SOME ESTIMATES FOR THE BERGMAN KERNEL AND METRIC IN TERMS OF LOGARITHMIC CAPACITY

ZBIGNIEW BEOCKI

Abstract

For a bounded domain Ω on the plane we show the inequality $c_{\Omega}(z)^{2} \leq 2 \pi K_{\Omega}(z), z \in \Omega$, where $c_{\Omega}(z)$ is the logarithmic capacity of the complement $\mathbb{C} \backslash \Omega$ with respect to z and K_{Ω} is the Bergman kernel. We thus improve a constant in an estimate due to T. Ohsawa but fall short of the inequality $c_{\Omega}(z)^{2} \leq \pi K_{\Omega}(z)$ conjectured by N. Suita. The main tool we use is a comparison, due to B. Berndtsson, of the kernels for the weighted complex Laplacian and the Green function. We also show a similar estimate for the Bergman metric and analogous results in several variables.

§1. Introduction

Let Ω be a bounded domain in \mathbb{C}. Suita $[S]$ conjectured that

$$
\begin{equation*}
c_{\Omega}(z)^{2} \leq \pi K_{\Omega}(z), \quad z \in \Omega, \tag{1.1}
\end{equation*}
$$

where

$$
K_{\Omega}(z)=\sup \left\{\frac{|f(z)|^{2}}{\int_{\Omega}|f|^{2}}: f \text { holomorphic in } \Omega, f \not \equiv 0\right\}
$$

is the Bergman kernel and $c_{\Omega}(z)$ the logarithmic capacity of the complement $\mathbb{C} \backslash \Omega$ with respect to z, that is

$$
c_{\Omega}(z)=\exp \lim _{\zeta \rightarrow z}\left(G_{\Omega}(\zeta, z)-\log |\zeta-z|\right),
$$

where G_{Ω} is the (negative) Green function. If true, this estimate would be optimal, since for simply connected Ω we have equality in (1.1). Ohsawa [O1], using the methods of the $\bar{\partial}$-equation, showed that

$$
\begin{equation*}
c_{\Omega}^{2} \leq 750 \pi K_{\Omega} . \tag{1.2}
\end{equation*}
$$

[^0]In fact, as noticed in [O1] and explored in [O2], the Suita conjecture seems to be closely related to the Ohsawa-Takegoshi theorem on extension of L^{2} holomorphic functions [OT]. In [O2] Ohsawa proved a general result which covered in particular the extension theorem, as well as the estimate (1.2) (with the constant $2^{8} \pi$). Berndtsson [B3], using the methods of his proof of the Ohsawa-Takegoshi theorem from [B2] improved the constant in the Ohsawa estimate to 6π. The author has also recently found the paper by B.-Y. Chen $[\mathrm{C}]$, where he shows the estimate with the constant $\alpha \pi$, where $\alpha=2(1+\sqrt{5}) e^{a+1-\sqrt{5}}$ and a is the solution of $a+\log a=0$ (then $\alpha \approx 3.3155$).

One of the goals of this note is to show an estimate (see (2.4) below) from which it follows in particular that

$$
\begin{equation*}
c_{\Omega}^{2} \leq 2 \pi K_{\Omega} \tag{1.3}
\end{equation*}
$$

We do not aim at merely improving the constant in the Ohsawa estimate but also to present a slightly modified approach to the problem, where we more or less precisely construct a holomorphic function in Ω with specified value at a given point and an appropriate bound for the L^{2} norm. We will use the kernel for the weighted complex Laplacian and the main tool will be a bound for this kernel in terms of the Green function due to Berndtsson [B1].

Our method yields also the following inequality for the Bergman metric

$$
\begin{equation*}
c_{\Omega}^{4} \leq \pi K_{\Omega} B_{\Omega} \tag{1.4}
\end{equation*}
$$

where

$$
B_{\Omega}=\frac{\partial^{2}}{\partial z \partial \bar{z}} \log K_{\Omega}
$$

The methods we use can be also applied in the same way for arbitrary Riemann surface which admits a Green function and estimates (1.3) and (1.4) are also valid. We also show that from one-dimensional case and the extension theorem of Ohsawa-Takegoshi [OT] one can easily deduce corresponding estimates in several complex variables.

§2. Proofs of one-dimensional estimates

Without loss of generality we may assume that Ω is smooth and bounded in \mathbb{C}, and $0 \in \Omega$. We will always denote $G=G_{\Omega}(\cdot, 0)$. We also use the notation (slightly different than the one from several variables)

$$
\partial \alpha=\frac{\partial \alpha}{\partial z}, \quad \bar{\partial} \alpha=\frac{\partial \alpha}{\partial \bar{z}}
$$

If φ is smooth in $\bar{\Omega}$ then the adjoint to $\bar{\partial}$ with respect to the scalar product in $L^{2}\left(\Omega, e^{-\varphi}\right)$ is given by

$$
\bar{\partial}^{*} \alpha=-e^{\varphi} \partial\left(e^{-\varphi} \alpha\right)=-\partial \alpha+\alpha \partial \varphi
$$

The complex Laplacian in $L^{2}\left(\Omega, e^{-\varphi}\right)$ is defined by

$$
\square \alpha=-\bar{\partial} \bar{\partial}^{*} \alpha=\partial \bar{\partial} \alpha-\partial \varphi \bar{\partial} \alpha-\alpha \partial \bar{\partial} \varphi
$$

The basic relation to the standard Laplacian is given by the following formula of Berndtsson [B1]:

$$
\begin{equation*}
\partial \bar{\partial}\left(|\alpha|^{2} e^{-\varphi}\right)=\left(2 \operatorname{Re}(\bar{\alpha} \square \alpha)+|\bar{\partial} \alpha|^{2}+\left|\bar{\partial}^{*} \alpha\right|^{2}+|\alpha|^{2} \partial \bar{\partial} \varphi\right) e^{-\varphi} \tag{2.1}
\end{equation*}
$$

If φ is subharmonic then in particular we can find $N \in C^{\infty}(\bar{\Omega} \backslash\{0\}) \cap$ $L^{1}(\Omega)$ such that

$$
\square N=\frac{\pi}{2} e^{\varphi(0)} \delta_{0}, \quad N=0 \quad \text { on } \quad \partial \Omega .
$$

(The constant $\pi / 2$ is chosen so that $N=G$ if $\varphi \equiv 0$.) The estimate of Berndtsson [B1] asserts that

$$
\begin{equation*}
|N|^{2} \leq e^{\varphi+\varphi(0)} G^{2} \tag{2.2}
\end{equation*}
$$

Remark. Berndtsson in [B1] shows using (2.1) that for any C^{2} smooth α and $\varepsilon>0$ one has

$$
\partial \bar{\partial}\left(|\alpha|^{2} e^{-\varphi}+\varepsilon\right)^{1 / 2} \geq-|\square \alpha| e^{-\varphi / 2}
$$

Now by approximation one can easily deduce that

$$
\partial \bar{\partial}\left(-|N| e^{-(\varphi+\varphi(0)) / 2}\right) \leq \frac{\pi}{2} \delta_{0}=\partial \bar{\partial} G
$$

from which (2.2) immediately follows. In a particular case when Ω is simply connected and φ harmonic we have

$$
N=e^{g+\overline{g(0)}} G
$$

where g is a holomorphic function in Ω such that $\operatorname{Re} g=\varphi / 2$. Therefore, in this case we have equality in (2.2).

As in [B3] we shall use the weight

$$
\begin{equation*}
\varphi:=2(\log |z|-G) . \tag{2.3}
\end{equation*}
$$

Note that φ is harmonic in Ω, smooth on $\bar{\Omega}$ and

$$
e^{-\varphi(0)}=c_{\Omega}(0)^{2} .
$$

For harmonic weights the operators $\bar{\partial}$ and its adjoint commute

$$
\square=-\bar{\partial} \bar{\partial}^{*}=-\bar{\partial}^{*} \bar{\partial} .
$$

Therefore

$$
\bar{\partial}\left(e^{-\varphi} \partial \bar{N}\right)=\bar{\partial}\left(-e^{-\varphi(0)} \bar{\partial}^{*} N\right)=\frac{\pi}{2} \delta_{0} .
$$

It follows that the functions

$$
f:=z e^{-\varphi} \partial \bar{N}, \quad g:=-z e^{-\varphi(0)} \bar{\partial}^{*} N
$$

are holomorphic in Ω, smooth on $\bar{\Omega}$, and $f(0)=g(0)=1 / 2$.
Using the fact that both the function $|N|^{2} e^{-\varphi}$ and its derivative vanish on $\partial \Omega$, integration by parts and (2.1) give

$$
\begin{aligned}
\int_{\Omega}|N|^{2} e^{-\varphi} \partial \bar{\partial}\left(|z|^{2} e^{-\varphi}\right) & =\int_{\Omega}|z|^{2}\left(|\bar{\partial} N|^{2}+\left|\bar{\partial}^{*} N\right|^{2}\right) e^{-2 \varphi} \\
& =\int_{\Omega}|f|^{2}+e^{2 \varphi(0)} \int_{\Omega}|g|^{2} e^{-2 \varphi}
\end{aligned}
$$

On the other hand, we have $|z|^{2} e^{-\varphi}=e^{2 G}$ and by (2.2)

$$
\int_{\Omega}|N|^{2} e^{-\varphi} \partial \bar{\partial}\left(|z|^{2} e^{-\varphi}\right) \leq e^{\varphi(0)} \int_{\Omega} G^{2} \partial \bar{\partial} e^{2 G} .
$$

We need the following simple lemma.
Lemma. For every summable $\gamma:(-\infty, 0) \rightarrow \mathbb{R}$ we have

$$
\int_{\Omega} \gamma \circ G|\nabla G|^{2}=2 \pi \int_{-\infty}^{0} \gamma(t) d t .
$$

Proof. Let $\chi:(-\infty, 0) \rightarrow \mathbb{R}$ be such that $\chi^{\prime}=\gamma$ and $\chi(-\infty)=0$.
Then

$$
\int_{\Omega} \gamma \circ G|\nabla G|^{2}=\int_{\Omega}\langle\nabla(\chi \circ G), \nabla G\rangle=\int_{\partial \Omega} \chi(0) \frac{\partial G}{\partial n}=2 \pi \chi(0) .
$$

It follows that

$$
\int_{\Omega} G^{2} \partial \bar{\partial} e^{2 G}=\int_{\Omega} G^{2} e^{2 G}|\nabla G|^{2}=\frac{\pi}{2}
$$

and

$$
\int_{\Omega}|f|^{2}+e^{2 \varphi(0)} \int_{\Omega}|g|^{2} e^{-2 \varphi} \leq \frac{\pi}{2} e^{\varphi(0)} .
$$

We conclude that

$$
\begin{equation*}
\frac{1}{K_{\Omega}(0)}+\frac{1}{c_{\Omega}(0)^{4} K_{\Omega}^{2 \varphi}(0)} \leq \frac{2 \pi}{c_{\Omega}(0)^{2}}, \tag{2.4}
\end{equation*}
$$

where φ is given by (2.3) and

$$
K_{\Omega}^{2 \varphi}(z)=\sup \left\{\frac{|f(z)|^{2}}{\int_{\Omega}|f|^{2} e^{-2 \varphi}}: f \text { holomorphic in } \Omega, f \not \equiv 0\right\}
$$

is the weighted Bergman kernel. In particular, we get (1.3).
To show (1.4) we first recall a well known formula for the Bergman metric

$$
B_{\Omega}(z)=\frac{1}{K_{\Omega}(z)} \sup \left\{\frac{\left|f^{\prime}(z)\right|^{2}}{\int_{\Omega}|f|^{2}}: f \text { holomorphic in } \Omega, f(z)=0, f \not \equiv 0\right\} .
$$

We now proceed the same way as before, we only choose the weight

$$
\varphi:=4(\log |z|-G),
$$

so that

$$
e^{-\varphi(0)}=c_{\Omega}(0)^{4},
$$

and the functions

$$
f:=z^{2} e^{-\varphi} \partial \bar{N}, \quad g:=-z^{2} e^{-\varphi(0)} \bar{\partial}^{*} N,
$$

so that they are holomorphic in $\Omega, f(0)=g(0)=0$, and $f^{\prime}(0)=g^{\prime}(0)=1 / 2$. We will get

$$
\int_{\Omega}|f|^{2}+e^{2 \varphi(0)} \int_{\Omega}|g|^{2} e^{-2 \varphi} \leq e^{\varphi(0)} \int_{\Omega} G^{2} \partial \bar{\partial} e^{4 G}=\frac{\pi}{4} e^{\varphi(0)}
$$

and (1.4) follows.

Remark. Similarly as for the Suita conjecture, it would be interesting to improve the constant in (1.4) to $\pi / 2$ - it would then be optimal. It is also interesting whether a reverse to the Ohsawa estimate

$$
K_{\Omega} \leq C c_{\Omega}^{2}
$$

holds for some constant C. This would have far reaching consequences: for example it would give another potential theoretic characterization of Bergman exhaustive domains (compare [Z2]). It would also provide a quantitative version of the following well known result (see e.g. [Co]): an (unbounded) domain Ω in \mathbb{C} contains a non-vanishing square-integrable holomorphic function if and only if $\mathbb{C} \backslash \Omega$ is not polar. Another consequence would be an estimate

$$
c_{\Omega}^{2} \leq C B_{\Omega},
$$

and, in higher dimensions, an estimate from below of the Bergman metric in terms of the Azukawa metric (see below).

§3. Several dimensional analogues

Let now Ω be a bounded domain in \mathbb{C}^{n}. The pluricomplex Green function is defined by
$G_{\Omega}(\cdot, w)=\sup \left\{u \in \operatorname{PSH}(\Omega): u<0, \varlimsup_{z \rightarrow w}(u(\zeta)-\log |z-w|)<\infty\right\}, w \in \Omega$.
The multidimensional logarithmic capacity can be defined as

$$
c_{\Omega}(w)=\exp \varlimsup_{z \rightarrow w}\left(G_{\Omega}(z, w)-\log |z-w|\right), \quad w \in \mathbb{C}^{n} .
$$

The Azukawa metric can be regarded as a directional logarithmic capacity

$$
A_{\Omega}(w ; X)=\exp \varlimsup_{\lambda \rightarrow 0}\left(G_{\Omega}(w+\lambda X, w)-\log |\lambda|\right), \quad w \in \Omega, X \in \mathbb{C}^{n} .
$$

For basic properties of A_{Ω} we refer to [Z1]. Recall also that the Bergman metric is defined as

$$
B_{\Omega}(z ; X)=\left.\frac{\partial^{2}}{\partial \lambda \partial \bar{\lambda}} \log K_{\Omega}(z+\lambda X)\right|_{\lambda=0}, \quad z \in \Omega, X \in \mathbb{C}^{n}
$$

We are now in position to formulate multidimensional analogues of the previous estimates.

Theorem. For a bounded pseudoconvex domain Ω in \mathbb{C}^{n} we have $c_{\Omega}(w)^{2} \leq C K_{\Omega}(w), \quad A_{\Omega}(w ; X)^{4} \leq C^{\prime} K_{\Omega}(w) B_{\Omega}(w ; X), \quad w \in \Omega, X \in \mathbb{C}^{n}$, where C, C^{\prime} depend only on n and the diameter of Ω.

Proof. Since all the considered functions behave well under approximation, without loss of generality we may assume that Ω is sufficiently regular, even smooth, then $G_{\Omega}(\cdot, w)$ is continuous on $\bar{\Omega} \backslash\{w\}$. By [Z1] A_{Ω} is continuous (as a function on $\Omega \times \mathbb{C}^{n}$), $\overline{\lim }$ in the definition of A_{Ω} can be replaced with lim, and

$$
c_{\Omega}(w)=A_{\Omega}(w ; X)
$$

for some $X \in \mathbb{C}^{n}$. Let

$$
D:=\{\lambda \in \mathbb{C}: w+\lambda X \in \Omega\} .
$$

Then

$$
G_{\Omega}(w+\lambda X, w) \leq G_{D}(\lambda, 0), \quad \lambda \in D,
$$

and thus

$$
A_{\Omega}(w ; X) \leq c_{D}(0)
$$

On the other hand, by the Ohsawa-Takegoshi extension theorem [OT] (see also (B2]),

$$
K_{D}(\lambda) \leq C K_{\Omega}(w+\lambda X), \quad \lambda \in D,
$$

and the first inequality follows from the one-dimensional Ohsawa estimate.
The proof of the second inequality is similar. We have

$$
\begin{aligned}
& B_{\Omega}(w ; X) \\
& \quad=\frac{1}{K_{\Omega}(w)} \sup \left\{\frac{\left|D_{X} f(w)\right|^{2}}{\int_{\Omega}|f|^{2}}: f \text { holomorphic in } \Omega, f(w)=0, f \not \equiv 0\right\},
\end{aligned}
$$

where

$$
D_{X} f(w)=\sum_{j=1}^{n} X_{j} \frac{\partial f}{\partial z_{j}}(w) .
$$

Therefore, by the Ohsawa-Takegoshi theorem,

$$
K_{D}(\lambda) B_{D}(\lambda) \leq C K_{\Omega}(w+\lambda X) B_{\Omega}(w+\lambda X ; X), \quad \lambda \in D,
$$

and it is enough to use (1.4).

References

[B1] B. Berndtsson, Weighted estimates for $\bar{\partial}$ in domains in \mathbb{C}, Duke Math. J., 66 (1992), 239-255.
[B2] B. Berndtsson, The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman, Ann. Inst. Fourier, 46 (1996), 1083-1094.
[B3] B. Berndtsson, Personal communication, Beijing, August 2004.
[C] B.-Y. Chen, A remark on an extension theorem of Ohsawa, Chin. Ann. Math., Ser. A, 24 (2003), 129-134 (in Chinese).
[Co] J. B. Conway, Functions of One Complex Variable. II, Springer-Verlag, 1995.
[O1] T. Ohsawa, Addendum to "On the Bergman kernel of hyperconvex domains", Nagoya Math. J., 137 (1995), 145-148.
[O2] T. Ohsawa, On the extension of L^{2} holomorphic functions V - effects of generalization, Nagoya Math. J., 161 (2001), 1-21.
[OT] T. Ohsawa and K. Takegoshi, On the extension of L^{2} holomorphic functions, Math. Z., 195 (1987), 197-204.
[S] N. Suita, Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., 46 (1972), 212-217.
[Z1] W. Zwonek, Regularity properties for the Azukawa metric, J. Math. Soc. Japan, 52 (2000), 899-914.
[Z2] W. Zwonek, Wiener's type criterion for Bergman exhaustiveness, Bull. Polish Acad. Sci. Math., 50 (2002), 297-311.

Jagiellonian University
Institute of Mathematics
Reymonta 4
30-059 Kraków
Poland
Zbigniew.Blocki@im.uj.edu.pl

[^0]: Received May 17, 2005.
 Revised October 31, 2005.
 2000 Mathematics Subject Classification: 30C40, 31A35.
 Partially supported by KBN Grant \#2 P03A 03726.

