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A new statistical coherent structure (CS), the velocity–vorticity correlation structure
(VVCS), using the two-point cross-correlation coefficient Rij of velocity and vorticity
components, ui and ωj (i, j = 1, 2, 3), is proposed as a useful descriptor of CS. For
turbulent channel flow with the wall-normal direction y, a VVCS study consists of
using ui at a fixed reference location yr, and using |Rij(yr; x, y, z)| > R0 to define a
topologically invariant high-correlation region, called VVCSij. The method is applied to
direct numerical simulation (DNS) data, and it is shown that the VVCSij qualitatively
and quantitatively captures all known geometrical features of near-wall CS, including
spanwise spacing, streamwise length and inclination angle of the quasi-streamwise
vortices and streaks. A distinct feature of the VVCS is that its geometry continuously
varies with yr. A topological change of VVCS11 from quadrupole (for smaller yr)
to dipole (for larger yr) occurs at y+r = 110, giving a geometrical interpretation
of the multilayer nature of wall-bounded turbulent shear flows. In conclusion, the
VVCS provides a new robust method to quantify CS in wall-bounded flows, and is
particularly suitable for extracting statistical geometrical measures using two-point
simultaneous data from hotwire, particle image velocimetry/laser Doppler anemometry
measurements or DNS/large eddy simulation data.

Key words: Boundary layer structure, Turbulent boundary layers

1. Introduction
The concept of coherent structure (CS) is now widely accepted and plays a central

role in the dynamical study of turbulent shear flows. Techniques to extract CS features
include conditional sampling (Antonia 1981), pattern recognition (Eckelmann et al.
1977), proper orthogonal decomposition (POD) (Berkooz et al. 1993), eduction of
vorticity-based CS (Hussain & Hayakawa 1987; Jeong et al. 1997), quadrant splitting
methods (Wallace, Eckelmann & Brodkey 1972; Willmarth & Lu 1972; Yang & Jiang
2012) and stochastic estimation (Adrian & Moin 1988). The conditional sampling
methods are based on a one-fixed-point scheme typically using streamwise velocity or
Reynolds stress 〈u1u2〉 as the detection signal (Wallace 2009). A technical difficulty
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comes from phase jitter due to the random occurrence, shape, size and orientation
of the structures in space and time (Antonia 1981); often the method is applied at
several locations to capture different parts of a CS in turbulent boundary layers (TBLs)
(Huang et al. 2007), with great sophistication (Lo et al. 2000). Also, an empirical,
and arguable subjective, threshold is inherently needed for defining the boundaries of
CS. A recent method identifies Lagrangian coherent structures (LCS) (Shadden et al.
2006), which seems to be more ‘objective’ than Eulerian-based schemes, but requires
substantially higher temporal resolution (Pan et al. 2009).

The scale of CS has been an important issue in wall-bounded turbulence. In the
1960s, Kline et al. (1967) first reported a spanwise scale, λ+100∼ 100, for low-speed
streaks in TBLs, but later numerical and experimental studies (Smith & Metzler 1983;
Kim et al. 1987) reveal a linear growth of the spanwise scale of streaks with the
distance from the wall. Increasing λ+ with increasing y is not surprising as the streaks
are of varying height. Tomkins & Adrian (2003) asserted that it is consistent with the
idea of self-similar growth of structures in an average sense. However, these studies
are restricted to CS near the wall. Smith & Metzler (1983) remark that the structures
above the buffer layer (y+> 30) become so complex with distance from the wall that
quantifying streak spacing, merging or divisions become too subjective. Thus, it is
important to develop new methods for the extraction of the structures in log and outer
layers, which are more complicated.

Despite numerous efforts, there are still two additional outstanding issues in CS
studies. One is the difficulty in obtaining quantitative measures in a variety of
wall-bounded flows, which require a large set of instantaneous flow fields, and the
other is incorporation of the CS in engineering models. We focus here on the first
issue. Traditional CS studies define the CS from instantaneous flow fields, and obtain
statistical measures later. Here, we are motivated to introduce a new concept of CS
which is directly related to statistical measures. The new concept is methodologically
stable, and easier to carry out throughout the flow domain beyond the near-wall
region. The new concept is a statistical CS – the velocity–vorticity correlation
structure (VVCS) (Chen et al. 2011; Pei et al. 2012), using two-point cross-correlation
coefficients of the velocity ui, and vorticity ωj components (i, j = 1, 2, 3). We use
channel flow as a platform to illustrate the concept, and the method is equally
applicable to other wall-bounded flows, especially TBLs. In this study, ui is a fixed
reference location with a vertical coordinate yr, while ωj varies in space of (x, y, z)
to form a correlation field. The high-correlation regions (or volumes) defined by the
cross-correlation coefficients above a threshold constitute the VVCS. The application
of the method to direct numerical simulation (DNS) channel flow data shows that the
VVCS qualitatively and quantitatively captures many, if not all, known geometrical
features of near-wall CS obtained in prior CS studies, including spanwise spacing,
streamwise length and inclination angle of the streamwise vortices and the streaks.
The method seems robust and thus provides a new way to quantify CS and hopefully
incorporate CS ideas in predictive engineering models.

2. DNS details

DNS data of a fully developed channel flow were used to calculate the correlation
coefficients and to provide a quantitative description of the VVCS. The simulation
uses a standard spectral method with periodic boundary conditions in the streamwise
and spanwise directions. The computation was carried out with over 2 million grid
points (128 × 129 × 128, in x, y and z) for a Reynolds number of 3300, based on
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the mean centreline velocity Uc and the channel half-width H, and Reτ ≈ 180 based
on the friction velocity uτ . For the Reynolds number considered here, the streamwise
and spanwise computational periods are chosen to be 4π and 4π/3, respectively. The
grid spacings in the streamwise and spanwise directions are 1x+ = 17.7 and 1z+ =
5.9 in wall units, respectively. Non-uniform meshes were used in the normal direction
with yi = tanh(B(2i/(N − 1) − 1))/tanh(B), i = 0, 1, . . . , N. Here N = 129 is the
number of grid points in the y direction, and B= 2.0. The first mesh point near the
wall is at y+= 0.05 (the superscript ‘+’ denotes normalization by uτ and viscosity ν),
and the maximum spacing (at the centreline of the channel) is 4.42 wall units. This
resolution is appropriate for this flow (Li et al. 2001), with the mean velocity profile
shown in figure 1. A log layer ranging from y+∼ 40 to 150 agrees with the standard
computational fluid dynamics (CFD) results of Kim et al. (1987) and experiments of
Hussain & Reynolds (1975).

Since the VVCS study investigates the structural properties over the entire channel
(not restricted to the near wall region), it is important to gain an insight to the energy
dynamics throughout the channel. This is revealed by the budget terms in the equation
for the plane-averaged turbulence kinetic energy, 〈k〉 = 〈uiui/2〉, written as

D
Dt
〈k〉 ≡

(
∂

∂t
+U

∂

∂x
+ V

∂

∂y
+W

∂

∂z

)
〈k〉 = P+ T +D+Π − ε (2.1)

where various terms are

P=−〈uiuj〉∂Ui

∂xj
=−〈uv〉∂U

∂y
, (2.2a)

T =−1
2
∂

∂xj
〈kuj〉 =−1

2
∂

∂y
〈kv〉, (2.2b)

D= ν ∂2

∂xj∂xj
〈k〉 = ν ∂

2

∂y2
〈k〉, (2.2c)

Π =− 1
ρ

∂

∂xi
〈uip〉 =− 1

ρ

∂

∂y
〈vp〉, (2.2d)

ε = ν
〈
∂ui

∂xj

∂uj

∂xi

〉
. (2.2e)

Summation over repeated indices is implied. Normalized by the dissipation in
the wall units, u4

τ/ν, the terms in (2.2) are, respectively, the turbulence production
P, the turbulent transport T , the viscous diffusion D, the pressure transport Π and
dissipation ε. Figure 2 shows the y-dependence of these terms, calculated from the
DNS data. The results validate of the computation, as well as a multilayer structure
reported recently by She et al. (2010) and Wu et al. (2012). In particular, there
exists a transition from the quasi-balance region (production–dissipation balance)
to the central core region (transport–dissipation balance) at y+ ∼ 125. The flow in
the central core region is nearly homogeneous in the y direction; the VVCS study
captures some of these features.

3. Velocity–vorticity correlation structure
We denote the streamwise coordinate, and the velocity and vorticity components as

x, u1 and ω1; the wall-normal components as y, u2, ω2; and the spanwise components
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FIGURE 1. Velocity profile in wall units for the present DNS of the channel flow.
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FIGURE 2. The terms in the turbulent kinetic energy budget as a function of y+, at Reτ =
180. The inset is the enlarged view of the region marked by rectangle.

as z, u3, ω3. The velocity–vorticity correlation coefficient is defined as

Rij(xr, yr, zr; x, y, z)= E
[
(ui − ui)A

(
ωj −ωj

)
B

]
ui,rms(yr) ·ωj,rms(y)

, (3.1)

where A = (xr, yr, zr) and B = (x, y, z), denote the reference point for velocity and
variable point for the vorticity, respectively, and i, j= 1, 2, 3. Here E is the expected
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FIGURE 3. (Colour online) Histogram showing the number of volumes binned according
to their local peak correlation coefficients. Here y+r = 3.5. Four volumes exist for R> 0.27,
as shown in the inset.

value. Since fully developed channel flow is homogeneous in the streamwise and
spanwise directions, Rij was finally obtained by ensemble averaging the correlation
coefficient in these two directions, and is denoted by Rij(yr; x, y, z).

The computation of the two-point correlation coefficient can be carried out in
the whole flow domain. Here Rij varies between −1 and 1, and an isosurface of
Rij = r, r ∈ [−1, 1], defines a set of geometrical volumes. For the channel flow data,
we calculated the number of the volumes, denoted by Nv(R), as a function of the
local peak correlation coefficient |Rij| = R, as shown in figure 3. We found that
most of the (unconnected) volumes occupy lower correlation coefficient, and when R
reaches R0 ≈ 0.07, only four volumes with higher correlation coefficient (R > 0.27)
exist. Thus, for a range of R (between 0.07 and 0.27), we say that the VVCS defines
a set of topologically invariant objects – VVCS structures. Topological invariance here
means that further raising R within a substantial range does not change the topology,
while the isosurfaces under the threshold, R0, are much more complex (with a large
Nv(R)). Note that the VVCS structure depends on the reference point location (yr)
and on the components (i and j). The volumes, obtained for velocity ui and vorticity
ωj and denoted as VVCSij, represent the ωj regions most correlated to ui at a specified
reference point, say point A.

Careful tests show that R0 = 0.07 is quite universal for all reference locations and
for different components of i and j. Hence, we use this empirical value to define
the VVCS. In contrast to prior techniques which first identify vortices, and carry out
a statistical calculation of the geometry, the VVCS method performs the correlation
calculation first. Note that the current VVCS schema can be extended to the two-
point correlation of a velocity and a gradient component (or a velocity difference),
if the vorticity field is not available. While the VVCS defined above involves several
components, the classification of which is an issue to be addressed in the future, we
here demonstrate, with application to DNS channel flow data, that it is a useful tool
to characterize CS.
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It is noteworthy that, by definition, Rij depends on the reference location yr.
Hence, the VVCS defines a family of coherent vortical structures associated with
velocity fluctuations with varying yr. A distinct feature of this family is a discovered
topological change in turbulent channel flows, from shear-dominated to central nearly
homogeneous regimes, consistent with ‘the multilayer picture’ proposed recently in a
mean-field theory of wall-bounded turbulence (She et al. 2010; Wu et al. 2012).

4. VVCS in a turbulent channel flow
The VVCS11 obtained using the definition introduced above is displayed in figure 4.

The VVCS11 at small yr (y+r < 110), as shown in figure 4(a and b), displays two pairs
of substructures, both elongated in the x direction. One pair moves with yr, while the
other pair remains attached to the wall. The length of the structures decreases with
increasing yr. For y+r >110, only one pair of blob-like structures close to yr remain, the
near-wall ones having disappeared. Thus, the VVCS11 undergoes a change from four
cigar-like (quadrupole) structures to two blob-like (dipole) structures at y+r ≈ 110. The
two topologies of the VVCS are interpreted as different types of vortical motions in
turbulence: (a) the first type is associated with the shearing turbulence (y+r <110), with
one pair of vortices attached to the wall while the other pair remains at comparable
height as yr; (b) the second type with a pair of vortical patches (for y+r > 110). The
topological change of the VVCS will be discussed further below.

We call the pair of VVCS11 attached to the wall the near-wall correlation structures
(NWCS), which have a long streamwise extent and small thickness (y+< 20). Owing
to the wider extent in z than in y, the vertical shear (∂w/∂y) dominates the spanwise
gradient (∂v/∂z) in ω1. Hence, the NWCS11 is attributed to the effects of the internal
shear layers (or vorticity sheets), which is shown to be a fundamental structure below
each quasi-streamwise vortex. The streak transient growth (STG) theory suggests that
a sheet of streamwise vorticity ω1 is formed and driven by the combined effect of the
streak shear (∂U/∂y) and the variation of w in the streamwise direction (Schoppa &
Hussain 2002). Considering its location and aspect ratio, the NWCS11 is believed to
be an average of the near-wall vortex which is the ω1 layer attached to the no-slip
wall.

Similarly, we call the upper structure the accompanying streamwise correlation
structure (ASCS), because this pair follows closely with yr: as yr increases, the pair
of ASCS are more inclined to the wall, very similar to the conceptual model of
counter-rotating streamwise vortices proposed by Townsend (1970). It is interesting
to note that, as yr approaches 0, the ASCS approaches a minimum distance from the
wall, which is denoted as ys,0= lim

yr→0
ys(yr). The definition of ys (structure location) and

yr (reference location) can be found in figure 5(a). For ASCS11, y+s,0 ≈ 17 coincides
with the location of the maximum turbulence production in channel flows (Kim, Kline
& Reynolds 1971). Recently, we have shown in compressible channel flow up to Mach
number 3 that ys,0 defines an important location, where both the mean velocity and
root-mean-square (r.m.s.) fluctuation profiles collapse for different Mach numbers
(Pei et al. 2013). The similarity of the mean velocity profiles in the VVCS-based
coordinates, normalized with ys,0, has been observed for several Mach number flows,
as shown in figure 6. This special VVCS structure at ys,0 is called the limiting VVCS
structure, whose characteristics are believed to be important for turbulence modelling.

Brooke & Hanratty (1993) in their DNS study of channel flow presented the
evidence for quasi-streamwise vortices for y+<40, while Christensen & Adrian (2001)
suggested that hairpin packets cannot reach more than 100 wall units. We have
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FIGURE 4. The isosurface of the two-point cross-correlation coefficient for R11 of an
incompressible channel flow for Reτ = 180. The red surface is defined by the positive
threshold of R11 = 0.07, and the blue surface is defined by the negative threshold of
R11 = −0.07. The slices in the y–z plane show distribution of R11 with the spacing of
1x+ = 200. The same threshold is used for identifying other VVCS unless mentioned
otherwise. Note a topological change from (a) and (b) (four cigar-like elongated structures)
to (c) (two blob-like structures): (a) y+r = 3.5; (b) y+r = 59; (c) y+r = 145.
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FIGURE 5. (a) Contour plot of R11 for y+r = 60 on the y–z plane at x+ = 0. The white
and black ‘+’ represent the positions of the minimum and maximum R11, respectively,
marking the centre for each volume. Its vertical coordinate denotes the wall distance ys of
a structure, and the spanwise distance between two centres measures the spanwise spacing
Dz. (b) Plot of R11 versus y+ at four spanwise locations, marked by vertical dashed lines
in (a). Here ‘+’ marks the location of the peaks in (a) (i.e. the centres of the VVCS). (c)
Contour plot of R11 for y+r =60 on the x–y plane at a typical spanwise location (z+=17.7).
The white dashed line represents the centreline of the VVCS11, defined by a series of
(local) peaks found at each fixed streamwise location (such as that shown in b), and the
length of a VVCS is defined by the centreline in the volume. The inclination angle θ is
defined as the tangential angle of the centreline. (d) Profiles of R11 along marked dashed
lines in (c). The crosses ‘+’ (shown in red online) mark the position of the most negative
correlation coefficients. Note that the thick dashed contours in (a) and (c) correspond to
the isosurfaces (volumes) drawn in figure 4.

a similar finding: a persistence of both NWCS and ASCS for y+r < 110 with a
disappearance of NWCS at y+r ∼ 110. Beyond the critical distance from wall (110),
only ASCS are present and velocity fluctuations at yr are correlated only to its
nearby blob-like ASCS11. A recent mean-field theory (She et al. 2010; Wu et al. 2012)
characterizes this central core region with a transition from the shear-dominated quasi-
balance between turbulence production and dissipation to a balance between turbulent
transport and dissipation, with a distinct scaling of the mixing length. Considering that
the upper bound of the log layer is y+ ∼ 110 (as shown in figure 1), we speculate
that the transition from quadrupole to dipole is associated with some qualitative
change in statistical properties such as the balance mechanism; this transition may
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FIGURE 6. The collapse of the rescaled mean velocity profiles using the length scale and
the mean velocity of the lowest VVCS in the channel flows at different Mach numbers,
M = 0.8, 2.0 and 3.0, respectively. (Reproduced with permission from Pei et al. (2013,
figure 9(c)).)

not be thorough at the current moderate Re, but a qualitative feature is discernible.
The energy budget in figure 2 supports this speculation with a transition at y+ ∼ 130.
Hence, the VVCS provides a characterization of the multi-layer statistical structure.

In order to obtain quantitative measures of the VVCS11, we try to quantify the
contours of R11 = R. For instance, the contours of R11 = 0.07 on a y–z plane is
shown in figure 5(a) for y+r = 60 (a typical location in the log region), which clearly
establishes four regions with alternate signs of correlations, revealing a quadrupole
structure. Detailed variation of R11 along the y direction at a few specific spanwise
locations are shown in figure 5(b): the upper structures are located around the
reference location at about y+s = 42 with a spanwise spacing of 40, while the lower
structures sit always around y+s = 3∼ 5 with a wider spanwise spacing of 60.

The ensemble-averaged λ2 structures (Jeong & Hussain 1995) suggested that
instantaneous near-wall vortices inherently overlap and stagger (Schoppa & Hussain
2002) rather than being side-by-side aligned, suggested by many. However, the
long-time ensemble average over many structures will produce side-by-side statistical
structures, which correspond to the present observations. The spanwise tilt reported
by Jeong et al. (1997) is not seen here as they distinguished +ω1 from −ω1. We
believe that a subensemble calculation involving only +ω1 (or −ω1) will capture the
tilt as well, which will be studied in the future.

One important quantitative feature of the VVCS is the inclination angle of
the ASCS, called θ , defined in the caption of figure 5. The results show that
θmax ≈ 13◦ ∼ 14◦, occurring at y+s ≈ 70 for ASCS11, separating a near-wall region
of increasing θ from a bulk flow region where θ decreases with ys, as shown
in figure 7. These angles agree well with the experimental observations from the
space-time correlation calculations by Rajagopalan & Antonia (1979), who claimed
that the inclination angle of the near-wall large organized structure is 4◦. The oblique
angles of ASCS11 and ASCS12 near the wall, θ ∼ 4◦, are similar to the angle between
the high-speed fluid fronts and the wall, 4.7◦, as measured by Kreplin & Eckelmann
(1979). This angle approaches a maximum of 14◦ when moving away from the wall.
Other observations by Adrian, Meinhart & Tomkins (2000) and Christensen & Adrian
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FIGURE 7. The inclination angle, θ , for ASCSij.

(2001), concerning packets of hairpin structures, seem to show similar angles: θ ∼ 12◦.
Recent experimental study in supersonic TBL suggests that the inclination angle of
the CS in the near-wall region (y+ 6 30) ranges from 5◦ to 15◦ (He et al. 2011),
similar to our observations.

It is noteworthy that the inclination angle of ASCS11 at y+s =20 is ∼4◦ (see figure 7),
smaller than 9◦ obtained from an ensemble study of λ2 structures (Jeong et al. 1997).
This is because the ASCS structures capture more near-wall quasi-streamwise vortices,
e.g. the legs of the hairpins (y+ 6 15), which have smaller inclination angles (Adrian
et al. 2000) in comparison with Jeong’s observation; the latter concerns the quasi-
streamwise vortices generated around y+ ∼ 20. The agreement between the present
VVCS study at moderate Re and previous measurements at high Re suggests that the
VVCS are independent of Re.

Figure 8 reports the profile of D+z which increases linearly with y+s over most parts
of the domain, with a good collapse as (D+z is defined in figure 5):

D+z = 0.31y+s + 30.3. (4.1)

Note that the linear profile extends up to y+s = 140, far beyond the range in previous
experimental studies of CS. This result suggests that coherence extends even to the
centre of channel with well-developed turbulence. It is noteworthy that linear increase
of the spanwise spacing is also observed for NWCS11, as shown in figure 9.

The length scale of ASCS11, shown in figure 10, decreases with increasing ys,
consistent with a more homogeneous and isotropic flow and with a transition from a
shear-dominated energy budget to a turbulent transport-dominated energy budget, as
discussed in § 2. Previous studies using Fourier transform or two-point autocorrelation
of the velocities, yield also a distribution of scales, but did not give the geometry
(e.g. shape) of the structure, especially near the central region (Krogstad & Antonia
1994; Flores & Jiménez 2006). The VVCS has an advantage in this regard. The
present study has provided a quantitative characterization of the vortical structures in
the region beyond the log layer. This success of defining the geometrical measures
(L+x ≈ 100) in the central region is due to the VVCS’s definition. Of course, for an
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FIGURE 8. The spanwise distance, Dz, of ASCS11. The dashed line is the linear fit of the
profiles.

 

 120

110

100

90

80

70

60

50

40

30

20
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

NWCS11

Linear fit

FIGURE 9. The spanwise distance, Dz, of NWCS11. The dashed line is the linear fit of
the profiles.

ideally homogeneous and isotropic turbulence in a periodic box, the VVCS measures
should be zero. Thus, the non-zero VVCS structure around the centreline of a
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FIGURE 10. The length, Lx, of ASCS11.

channel is non-trivial, and the connection between the shape of the blob and the
energy/momentum transfer would be an intriguing topic for future study.

Note that the study of VVCS11 has successfully established a prediction model of
the whole profile of the propagation speed in the compressible turbulent channel flow
(Pei et al. 2012). It is expected to yield in the future other quantitative models for the
statistical quantities.

The three-dimensional structure of VVCS13 is shown in figure 11. Here VVCS13 is
a long streamwise vortical structure parallel to the wall at the centreline with three
opposite-signed vortical structures around it. Klewicki & Falco (1996) identified the
ω3-eddies by measuring 〈ω3ω3〉 with two hot-wire probes separated in the spanwise
as well as the wall-normal directions, which show similar structures as ours.

Another interesting result is the topological variation of VVCS13 with yr, as shown
in figure 11. Note that the principal feature of the VVCS13 consists in one ASCS13
(upper part) and three NWCS13 (lower part) at small yr, which transform to a pair of
vertically aligned ASCS13 in the interval of y+r ≈ 40 ∼ 60. A further transformation
takes place at y+r > 100, with a single NWCS13 attached to the wall. This topological
change illustrates an important difference between the near-wall region CS and log-
layer CS; the latter is characterized by two cigar-like elongated structures shown in
figure 11(c). Although more extensive study is needed to confirm this observation in
the future, let us note a consistent experimental observation of Klewicki, Murray &
Falco (1994): one +ω3 eddy above the probe and another −ω3 one below the probe.
Note that the NWCS13 always exists, even for y+r > 100, indicating that u′1 over the
whole domain affects ∂u1/∂y near the wall.

The topological variation of the VVCS13 is also consistent with the measurements
of instantaneous structures. Zhou et al. (1999) asserted that the instantaneous quasi-
streamwise vortices, in terms of the legs of hairpins, mainly exist below y+ ∼ 100
(corresponding to the quadrupole structures of ASCS11) and the heads of the hairpins
(interpreted as the blob-like structures of ASCS13) may reach up over y+ ∼ 200.

Considering the two separated structures of −ω3 for larger yr, the streamwise
velocity u′1 is driven by both the accompanying vorticity structure right below yr as
well as the near-wall attached structure, as shown in figure 11(b, c). Far away from
the wall, the blob-like ASCS13 are also observed for y+r > 80, as seen in figure 11(c),
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FIGURE 11. Left: Isosurface of the two-point cross-correlation coefficient R13. The cross-
sections show distribution of the correlation coefficient on y–z plane with the spacing of
1x+= 200. Right: Schematics of the volume of VVCS13 corresponding to the cross-section
at x= 0, marked by the red dashed frame in the coefficient field: (a) y+r = 3.5; (b) y+r = 59;
(c) y+r = 120.

indicating that turbulence is statistically nearly homogeneous in the central region. In
particular, the vertically-aligned pair of blob-like structures have more vertical extent,
distinct from horizontally extended ASCS11.

5. Conclusion and remarks

The VVCS, using two-point cross-correlation coefficients of the velocity ui and
the vorticity ωj components, reveals two important features of CS: first, there exists
a family of structures, each influencing velocity fluctuations at any reference point
(denoted as yr); and, second, the geometry of different vorticity components exhibiting
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a rich set of behaviors. The features captured in the present study are qualitatively
and quantitatively consistent with those obtained in the previous CS studies, as
summarized in table 1. In addition, the variation of VVCS with yr provides a proof
of the existence of the central core layer (She et al. 2010; Wu et al. 2012). Hence,
a complete geometrical description of wall-bounded turbulence requires a series of
VVCS (with varying yr). Since different shears produce different sets of geometrical
structures, as displayed by VVCS, a multilayer structure is necessary for describing
the wall-bounded turbulence (She et al. 2010; Wu et al. 2012). Furthermore, VVCS
provides an effective method to quantify CS over the whole flow domain, which is
believed to be important in turbulence modelling.

A fundamental difference between prior CS calculation and the VVCS method is
that the former characterizes the geometry of an instantaneous full velocity gradient
field, but the latter quantifies the correlation field. The spatial distribution of the
two-point correlation coefficients can be obtained by moving pairs of hotwire probes,
in the absence of a full velocity field. In fact, the conventional definition of CS and
the VVCS are two sides of a coin: the former extracts the statistical measures from
the geometry of instantaneous fields, while the latter displays geometrical features
of turbulent structures directly from statistical correlation measures. VVCS captures
well quantitative measures such as width, length, spacing and inclination angle, and
reveals that statistics and geometry are intimately related. One might continue to
wonder whether VVCS capture ‘real’ structures; we suggest to leave this problem
but focus on a more intriguing question: how are the measured quantities relevant
to turbulence modelling? This last question is one of the most challenging in the
CS study. We hope to have moved one step further in this direction, as we have at
least inferred features of turbulent structures directly from the statistical measures:
two-point correlation coefficients. The VVCS identified in the present study describes
a region (volume) of the vorticity fluctuations most correlated to velocity fluctuations
at a (fixed) location (yr). Since this volume is defined in terms of the vorticity, we
also call it a ‘vortical’ structure.

In this paper, we have mainly established the validity of the concepts; the study of
Re effects will be reported elsewhere. One might question whether the simulation data
has a too low Re; we believe not. Low Re effects have been extensively investigated
in the past; Antonia & Kim (1994) reported that despite the growth of the vorticity,
dissipation and Reynolds stress with Re, the geometrical measures (diameter and the
location) of the quasi-streamwise vortices do not change. On the other hand, even at
a very moderate Re, the statistical multilayer structure of a fully developed turbulence
has completely formed, including the viscous sublayer, the buffer layer, the log bulk
layer and the central core region (She et al. 2010; Wu et al. 2012). Figure 1 shows
that 3/4 of the channel is occupied by turbulence characteristic of the log region and
central core region. Whether the results presented here are relevant to higher Re is
an open question. A positive answer is provided by quantitative agreement of the
measured VVCS characteristics of the structures (width, length and inclination angle)
with experimental measurements, and a firm answer can only be obtained by extending
the analysis to other higher Re data in the future.

Finally, the concept of the VVCS can be generalized to other variables different
from the velocity and vorticity. Examples include velocity-density correlation structure,
velocity-temperature correlation structure, velocity-pressure correlation structure in
compressible flows. Such studies should reveal new features and new interpretations
enriching the notion of turbulent structures.
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Coherent
structures

Quantitative measures of CS Corresponding features of VVCS

Streamwise

vortices and

large-scale

structures

The inclination angle starts with 4◦ , and approaches
its maxima of 14◦ with increasing wall distance
(Rajagopalan & Antonia 1979).

The inclination angle of ASCS11 and ASCS13

increase from 4◦ to 14◦ while y+s increases
from 0 to 70 (figure 7).

The ensemble-averaged CS are inclined 9◦ in the x–y
plane (Jeong et al. 1997).

The inclined angle ASCS11 at y+r = 40 is ∼9◦

(figure 7).

Streamwise extent of two x-displaced counter-rotating
adjacent coherent structures educed from near-wall
turbulence is 320 wall units (Jeong et al. 1997).

The length of ASCS11 decreases from 500
to 300 when for y+s increases from 0 to 90
(figure 10).

Low-speed streaks The averaged spanwise wavelength is ∼λ+z = 100 with
a most probable wavelength of λ+z = 80 (Asai et al.
2002).

The spanwise spacing of NWCS13 is D+z =
110 in the near-wall region (§ 4).

The width of the near-wall streaks is ∼100 wall units
(Kim et al. 1971).

The experimental results suggested that the lateral
spacing of streaks λ+ increases with the wall distance

(Smith & Metzler 1983).

The DNS data presented that the lateral spacing of
streaks λ+ increases with the wall distance (Kim et al.
1987).

Spanwise vorticity The internal shear layers are formed away from the
wall with slope ∼30◦ , generated by ejections and low-
speed streaks (Schoppa & Hussain 2002).

The VVCS associated with the spanwise
vorticity,ASCS13 , is inclined with 11.5◦

(figure 7).

The authors found a +ω3 eddy above the probe and
a −ω3 eddy below the probe (Klewicki et al. 1994).

For y+r > 80, ASCS13 presents two structures:
one with positive sign above and the other
with negative sign below the reference point

(figure 11).

The hairpin-packet
or vortex clusters

The inclination angle for the upstream envelope of the
composite vortical packet is 10◦ . The hairpin vortices
are shorter than the low-speed streaks (Zhou et al.
1999).

The inclination angles for ASCS11 and
ASCS13 are less than 14◦ (figure 7).

The most probable growth angle of vortex packets is
θ ∼ 12◦ (Adrian et al. 2000).

The packet of a series of vortices has an inclination
angle of 12–13◦ from the wall (Christensen & Adrian
2001).

The angle of the ramp is ∼18◦ by maximum
correlation of the velocity fluctuations (Brown &
Thomas 1977).

The maximum inclination angle is 14◦ for
ASCS11 and 11.5◦ for ASCS13 (figure 7).

The angle of the clusters of the hairpins is ∼20◦

(Head & Bandyopadhyay 1981).

Wall-normal
vorticity structure

The most probable angle of the large-scale motions was
found to be 18◦ by measuring the correlation of the
wall shear stress and the streamwise velocity (Brown
& Thomas 1977).

ASCS12 reaches its maxima of 14◦ at y+s =60
(figure 7).

The interface of the boundary layer is inclined at angle
20◦ observed in visualizations (Head & Bandyopadhyay
1981).

TABLE 1. Detailed comparison of the characteristics of CS between the conventional CS
study and the present VVCS.
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