ and

1. (Γ · a : T ) ◦ (Γ′ · a : T ) = (Γ ◦ Γ′) · a : T

2. (Γ · k : α) ◦ (Γ′ · k : α) = (Γ ◦ Γ′) · k : ⊥fnEff(α)

3. (Γ · k : α) ◦ (Γ′) = (Γ ◦ Γ′) · k : α, if k /∈ dom(Γ′)

4. Γ ◦ (Γ′ · k : α) = (Γ ◦ Γ′) · k : α, if k /∈ dom(Γ)

The effect fnEff(α) is the multi-set which includes an assertion label 〈a〉 for each

occurrence of a free expression name x in α. Other variants for the second clause of

Definition 2.4 are possible as long as the effect subscript of ⊥ faithfully records the

name dependencies of the dual channel types from which it arises (i.e. no dependency

information is lost). Some basic properties of compatibility and composition are:

1 Technically, this allows us to correct a problem present in Honda et al. (1998), namely the failure of
Subject Congruence.
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Lemma 2.3 (Basic Properties of � and ◦)

1. If Γ1 �Θ � and Γ2 �Θ �, then Γ1 ◦ Γ2 �Θ �.
2. (◦ is partially commutative) If Γ1◦Γ2 is defined, then so is Γ2◦Γ1 and moreover

Γ1 ◦ Γ2 = Γ2 ◦ Γ1.

3. (◦ is partially associative) If Γ1 � Γ2 and Γ2 � Γ3 and Γ1 � Γ2 ◦ Γ3, then

(Γ1 ◦ Γ2) ◦ Γ3 � Γ1 ◦ (Γ2 ◦ Γ3).

4. Γ1 ◦ Γ2 � Γ3 and Γ1 � Γ2 implies Γ2 � Γ3 and Γ1 � Γ2 ◦ Γ3.

Proof

1. By close inspection of the corresponding definitions.

2. If Γ � Γ′, then Γ′ � Γ and a close inspection of Definition 2.4 yields the

desired result.

3. As for associativity, we proceed by induction on the number of type assump-

tions in Γ1.

4. By induction on the number of type assumptions in Γ1.

�

The Type Subsum rule allows increasing the required assertion obligations of

a process term. Although such a rule is natural and informative when deriving

judgments it does not allow more terms to be typed:

Lemma 2.4 (Subsumption Elimination) If Γ �Θ P : e, then for some e′ � e, Γ �Θ

P : e′ is derivable without using the rule Type Subsum.

Proof

By induction on the derivation of Γ �Θ P : e using the properties of � on multi-sets.

Let us consider as an example the case where the derivation of Γ �Θ P : e ends in

an application of Type Bgn:

Γ �Θ P ′ : e1 fn(L) ⊆ dom(Γ)
Type Bgn

Γ �Θ begin L;P ′ : e1 \ (|L |)
and e = e1 \ (| L |). From the induction hypothesis we know that Γ �Θ P ′ : e′1 is

derivable without the use of Type Subsum and with e′1 � e1. We may then apply

Type Bgn and obtain:

Γ �Θ P ′ : e′1 fn(L) ⊆ dom(Γ)
Type Bgn

Γ �Θ begin L;P ′ : e′1 \ (|L |)
Let e′ be e′1 \ (|L |). Then Γ �Θ P : e′ is derivable without using Type Subsum and

e′ � e.

for some effect e′′, then e′′ \ (|L |) = e′′. �

The remaining rules, Type PVar and Type Def, type process variables and process

definitions, respectively. In the former case, note that all channel types must have

been consumed before calling the process X. In the latter case, each Pi with i ∈ 1..n

must be typed without making use of the channels in the environment Γ. This is a

means for preserving the linearity constraints on channel names.
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As one might expect, the following result (derivability implies wf of environments)

may be proved by induction on the size of the derivation of Γ �Θ J.

Lemma 2.5 If Γ �Θ J, then Γ �Θ �.

Remark 2.6 A representation of environments based on sequences of hypothesis, as

usually adopted in the literature on dependent type systems (Barendregt, 1992), is

not applicable to our system. The reason is that basic results on the admissibility of

structural rules fail. In particular, the Exchange Lemma, which states that the order

of independent hypothesis is irrelevant for the sake of derivability fails. Indeed,

consider the following possible type rule Type Snd formulated in a setting where

environments are sequences:

Γ1 · Γ2 �Θ v : T Γ1 · k : α{a← v} · Γ2 �Θ P : e Γ1 · k :↑ [a : T ]e′; α · Γ2 �Θ �
Γ1 · k :↑ [a : T ]e′; α · Γ2 �Θ k![v];P : e+ e′{a← v}

Assume that Γ1 = Γ′1 · v : T . Then note that v : T and k :↑ [a : T ]e′; α are in

condition of being exchanged since neither one depends on the other. However,

when we attempt to exchange v : T and k : α{a← v} in the upper middle judgment

we fail since α{a ← v} may have free occurrences of v. Note that these issues do

not appear in previous type-theoretic formulations of correspondence assertions for

concurrent/distributed calculi since long term session types are not considered.

Let Γ �Θ � and ∆ �Θ �. A renaming for Γ in ∆ is a parallel substitution γ from

names to names that respects sorts (expression names are mapped to expression

names and channel names are mapped to channel names) such that

1. for every x : U in Γ, γ(x) : U is in ∆, and

2. for every x : U ∈ ∆ which is not of the form γ(y) : U for some y : U in Γ, if

U is a channel type then U = ⊥e or U = 1.

Proposition 2.7 (Renaming) If Γ �Θ J and γ is a renaming for Γ in ∆, then

∆ �Θ γ(J).

The proof is by induction on the derivation of Γ �Θ J.

As a consequence of the Renaming Proposition, hypothesis in environments may

be exchanged without affecting derivability.

Lemma 2.8 (Exchange) If Γ ·x : U ·x′ : U ′ ·Γ′ �Θ J, then Γ ·x′ : U ′ ·x : U ·Γ′ �Θ J.

Furthermore, the following Weakening Lemma also follows from the Renaming

Proposition. It holds without restrictions for plain types. However, in the case of

channel types we must require the new type introduced into the environment to be

1 or ⊥e. This is necessary due to the Type Stop and Type PVar typing rules.

Lemma 2.9 (Weakening) If Γ �Θ J and x /∈ dom(Γ) and Γ · x : U �Θ �, then

1. Γ · x : U �Θ J, if U is a plain type.
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2. Γ · x : U �Θ J, if U is a channel type and U = 1 or U = ⊥e.

Lemma 2.10 (Strengthening) If Γ · x : U �Θ J and x /∈ fn(Γ,Θ,J), then Γ �Θ J.

Recall from Section 2.2.1 that the relation xi : Ui depends directly on xj : Uj in

Γ (written (xj : Uj) ↪→d (xi : Ui)) holds if xj ∈ fn(Ui). We say xi : Ui depends on

xj : Uj in Γ if xi : Ui ↪→ xj : Uj , where ↪→ denotes the transitive closure of ↪→d;

likewise we say some subset of hypothesis Γ′ ⊂ Γ depends on x : U ∈ Γ in Γ if for

each x′ : U ′ ∈ Γ′, x′ : U ′ depends on x : U.

Lemma 2.11 (Substitution Lemma) Suppose Γ · ∆ · a : T �Θ J, where Γ does not

depend on a and ∆ does. Suppose, furthermore, that Σ �Θ v : T with Γ � Σ. Then

Γ · ∆{a← v} �Θ J{a← v}.

3 Safety proof for Iris

To trace the execution of certain actions such as begin and end assertions we

shall introduce a labeled transition semantics (Gordon & Jeffrey, 2003a) (LTS) for

Iris. The LTS is defined modulo structural congruence ≡ and shall be used for

formalizing the notion of safe process and showing that all typable processes with

null effects are safe. The standard definition of structural congruence applies, as

depicted in Figure 7.

The actions, denoted with letters ψ,φ, . . . , of the transition system are explained

informally below:

• P
begin L
−→ P ′ meaning P reaches a begin L assertion.

• P end L−→ P ′ meaning P reaches an end L assertion.

• P
res(a : T )
−→ P ′ meaning P generates a new session name a.

• P
res(k : ⊥e)−→ P ′ meaning P generates a new channel name k.

• P τ−→ P ′ meaning P performs an internal action.

Thus the set of actions is begin L, end L, res(a : T ), res(k : ⊥e), τ. The labeled

transition system for Iris is given in Figure 8; we write P
ψ
−→ P ′ when P reduces to

P ′ through action ψ. The set of free and generated names of an action are given by:

fn(τ)
def
= ∅

fn(begin L)
def
= fn(L)

fn(end L)
def
= fn(L)

fn(res(a : T ))
def
= {a} ∪ fn(T )

fn(res(k : ⊥e))
def
= {k} ∪ fn(e)

gn(τ)
def
= ∅

gn(begin L)
def
= ∅

gn(end L)
def
= ∅

gn(res(a : T ))
def
= {a}

gn(res(k : ⊥e))
def
= {k}

A sequence of transitions may be tracked with traces. A trace s is a sequence ψ1 . . . ψn
of actions. We use ε for the empty trace. The free names (resp. generated names) of

a trace ψ1 . . . ψn are defined as fn(ψ1) ∪ . . . ∪ fn(ψ1) (resp. gn(ψ1) ∪ . . . ∪ gn(ψ1)). A

traced transition is a sequence of actions:
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P ≡ P SC Refl

P ≡ Q⇒ Q ≡ P SC Symm

P ≡ Q,Q ≡ R ⇒ P ≡ R SC Trans

P | stop ≡ P SC Stop

P |Q ≡ Q|P SC Par Comm

(P |Q)|R ≡ P | (Q|R) SC Par Asoc

P ≡ P ′ ⇒ (νx : U)P ≡ (νx : U)P ′ SC New Name/Chan

P ≡ P ′ ⇒ P |Q ≡ P ′|Q SC Par

P ≡ P ′ ⇒ k?(a) in P ≡ k?(a) in P ′ SC Rcv

P ≡ P ′ ⇒ k![v];P ≡ k![v];P ′ SC Send

P ≡ P ′ ⇒ accept a(k) in P ≡ accept a(k) in P ′ SC Acpt

P ≡ P ′ ⇒ request a(k) in P ≡ request a(k) in P ′ SC Requ

P ≡ P ′ ⇒ k � l;P ≡ k � l;P ′ SC Sel

P ≡ P ′ ⇒ k � {. . .�li : P� . . .} ≡ k � {. . .�li : P ′� . . .} SC Brnch

P ≡ P ′ ⇒ throw k[k′];P ≡ throw k[k′];P ′ SC Thr

P ≡ P ′ ⇒ catch k(k′) in P ≡ catch k(k′) in P ′ SC Cat

P ≡ P ′ ⇒ def D in P ≡ def D in P ′ SC Def

P ≡ P ′ ⇒ begin L;P ≡ begin L;P ′ SC Begin

P ≡ P ′ ⇒ end L;P ≡ end L;P ′ SC End

(νx1 : U1)(νx2 : U2)P ≡ (νx2 : U2)(νx1 : U1)P , SC Res Res

if x1 �= x2, x1 /∈ fn(U2), x2 /∈ fn(U1)

(νx : U)(P |Q) ≡ (νx : U)P |Q, if x /∈ fn(Q) SC Res Par

(νx : U)def D in P ≡ def D in (νx : U)P , if x /∈ fn(D) SC Res Def

(def X1(�a1 : �T1) = P1 . . . and . . . Xn(�an : �Tn) = Pn in P )|Q
≡ def X1(�a1 : �T1) = P1 . . . and . . . Xn(�an : �Tn) = Pn in (P |Q), SC Def Par

if {X1, . . . , Xn} ∩ fpv(Q) = ∅
def X1(�a1 : �T1) = P1 . . . and . . . Xn(�an : �Tn) = Pn

in def Y1(�b1 : �S1) = Q1 . . . and . . . Ym(�bm : �Sm) = Qm in P

≡ def X1(�a1 : �T1) = P1 . . . and . . . Xn(�an : �Tn) = Pn

and Y1(�b1 : �S1) = Q1 . . . and . . . Ym(�bm : �Sm) = Qm in P , SC Def And

if ({X1, . . . , Xn} ∪
⋃n
i=1 fpv(Pi)) ∩ {Y1, . . . , Ym} = ∅

Fig. 7. Structural congruence.

Definition 3.1 (Traced Transitions) P reduces to P ′ with trace s if P
s−→ P ′, where

s−→ is defined as:

P ≡ P ′ ⇒ P
ε−→ P ′ Trace ≡

P
ψ
−→ Q,Q

s−→ P ′ ⇒ P
ψs
−→ P ′ Trace Action (where fn(ψ) ∩ gn(s) = ∅)

To define when a process is safe we shall need to count the number of begin’s

and end’s in traces. The former is defined as begins(ψ1 . . . ψn)
def
= begins(ψ1) ∪

. . . ∪ begins(ψn) and the latter ends(ψ1 . . . ψn)
def
= ends(ψ1) ∪ . . . ∪ ends(ψn), where
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(accept a(k) in P1)| (request a(k) in P2)
τ−→ (νk : ⊥e)(P1|P2) Trans Link

(k![v];P1)| (k?(a) in P2)
τ−→ P1|P2{a← v} Trans Comm

(k � li;P )| (k � {l1 : P1� . . .� ln : Pn})
τ−→ P |Pi, if i ∈ 1..n Trans Brnch

(throw k[k′];P1)| (catch k(k′′) in P2)
τ−→ P1|P2{k′′ ← k′} Trans Catch

def D in (X[�v]|Q)
τ−→ def D in (P {�a←�v}|Q), Trans Def1

if X(�a : �T ) = P ∈ D

begin L;P
begin L
−→ P Trans Begin

end L;P
end L−→ P Trans End

(νa : T )P
res(a : T )
−→ P Trans ResN

(νk : ⊥e)P
res(k : ⊥e)−→ P Trans ResCh

P
ψ
−→ P ′

Trans Def2

def D in P
ψ
−→ def D in P ′

P
ψ
−→ P ′

Trans Par

P |Q
ψ
−→ P ′|Q

, if gn(ψ) ∩ fn(Q) = ∅

P ≡ P ′ P ′
ψ
−→ Q′ Q′ ≡ Q

Trans ≡
P

ψ
−→ Q

Fig. 8. LTS for Iris.

∪ stands for multi-set union and

begins(begin L)
def
= (|L |) ends(begin L)

def
= (||)

begins(end L)
def
= (||) ends(end L)

def
= (|L |)

begins(res(u))
def
= (||) ends(res(u))

def
= (||)

begins(τ)
def
= (||) ends(τ)

def
= (||)

Definition 3.2 (Safe Process) A process P is safe if and only if for all traces s and

processes P ′, if P
s−→ P ′ then ends(s) � begins(s).

Thus a process is safe if every end L is accounted for by a corresponding begin L.

For example, begin L; stop is safe however, begin L; end L; end L; stop is not.

We now address the proof of safety, namely that a process typable with null effect

is safe. This requires showing that process reduction preserves typings and effects.

Since reduction is defined in terms of the structural congruence relation, we must

first verify that typing is invariant with respect to this relation. More precisely,

Lemma 3.1 (Subject Congruence) Assume Γ �Θ P : e. If P ≡ Q, then Γ �Θ Q : e.

Subject Congruence is proved by induction on the derivation of P ≡ Q; the fact

that effects are not lost when environments are composed (clause 2 in Definition 2.4)

is crucial to its proof.
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Remark 3.2 As a consequence of the fact that 1=1 the following substitutability

result is required for Subject Congruence:

Lemma 3.3 If Γ · k : 1 �Θ J, then Γ · k : ⊥e′ �Θ J for any effect e′ such that

fn(e′) ⊆ dom(Γ).

Proof

By induction on the derivation of Γ · k : 1 �Θ J. Some cases which are worth

commenting on are:

Type Thr. The condition β �= 1 in the formulation of Type Thr is required for this

case to go through.

Type Par. If k : 1 ∈ Γ1 ◦ Γ2, then either k : 1 ∈ Γ1 \ Γ2 or k : 1 ∈ Γ2 \ Γ1. We

thus apply the induction hypothesis to the appropriate upper judgment. Note that

the resulting judgment shall still be compatible with the other upper judgment of

Type Par. �

Note that the converse of Lemma 3.3 does not hold. Also, it fails in Honda ém

et al. (1998), and seems to be the culprit for failure of Subject Congruence of the

calculus proposed in Honda ém et al. (1998). a dual terminator, say 1 and then

define 1=1 and also 1=1 (adapting the definition of compatiblity and composition,

and the type rules accordingly). However, Lemma 3.3 still fails to the non-linearity

in the type rule Type Thr. This suggests that a detailed logical analysis of Iris could

be of interest as a further research topic.

Theorem 3.4 (Subject Reduction) Assume Γ �Θ P : e.

1. If P
τ−→ P ′, then there exists Γ′ such that Γ′ �Θ P ′ : e and Γ′ and Γ differ

only in the effects assigned to the channel type ⊥ (if any).

2. If P
begin L
−→ P ′, then Γ �Θ P ′ : e+ (|L |).

3. If P
end L−→ P ′, then Γ �Θ P ′ : e \ (|L |) and L ∈ e.

4. If P
res(a : T )
−→ P ′ and a /∈ dom(Γ), then Γ · a : T �Θ P ′ : e.

5. If P
res(k : ⊥f )−→ P ′ and k /∈ dom(Γ), then Γ · k : ⊥f �Θ P ′ : e.

then �X /∈ dom(Θ) and Γ �Θ·�X:(�xi:�Ti)
P ′ : e.

Proof

Subject reduction is proved by cases in a standard manner according to the action

which takes place. A representative case is provided below. It relies on the following

≡-Elimination observation which may be verified by induction on the derivation of

P
υ−→ P ′: If P

υ−→ P ′, then for some Q ≡ P and Q′ ≡ P ′, Q
υ−→ Q′ is derivable

without using the rule Trans ≡.

Suppose P
τ−→ P ′ derives from the Trans Comm transition, then by≡-Elimination:

P ≡ def D in (k![v];P1)| (k?(b) in P2)|R
P ′ ≡ def D in P1|P2{b← v}|R
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where D = X1(�a1 : �T1) = O1 . . . and . . . Xn(�an : �Tn) = On. By Subsumption Elimina-

tion and Subject Congruence the derivation of Γ �Θ P : e is

Γ \ chan(Γ) · �ai : �Ti �Θ Oi : (||) Θ(Xi) = (�ai : �Ti) Γ �Θ Q : e
Type Def

Γ �Θ\�X def X1(�a1 : �T1) = O1 . . . and . . . Xn(�an : �Tn) = On in Q : e

The derivation of Γ �Θ Q : e takes the following form.

• On the one hand we have:

Γ �Θ v : T Γ · k : α{a← v} �Θ P1 : eP1
fn(e′) ⊆ dom(Γ) ∪ {a}

Type Snd
Γ · k :↑ [a : T ]e′; α �Θ k![v];P1 : eP1

+ e′{a← v}

• On the other we have:

∆ · b :T · k : α{a← b} �Θ P2 :eP2
b /∈ fn(eP2

\ e′{a← b}) ∪ fn(α,∆) fn(e′)⊆ dom(∆) ∪ {a}

∆ · k :↓ [a : T ]e′; α �Θ k?(b) in P2 : eP2
\ e′{a← b}

Type Rcv

• Finally, the derivation ends in an application of Type Par to the above two

derivations yielding the top left-hand judgment in:

(Γ ◦ ∆) · k : ⊥f �Θ (k![v];P1)| (k?(b) in P2) : e′′ Σ �Θ R : eR
Type Par

((Γ ◦ ∆) · k : ⊥f) ◦ Σ) �Θ (k![v];P1)| (k?(b) in P2)|R : e′′ + eR

where
f = fnEff(↑ [a : T ]e′; α)

e′′ = (eP1
+ e′{a← v}) + (eP2

\ e′{a← b})
(eP1

+ e′{a← v}) + (eP2
\ e′{a← b}) + eR � e

Γ � ∆ (Γ ◦ ∆) · k : ⊥f � Σ

From ∆ · b : T · k : α{a ← b} �Θ P2 : eP2
and Γ �Θ v : T and ∆ � Γ and the

Substitution Lemma, we deduce

∆ · k : α{a← v} �Θ P2{b← v} : eP2
{b← v}

Next we construct the derivation:

Γ · k : α{a← v} �Θ P1 : eP1
∆ · k : α{a← v} �Θ P2{b← v} : eP2

{b← v}
Type Par

(Γ ◦ ∆) · k : ⊥f′ �Θ P1|P2{b← v} : eP1
+ eP2

{b← v}

where f′ = fnEff(α{a← v}).
Finally, we introduce another application of Type Par:

(Γ ◦ ∆) · k : ⊥f′ �Θ P1|P2{b← v} : eP1
+ eP2

{b← v} Σ �Θ R : eR
Type Par

((Γ ◦ ∆) · k : ⊥f) ◦ Σ �Θ P1|P2{b← v}|R : eP1
+ eP2

{b← v}+ eR

We are left to verify that eP1
+ eP2

{b← v}+ eR � e. We reason as follows:

eP1
+ eP2

{b← v}+ eR
= eP1

+ (eP2
\ e′{a← b}+ e′{a← b}){b← v}+ eR

= eP1
+ (eP2

\ e′{a← b}){b← v}+ e′{a← b}{b← v}+ eR
= eP1

+ eP2
\ e′{a← b}+ e′{a← v}+ eR (b /∈ fn(eP2

\ e′{a← b}))
� e (hypothesis) �
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a : σ(↓ [idA : Int](||); &{deposit :↓ [amtA : Int](| 〈idA, amtA〉 |); ↑ [balA : Int](||); 1,

� withdraw :↓ [amtA : Int](||); ↑ [balA : Int](||); 1}(||))
b : σ(&{deposit :↓ [idB : Int](||); ↓ [amtB : Int](| 〈idB, amtB〉 |); ↑ [balB : Int](||); 1,

� withdraw :↓ [idB : Int](||); ↓ [amtB : Int](||); ↑ [balB : Int](||); 1}(||))

Fig. 9. Types with effects for the ATM example.

Client(id, amt, a)=request a(k) in k![id]; k� deposit; k![amt];

k?(bal) in end 〈id , amt , bal〉; stop
ATM(a, b) =accept a(k) in k?(idA) in

k� { deposit: k?(amtA) in k![1000 ]; ATM[a, b]

� withdraw: request b(h) in k?(amtA) in

h� withdraw; h![idA]; h![amtA]; h?(OKedAmtA) in

k![OKedAmtA]; ATM[a, b] }
Bank(b) =accept b(h) in

h� { deposit: h?(idB ) in h?(amtB ) in updateData;

begin 〈idB , amtB , balB〉; h![balB ]; Bank[b]

� withdraw: h?(idB ) in h?(amtB ) in

getOK AmtForIdB ; h![OKedAmtB ]; Bank[b] }

Fig. 10. The ATM example.

Finally, we may put the results together and obtain the main result. Its proof is

based upon observing that the following invariant holds: If Γ �Θ P : e and P
s−→ P ′

and gn(s) ∩ dom(Γ) = ∅, then ends(s) � begins(s) + e.

Theorem 3.5 (Safety) If Γ �Θ P : (||), then P is a safe process.

Let us return to the example of the ATM. By assigning the session names a

and b the types indicated in Figure 9, the good ATM (when executed concurrently

with Client and Bank) may be seen to be safe. Moreover, with this type assignment

Example 1.3 is not safe according to our type system, as one might expect. Note

that the necessary assertion labels are inserted as already explained in that example.

Example 3.6 (Deposit II (continued)) Consider the code of Figure 10. It consists of

the ATM example of Figure 1 augmented with a begin assertion in the bank and

an end assertion in the code of the client; the code of the deposit operation in

ATM has been altered as suggested by Example 1.2 (note that it does not consult

with the bank).
Also, let us take the following type expressions for the session names a and b,

where two latent effects have been introduced to the session types introduced earlier.

a : σ(↓ [idA : Int](||); &{deposit :↓ [amtA : Int](||); ↑ [balA : Int](| 〈idA, amtA, balA〉 |); 1,

� withdraw :↓ [amtA : Int](||); ↑ [balA : Int](||); 1}(||))

b : σ(&{deposit :↓ [idB : Int](||); ↓ [amtB : Int](||); ↑ [balB : Int](| 〈idB, amtB, balB〉 |); 1,

� withdraw :↓ [idB : Int](||); ↓ [amtB : Int](||); ↑ [balB : Int](||); 1}(||))

As the reader may like to verify, both the client and the bank of Figure 10

are typable with the empty effect (||). Indeed, in the client, the credit 〈id , amt , bal〉

https://doi.org/10.1017/S095679680400543X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680400543X


Correspondence assertions for session types 243

Fig. 11. Effects of Example 3.6.

introduced by the end assertion is paid for by the latent effect associated with the

input operation k?(bal); in the bank the credit 〈idB , amtB , balB〉 introduced by the

latent effect associated to the output operation h![balB] is paid for by the begin

assertion just preceding it.

However, the credit 〈idA, amtA, 1000〉 introduced by the latent effect associated

with the output operation k![1000] in the code of ATM is not paid for. Thus the

system resulting from executing all three components concurrently is unsafe since the

net effect of the resulting system is the sum of the effects of each of its components

(see rule Type Par in Figure 6). An illustration is given in Figure 11.

Let us consider an additional example including the use of catch and throw and

the typings they entail.

Example 3.7 (Authenticator Example) Consider a server Server that serves up

secrets in accordance with a given security level, and an authenticator Auth, trusted

by Server to supply security clearances. Upon receiving an identifier from a client,

Auth determines the security level of the client and passes the security level off to

the server followed by the channel shared by Auth and the client. Upon receiving

the channel, Server uses it to answer the client’s question at the right level. The

client’s concern is that he gets the answer from the server that corresponds to the

question. More formally, let

Server(s) = accept s(h) in h?(id) in h?(sec level) in

catch h(k) in k?(question) in

begin 〈question, getSecret(id, question, sec level)〉;
k![getSecret(id, question, sec level)]; Server[s]

Auth(a, s) = accept a(k) in Auth[a, s]| k?(id) in request s(h) in

h![id]; h![getSecLevel(id)]; throw h[k]; stop

Client(id, question, a) = request a(k) in k![id]; k![question]; k?(secret) in

end 〈question, secret〉; stop
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The system Client[id, question, a]|Auth[a, s]|Server[s] is typable with empty effects

under the type assignments:

a : σ(↓ [id : Int](||); ↓ [question : Int](||); ↑ [secret : Int](| 〈question, secret〉 |); 1)

s : σ(↓ [id : Int](||); ↓ [sec level : Int](||);
↓ [↓ [question : Int](||); ↑ [secret : Int](| 〈question, secret〉 |)](||); 1)

If we run Client[id, question, a]|Auth[a, s]|Server[s], then the client will be served

the secret answer to its question at the appropriate security level. Since the code

typechecks with empty effect, the end in the code for Client is matched by the begin

in the code for Server. Thus, we know that the answer received by the client from

the server is the secret corresponding to the question asked. Since the client and

Server communicate the question and answer on the same channel, it may not seem

like much is being guaranteed. However, it is worth remembering that the client

does not know that he is talking directly to the server, particularly since he started

out talking to the authenticator, not the server.

The server in this setting it likely to be concerned that the person asking the

question is the one that has the security clearance for the answer given. To answer

this question we will augment the original code with additional assertions:

Server′(s) = accept s(h) in h?(id) in h?(sec level) in

catch h(k) in k?(question) in end 〈id, question〉;
begin 〈question, secret(question, sec level)〉;
k![secret(id, question, sec level)]; Server

Client′(id, question, a) = request a(k) in

begin 〈id, question〉k![id]; k![question]; k?(secret) in
end 〈question, secret〉; stop

The new system Client′(id, question, a)|Auth(a, s)|Server′(s) is typable with empty

effects under the modified type assignments:

a : σ(↓ [id : Int](||); ↓ [question : Int](| 〈id, question〉 |);
↑ [secret : Int](| 〈question, secret〉 |); 1)

s : σ(↓ [id : Int](||); ↓ [sec level : Int](||);
↓ [↓ [question : Int](| 〈id, question〉 |);
↑ [secret : Int](| 〈question, secret〉 |)](||); 1)

With the same process definitions, now let us consider the process

Client′(id1, q1, a)|Client′(id2, q2, a)|Client′(id3, q3, a)|Client′(id4, q4, a)|
Auth(a, s)|Server′(s)|Server′(s)|Server′(s).

This process also type-checks with empty effects under the revised type assignments

given above for a and b. However, this time, we don’t know which client will get

paired with which server, or which one will have to wait until one of the other

clients finishes. If we assume that different copies of the server are capable of giving

different answers, then different runs of this program can yield the clients receiving

different answers to their questions. Still, the type systems guarantees that the client

https://doi.org/10.1017/S095679680400543X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680400543X


Correspondence assertions for session types 245

receives an answer to its question, and that the server is issuing the answer to a

client with appropriate authorization.

4 Conclusions

This paper defines a typed π-calculus that combines correspondence assertions and

session types. Session types are a versatile mechanism for restricting process behavior

in multi-party interactions. A session describes the message exchange pattern

between two parties. However, these types provide no means of synchronization

between sessions in a multi-session system. Indeed, we have shown an example

illustrating how, when processing a client’s request for a withdrawal operation, ATM

may decide either not to interact with Bank at all, or deposit an amount smaller

than the one the client requested, and at the same time deposit the difference in some

other account (creating an unintended message exchange with Bank). Session types

are not expressive enough to distinguish these variants: In both cases, the same type

can be assigned as in the case of the “correct” ATM. By introducing correspondence

assertions into the type system we are able to draw a fine line between them and

distinguish the “correct” ATM from the faulty or malicious ones.

However, there are situations that our system does not capture. For example,

consider P |Q where

P = begin 〈3〉; k![3]; stop

Q = k?(x); end 〈x〉 in stop

and assume that the type of k in P is k :↑ [x : Int]〈x〉; 1 and the type of k in Q is its

dual, namely k :↓ [x : Int]〈x〉; 1. The fact that P |Q is safe allows us to infer that if

a value x was received in Q, then it must be the case that P sent it. However, only

under the additional assumption that the communication channel is not tampered

with may we assume that the value received for x is in fact the value 3 sent by P . In

many situations this is somewhat unrealistic. One possible approach to address this

drawback is to incorporate encryption primitives as in Gordon and Jeffrey (2001a).

Another situation not captured by our system is exemplified by a process Forwrd

that receives a channel k from P and passes it on to some other process Q.

P (l) = request PF (h) in throw h(l); stop

Forwrd = accept PF (h1) in request FQ(h2)

in catch h1(k) in throw h2(k); stop

Q = accept FQ(h) in catch h(k′); stop

The process Q may be interested in verifying that if it received some channel k′,

then this channel was exactly the one sent by P . One could attempt to insert effects

in the type associated to h1 and h2

PF : σ(↓ [α](| 〈•〉 |); 1)

FQ : σ(↑ [α](| 〈•〉 |); 1)

where α is the type of l and “•” is some dummy value, insert a corresponding

begin 〈•〉 assertion just before the throw operation in P and a corresponding
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end 〈•〉 assertion just after the catch operation in Q . The program P [l]|Forwrd |Q
is indeed safe, but the type assignment does not reflect our intentions. Indeed, if

Forwrd executed a throw instruction with any channel of type α, in particular a

channel different from k, then the resulting code would also be safe. What we really

want is a type assignment of the form:

PF : σ(↓ [k : α](| 〈k〉 |); 1)

FQ : σ(↑ [k : α](| 〈k〉 |); 1)

However, such a type assignment is not allowed in our system since effects may not

contain occurrences of channel names (namely k in this example).

In addition to studying extensions of the calculus that remedy these situations,

other issues require further attention:

• When a deposit operation is requested by the client, correspondence assertions

allow us to check that the account number that ATM communicates to Bank

is exactly the same as the one punched in by the client as received by ATM. It

would be interesting to consider studying a language of constraints in which

such conditions may be formalized. In such a language, multi-sets and their

operations become part of the object-language and a system of equations for

solving constraints based on these expressions is required.
• Session types look much like processes. In (Igarashi & Kobayashi, 2004) a

generic type system for the π-calculus is studied in which types are CCS-

like processes. They suggest that it is possible to integrate a theory of

correspondence assertions into their framework. We are currently looking

into this issue.
• Additional future work includes developing the formal theory of this calculus

in HOL (Gordon & Melham, 1993) and using the development to encode and

reason about security and networking protocols.
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