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Abstract. For a fixed integer e and prime p we construct the p-adic order bounded
group valuations for a given abelian group G. These valuations give Hopf orders inside
the group ring KG where K is an extension of �p with ramification index e. The orders
are given explicitly when G is a p-group of order p or p2. An example is given when G
is not abelian.
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Let p > 0 be prime. Let R be a discrete valuation ring with uniformizing parameter
π and with quotient field K, an extension of �p. Let e be the absolute ramification
index of K/�p. Any finite group G gives rise to group rings RG and KG – these have
the structures of an R-Hopf algebra and a K-Hopf algebra respectively. Clearly we
have RG ⊂ KG.

One of the objectives in local Galois module theory is to find finitely generated
projective R-Hopf algebras H such that H ⊗R K ∼= KG. Such Hopf algebras are called
Hopf orders in KG (more precisely, R-Hopf orders in KG). There are several reasons
why we might want to find such Hopf orders. For example, in the case where G is cyclic
order n a classification of R-Hopf orders would yield a classification of group schemes
over R with generic fibre µn. Additionally, if L is an extension of K with ring of integers
S, and L/K is Galois with group G then S has a normal integral basis over R if and
only if the associated order A = {α ∈ KG | α (S) ⊆ S} is an R-Hopf order in KG [3].

While much work has been done in constructing Hopf orders in the case where G
is cyclic of order pn for n ≤ 3 – see, for example, [4], [6], [10], and [11] – for many other
groups the orders are unknown. In 1976 Larson [8] showed a correspondence between
certain Hopf orders in KG and functions G → �≥0 ∪ {∞} satisfying certain properties,
where �≥0 is the set of nonnegative integers. These functions are called p-adic order
bounded group valuations, and their corresponding orders are called Larson orders.

In general Larson orders do not exhaust all of the Hopf orders, yet they remain
worthy of study for two reasons. First, they are the only class of Hopf orders constructed
in the case where G is nonabelian. Second, they can be useful in constructing other
orders – as an example of this the classification of orders in KG, where G is the cyclic
group of order p2 was started by Greither in [6] using extensions of Larson orders
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270 ALAN KOCH AND AUDREY MALAGON

of cyclic groups of order p and the work was completed by Underwood in [10] by
considering the duals of these “Greither orders.”

In this work we shall focus on the case where G is an abelian p-group. It should be
pointed out that in the abelian case there are other classes of orders which have been
constructed – in addition to the Greither orders above Childs et al. have constructed
triangular Hopf orders [5] and Hopf orders via formal groups [4]. We construct the
p-adic order bounded group valuations on G, providing explicit calculations in the
special cases where G is cyclic and where G is an elementary abelian group. We will
also give the corresponding Larson order. While the applications are to local Galois
module theory, the calculations are entirely group-theoretic: the approach starts with
the construction of a sequence of nested subgroups of G satisfying certain relations.
The results in the elementary abelian case will be needed in an upcoming work by the
first author [7] and hopefully will be of use in the classification of all Hopf orders in
KG for G an elementary abelian p-group.

The first section introduces the concept of a p-adic order bounded group valuation.
Following this we investigate the case where G is a cyclic group of order p, providing a
very easy (and well-known) classification of the corresponding Hopf orders. Then
we turn our attention to arbitrary finite abelian groups. This is the point where
we introduce the nested sequence of subgroups that a p-adic order bounded group
valuation determines, and how we may start with certain nested sequences to construct
valuations. Next, we focus on the two special cases mentioned above. Finally, we discuss
the difficulties that arise when we try to extend these ideas to the nonabelian case, yet
we provide an example in the case that p2 divides the order of G and |G| < p3.

Throughout this paper p will denote a fixed prime, K is an extension of �p with
ramification index e, and we will set e′ = e/ (p − 1)� . Furthermore, v will denote the
unique extension of the p-adic valuation on �p with the property that v (e) = p. While
it is common to express the operation in an abelian group additively, we will always use
multiplicative notation since it creates less confusion when working with group rings.

The authors would like to thank the referee for his useful comments and
suggestions in the preparation of the paper.

1. Background. We start with the definition of a p-adic order bounded group
valuation. As in the introduction, we use the symbol �≥0 to denote the nonnegative
integers.

DEFINITION 1.1. Let G be a finite group with identity 1. A p-adic order bounded
group valuation is a function

ξ : G → �≥0 ∪ {∞}
such that, for all g, h ∈ G:

GV1. ξ (1) = ∞ and ξ (g) < ∞ if g �= 1
GV2. ξ (gh) ≥ min{ξ (g), ξ (h)}
GV3. ξ ([g, h]) ≥ ξ (g) + ξ (h) where [g, h] is the commutator of g and h
GV4. ξ (g) = 0 if |g| is not a power of p, and

ξ (g) ≤ e
φ(|g|)

for |g| = ps, s ≥ 1
GV5. ξ (gp) ≥ pξ (g).
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p-ADIC ORDER BOUNDED GROUP VALUATIONS 271

Notice that this definition depends not only on p but on the field K – more
precisely, the valuation v. It would be more precise to define the above as a “p-adic
group valuation with order bounded by e/φ (|g|)”, however we will refer to such a
function simply as a p-adic order bounded group valuation on G, or a “p-adic obgv”
for short.

The motivation for studying p-adic obgv’s is as follows. Let R be the ring of
integers of K. Let π be a uniformizing parameter of R. We say an R-Hopf algebra H
is a Hopf order in KG if H is finitely generated and projective as an R-module and
H ⊗R K ∼= KG. Clearly RG is a simple example of a Hopf order, and in fact every
Hopf order in KG contains RG [1, 5.2].

Given a p-adic order bounded group valuation ξ , it is easy to construct a Hopf
order. Indeed, define Hξ to be the R-algebra generated by {(g − 1)π−ξ (g)}, where g runs
through all of the nontrivial elements of G. Then Hξ has a Hopf algebra structure
given by the restriction of the Hopf algebra structure maps on KG, i.e.

�
(
(g − 1)π−ξ (g)) = 1

πξ (g)
(�(g) − �(1))

= 1
πξ (g)

(g ⊗ g − 1 ⊗ 1)

ε
(
(g − 1)π−ξ (g)) = 1

πξ (g)
(ε(g) − ε(1)) = 1

πξ (g)
(1 − 1) = 0

λ
(
(g − 1)π−ξ (g)) = 1

πξ (g)
(λ (g) − λ(1)) = 1

πξ (g)
(g−1 − 1).

The reader can verify that �(Hξ ) ⊂ Hξ ⊗ Hξ and that λ(Hξ ) ⊂ Hξ and hence Hξ is an
R-Hopf algebra. By construction Hξ ⊂ KG, and since for all g ∈ G we have

g = ((g − 1)π−ξ (g))πξ (g) + 1

and thus RG ⊂ Hξ . It can be shown [1, 18.1] that Hξ is a finitely generated R-module.
The “finitely generated” part is a nontrivial argument: note that in what is presented
above the only p-adic obgv property we use is that ξ (1) = ∞. Thus Hξ is a Hopf order
in KG. These Hopf orders were originally constructed by R. Larson in [8] and are
called Larson orders.

EXAMPLE 1.2. For any finite group G we can define a map ξ : G → �≥0 ∪ {∞} by

ξ (g) =
{∞ g = 1

0 g �= 1
.

It is clear that this map is a p-adic order bounded group valuation. We shall call
it the trivial valuation. In this case the corresponding Hopf algebra is generated by
{(g − 1) | g ∈ G} and we can see that Hξ = RG. In the case that p � |G| this is the only
p-adic obgv.

Of course, if G is abelian then the commutator is trivial, hence any map ξ : G →
�≥0 ∪ {∞} satisfies GV3. Furthermore, if G is an elementary abelian p-group, then
gp = 1 for all g and hence GV5 is also satisfied.

2. p-adic OBGV’s on Cp. Let Cp denote the cyclic group of order p. Recall we are
viewing this cyclic group multiplicatively; hence 1 will be used to denote the identity
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element. We will see it is easy to find all p-adic obgv’s on this group. While the results
here would also follow from the work in the next section, the simplicity of the G = Cp

case makes it a useful first example. This case is stated as an example in [2, p. 3] and is
certainly well-known. We start with a necessary condition.

PROPOSITION 2.1. Let ξ be a p-adic obgv on Cp. Then ξ (g) = ξ (h) for all nontrivial
g, h ∈ Cp.

Proof. Let g, h be nontrivial elements in Cp. Then both g and h are generators of
Cp, hence there exist integers m, n ∈ � such that gm = h and hn = g. By GV2 we have

ξ (h) = ξ (gm) = ξ (g · g · · · · · g) ≥ min{ξ (g), ξ (g), . . . , ξ (g)} = ξ (g)

as well as

ξ (g) = ξ (hn) = ξ (h · h · · · · · h) ≥ min{ξ (h), ξ (h), . . . , ξ (h)} = ξ (h)

and hence ξ (g) = ξ (h). �
For any p-adic obgv ξ we let ξ (g) denote the range of ξ and |ξ (g)| will be the number

of elements in ξ (g). In other words, ξ (g) is the number of distinct values achieved by
ξ on G. The elements of ξ (g) will frequently be referred to as “values.” The above
proposition shows that a p-adic obgv on Cp has at most one finite value, and so we get:

COROLLARY 2.2. Let ξ be a p-adic obgv on Cp. Then |ξ (Cp)| = 2.

Now let G be any group, and let H ≤ G. Then any p-adic obgv on G restricts to a
p-adic obgv on H. Thus the above result can give us some insight into p-adic obgv’s
on other groups.

COROLLARY 2.3. Let G be a group, and let ξ be a p-adic obgv on G. Let H be a
subgroup of order p. Then |ξ (h)| = 2. In particular, all of the nontrivial elements of H
have the same valuation.

The classification of p-adic obgv’s on Cp reduces to a study of the possible values
of ξ (g), g �= 1. By GV4 we must have ξ (g) ≤ e′. Pick 0 ≤ v ≤ e′ and set ξ (g) = v. Then
GV4 is clearly satisfied, as is GV1. For h �= 1 note that ξ (h) = v and we have

∞ = ξ (1 · 1) ≥ min{ξ (1), ξ (1)}
v = ξ (g) = ξ (g · 1) ≥ min{v,∞} = min{ξ (g), ξ (∞)}

ξ (gh) ≥ min{v, ξ (h)} = min{v, v} = v

and hence GV2 is satisfied and ξ is a p-adic order bounded group valuation. We
summarize.

THEOREM 2.4. There are e′ + 1 p-adic order bounded group valuations on Cp. Each
p-adic obgv is uniquely determined by its value on a generator of Cp. In particular, ξi(g) = i
for 0 ≤ i ≤ e′, where g �= 1.

Following the construction above, ξi determines the Hopf order

R
[

g − 1
π i

]
⊂ KCp

where Cp = 〈g〉.
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REMARK 2.5. The construction above gives that the Hopf order is generated as an
R-algebra by {(gj − 1)π−i | 0 ≤ j ≤ p − 1}, however for j > 1 these generators can be
expressed in terms of (g − 1)π i.

REMARK 2.6. These Hopf orders are well-known since a classification of all rank
p Hopf algebras is given in [9], albeit in a different form. The Tate-Oort orders are
typically parameterized by elements b which appear in a factorization ap−1b = wp for
some a ∈ R where wp is a certain element of R. Given such an element b

Hb = R
[

g − 1
πv(a)

]

and hence corresponds to the p-adic obgv ξ (g) = a for g �= 1.

3. p-adic OBGV’s on abelian groups. Now we address the main objective of this
paper: to determine all p-adic obgv’s on any abelian group. Let G be abelian. If p does
not divide |g| then by GV4 clearly the only p-adic obgv is the trivial one. If p does
divide |g| we can write G ∼= G′ × G′′, where G′ is a p-group and p does not divide the
order of G′′.

The following lemma is easy to check.

LEMMA 3.1. Let G = G′ × G′′, where p | |G′| and p � |G′′|. Then the p-adic obgv’s on
G are in one-to-one correspondence with the p-adic obgv’s on G′. Specifically, if ξ is a
p-adic obgv on G then ξ |G′×{1} is a p-adic obgv on G′; and conversely any ξ ′ on G′ extends
to a p-adic obgv on G via

ξ (g′, g′′) =
{

ξ ′(g′) g′′ = 1.

0 g′′ �= 1

Thus it suffices only to consider the case where G is an abelian p-group.

LEMMA 3.2. Let ξ be a p-adic obgv. Let v1 > v2 > · · · > vr be the finite values of ξ,

and let v0 = ∞. For 1 ≤ k ≤ r let

Gk = {g ∈ G | ξ (g) ≥ vk}.
Then for all 1 < k ≤ r we have the following:

1. Gk ≤ G and Gr = G
2. Gk−1 ≤ Gk

3. For k < r we have Gk/Gk−1 is elementary, and if vr �= 0 then Gr/Gr−1 is also
elementary.

4. Given Gk let xk be the base-p log of the exponent of Gk. Then

vk ≤ e′/pxk−1.

5. Given Gk with k �= r if vr = 0, let lk be the largest positive integer such that
Gk/Gk−lk is elementary. Then pvk ≤ vk−lk .

Proof. Note that since it is clear by construction that Gk−1 ⊂ Gk we know 2
quickly follows from 1. Let g, h ∈ Gk. Then ξ (gh) ≥ min{ξ (g), ξ (h)} ≥ vk and so gh ∈
Gk. Furthermore, if |g| = t we have

ξ (g−1) = ξ (gt−1) ≥ min{ξ (g), ξ (g), . . . , ξ (g)} = ξ (g) = vk

and so g−1 ∈ Gk thus Gk ≤ G.
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To prove 3, let g ∈ Gk, k > 0. Notice that by GV5 it follows that ξ (gp) ≥ pξ (g) ≥
pvk. Since vk > 0 this means ξ (gp) > vk and hence gp ∈ Gk−1. Thus all nontrivial
elements in Gk/Gk−1 have order p hence this factor group is elementary.

Finally, since Gk/Gk−lk is elementary we have ξ (Gk) ⊆ ξ (Gk−lk ) and the inequality
in 4 (resp. 5) follows by GV4 (resp.GV5). �

Let G0 = {1}. Then the values of ξ determine a series of subgroups

{1} = G0 ≤ G1 ≤ G2 ≤ · · · ≤ Gr = G

and since |g| = pn we quickly obtain

COROLLARY 3.3. The set of values ξ (g) has at most n + 1 elements.

REMARK 3.4. Note that we did not use the fact G is abelian in the proof above,
hence the two lemmas and the corollary above are also true in the nonabelian case. Of
course a nonabelian G does not necessarily factor as G′ × G′′, however for any group
|g| = pn we have |ξ (g)| ≤ n + 1.

Now we will try to reverse the process. In other words, given an elementary abelian
group G with series

{1} = G0 ≤ G1 ≤ G2 ≤ · · · ≤ Gr = G

of subgroups such that Gk/Gk−1 is p-elementary abelian for each k, we would like
to choose a (strictly) decreasing sequence of non-negative integers v1 > · · · > vr such
that it gives rise to a p-adic obgv. We will attempt to do so as follows. Let lk and xk

be as defined in the statement of the lemma. Put x0 = 0, v0 = ∞ and let v1, v2, . . . , vr

be a set of positive integers satisfying vk−1 > vk, v1 ≤ e′/px1−1 and pvk ≤ vk−lk for
all k = 1, 2, . . . , r. For each k ≥ 1, let G′

k = Gk \ Gk−1. Clearly the G′
k’s are pairwise

disjoint and their union is all of G. Set ξ (1) = ∞, and for gk ∈ G′
k we let ξ (gk) = vk.

By construction we see that ξ satisfies GV1 and GV5. To show GV4 holds we need to
have vk ≤ e′/pxk−1 for all k – this clearly holds for k = 1. Now suppose vt ≤ e′/pxt−1 is
true for all t < k. Since xk−lk ≥ xk − 1 we have

vk ≤ 1
p
vk−lk ≤ 1

p
e′

pxk−lk −1 ≤ 1
p

e′

pxk−2
= e′

pxk−1

and hence ξ satisfies GV4 as well. We now claim that ξ satisfies GV2. Let g ∈ G′
k,

h ∈ G′
l, and assume k ≤ l. If k = l then ξ (g) = ξ (h) = vk and since gh ∈ Gk we have

ξ (gh) ≥ vk = min{ξ (g), ξ (h)}. On the other hand, if k < l then there is an integer i such
that k + 1 ≤ i ≤ l with the property that gh ∈ G′

i, hence

vk > vk+1 ≥ vi = ξ (gh) ≥ vl = ξ (h) = min{ξ (g), ξ (h)}
thus GV2 is satisfied. Therefore, ξ is a p-adic obgv on G.

Given an elementary abelian group G and a series

{1} = G0 ≤ G1 ≤ G2 ≤ · · · ≤ Gr = G

of subgroups with the property that each Gk/Gk−1 is p-elementary abelian, pick a
decreasing sequence of nonnegative integers v1 > · · · > vr satisfying v1 ≤ e′/px1−1 and
pvk ≤ vk−lk . The series, together with the chosen values, form what we shall call a valued
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series for G. The above establishes that a valued series gives rise to a p-adic obgv. We
summarize.

THEOREM 3.5. The p-adic obgv’s on an abelian group G are in one-to-one
correspondence with its valued series.

4. Two special cases. In practice, it is usually quite simple to construct all of the
valued series for a given abelian group. We will illustrate this in the cases where G is an
elementary abelian group and where G is cyclic.

Suppose G is an elementary abelian group. Then xk = 1. Furthermore, Gk/{1} is
elementary and thus lk = k. Thus

COROLLARY 4.1. Let G be an elementary abelian group, and let

{1} = G0 ≤ G1 ≤ G2 ≤ · · · ≤ Gr = G

be a series for G. Then any decreasing sequence e′ ≥ v1 > · · · > vr of nonnegative integers
determines a p-adic obgv on G.

EXAMPLE 4.2. Let us find all p-adic obgv’s on G = Cp × Cp. Let ξ be a nontrivial
p-adic obgv on G. Then the series for G that gives ξ has the form

1 ≤ Cp × Cp

or

1 ≤ 〈g〉 ≤ Cp × Cp

where g ∈ G is not the identity. The two types above correspond to when ξ (g) has either
one or two finite values. Let us first consider the case where there is only one finite
value, say v. Then for any h ∈ G not the identity we have ξv(h) = v. There are e′ + 1
different choices for v and hence e′ + 1 different p-adic obgv’s of this form. If we write
Cp × Cp = 〈g1〉 × 〈g2〉, then the corresponding Hopf order is

Hξv
= R

[
g1 − 1

πv
,

g2 − 1
πv

]
.

Suppose that ξ (g) has two finite values, say v1 > v2. Let g ∈ Cp × Cp, g �= (1, 1) .

Then let

ξv1,v2,g(h) =
⎧⎨
⎩

∞ h = (1, 1)
v1 h ∈ 〈g〉 , h �= (1, 1)
v2 h /∈ 〈g〉

.

This is the p-adic obgv corresponding to the Larson order

Hv1,v2,g = R
[

g − 1
πv2

,
g′ − 1
πv1

]
,

where g′ is any element not in 〈g〉. The resulting Larson order does not depend on
the choice of g′. Notice that we can keep the same descending sequence of values but
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change the subgroup and obtain a new Larson order – if g, h are nontrivial elements
of Cp × Cp such that 〈g〉 �= 〈h〉 then

Hv1,v2,g = R
[

g − 1
πv2

,
h − 1
πv1

]
and Hv1,v2,h = R

[
h − 1
πv2

,
g − 1
πv1

]

which are clearly different since v1 > v2. A quick counting argument shows that there
are p + 1 different subgroups of order p in G and thus each descending sequence
determines p + 1 different Hopf orders. In summary, the total number of p-adic obgv’s
on Cp × Cp (and hence the total number of Larson orders in K(Cp × Cp)) is

e′ + (p + 1)
e′(e′ + 1)

2
+ 2.

This number is the sum of the numbers in the two cases plus the trivial p-adic obgv.

To generalize, for any r ≤ n let f (n, r) be the number of subgroups of Cn
p of order

pr. It can be shown that

f (n, r) =
r−1∏
i=0

pn − pi

pr − pi
.

Then we have

COROLLARY 4.3. The number of Larson orders in KCn
p, n ≥ 2 is

e′ + 2 +
n∑

r=2

⎛
⎝(

e′ + 1
r

) ⎛
⎝ ∑

0<n1<···<nr−1<n

f (n, nr−1) f (nr−1, nr−2) · · · f (n2, n1)

⎞
⎠

⎞
⎠ .

Proof. We count by breaking up the collection of Larson orders in KCn
p by the

number r of nontrivial subgroups, in a given valued series. The first e′ + 2 in the above
expression corresponds to the trivial valuation, i.e. the case r = 0, together with the
case r = 1, in which case there are e′ + 1 choices for the valuation of the nontrivial
elements of Cn

p . The binomial coefficient appears since there are
(e′+1

r

)
different choices

for the values e′ ≥ v1 > v2 > · · · > vr ≥ 0. For any given r we consider all sequences
0 < n1 < · · · < nr−1 < n – the corresponding series of subgroups will have order pni for
all i. The product f (n, nr−1)f (nr−1, nr−2) · · · f (n2, n1) is readily seen to count the number
of different series of subgroups for a given collection of {ni}. �

Note that in the case n = 2 we get

e′ + 2 +
(

e′ + 1
2

) ∑
0<n1<2

f (n, n1)

= e′ + 2 +
(

e′ + 1
2

)
f (2, 1) = e′ + 2 + e′(e′ + 1)

2
(p + 1),

which agrees with the formula in Example 4.2.
We now turn our attention to the case where G is cyclic. If we write G = 〈g〉 = Cpn ,

then each proper subgroup is of the form 〈gpt〉 for some t. Let us first consider the case
where 0 is not a value of ξ. In any valued series {1} ≤ G0 ≤ · · · ≤ Gr = G we must have
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Gk/Gk−1
∼= Cp for all k in order to have each factor group be elementary. Thus the

series must be of the form

1 ≤ 〈
gpn−1 〉 ≤ · · · ≤ 〈gp〉 ≤ 〈g〉 = G.

Furthermore, by this construction it is clear that xk = k and lk = 1. Thus the condition
pvk ≤ vk−lk is simply pvk ≤ vk−1.

On the other hand, if 0 is a value of ξ then the series is of the form

{1} ≤ 〈
gpn−1 〉 ≤ · · · ≤ 〈

gpt+1 〉 ≤ 〈
gpt 〉 ≤ 〈g〉 = G

for some 1 ≤ t < n. We have the same bound on pvk as above.

EXAMPLE 4.4. Let us explicitly find the p-adic obgv’s on Cp2 . Let g be a generator
of Cp2 . Then the possible series are

{1} ≤ 〈g〉 = G

{1} ≤ 〈gp〉 ≤ 〈g〉 = G.

The first series arises only in the case where the corresponding p-adic obgv is trivial. For
the second series, pick, if possible, integers v1, v2 not both zero with 0 ≤ pv2 ≤ v1 ≤ e′.
This will give a valued series.

5. Generalizations. As mentioned in the introduction, one of the reasons we
study Larson orders is because they are the only tool at this point in the study of Hopf
orders in KG when G is not abelian. In this section we will show how the results above
can be used to give us a classification of Larson orders for a certain class of nonabelian
groups.

We start with a few properties of p-adic obgv’s. These properties are well-known,
see, e.g., [1, 17.2–17.4]. First, note that given a p-adic obgv ξ on G, for all g ∈ G we
have ξ (g−1) = ξ (g): if g has order m then g−1 = gm−1 and so

ξ (g−1) = ξ (gm) ≥ min{ξ (g), ξ (g), . . . , ξ (g)} ≥ ξ (g).

Replacing g by g−1 gives that ξ (g−1) = ξ (g).
Next, note that by GV3 we have, for all g, h ∈ G,

ξ (ghg−1h−1) ≥ ξ (g) + ξ (h) ≥ ξ (h)

and furthermore

ξ (ghg−1) = ξ (ghg−1h−1h) ≥ min{ξ (ghg−1h−1), ξ (h)} = ξ (h)

and thus ξ (ghg−1) ≥ ξ (h). Replacing g with g−1 gives ξ (g−1hg) ≥ ξ (h). If we then replace
h with ghg−1 we get

ξ (g−1ghg−1g) = ξ (h) ≥ ξ (ghg−1)

and thus ξ is constant on conjugacy classes. As a result of this, if we let

G+ = {g ∈ G | ξ (g) > 0}
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then G+ is a normal subgroup of G, necessarily a p-group. Notice that from this we see
that there are no nontrivial p-adic obgv’s on a nonabelian simple group. Additionally
for n ≥ 4 the symmetric group Sn has no normal p-group and hence no p-adic
obgv’s.

PROPOSITION 5.1. Let G be a group with a normal abelian Sylow p-subgroup H. Let
ξ be a p-adic obgv on H. Then ξ extends uniquely to a p-adic obgv on G.

Proof. Extend ξ to a map ξ̄ : G → �≥0 ∪ ∞ by ξ̄ (g) = 0 for all g /∈ H. This clearly
satisfies GV4 and GV5. Since 1 ∈ H we have ξ̄ (1) = ξ (1) = ∞, furthermore ξ̄ (g) =
0 < ∞ for g /∈ H and ξ̄ (h) < ∞ when h ∈ H, h �= 1 since ξ is a p-adic obgv, thus GV1
holds. Clearly ξ̄ (gh) ≥ min{ξ̄ (g), ξ̄ (h)} when g, h ∈ H (since ξ is a p-adic obgv) as well
as when g /∈ H (since the right-hand side of the inequality is zero) and hence GV2
holds as well. For GV3, if g, h ∈ H there is nothing to check – the same is true if
g, h /∈ H since ξ̄ (g) + ξ̄ (h) = 0. We examine the case h ∈ H, g /∈ H. Since H � G we
have ghg−1 ∈ H, hence

ξ̄ ([g, h]) = ξ ((ghg−1)h−1)

≥ ξ (ghg−1) + ξ (h−1)

≥ ξ̄ (g) + ξ̄ (h),

the last inequality being true since ξ̄ (g) = 0 and ξ (h−1) = ξ (h). The case concerning
ξ̄ ([h, g]) for h ∈ H, g /∈ H is similar. Thus ξ̄ is a p-adic obgv on G.

Uniqueness follows since each g /∈ H has order not a power of p, hence by GV4
any p-adic obgv maps all of the elements of G \ H to zero. �

REMARK 5.2. The construction above extends a ξ on any normal abelian p-
subgroup H of G to a p-adic obgv on all of G. However, if H is not a Sylow p-
subgroup then the extension may not be unique. This can be readily seen by considering
examples such as G = Cp2 = 〈g〉, H = 〈gp〉, and assume e′ ≥ p. Pick integers v1, v2

such that 0 < pv2 ≤ v1 ≤ e′. The p-adic obgv ξ on H given by ξ (gp) = v1 extends to
ξ̄ (g) = 0 above. Of course, it also extends to a p-adic obgv ξ̃ on G given by ξ̃ (gp) = v1,

ξ̃ (g) = v2.

Thus, if there are normal abelian p-subgroups we can construct a class of p-adic
obgv’s. In the case where G has a unique abelian p-Sylow subgroup P we can use the
above proposition to find all p-adic obgv’s. We illustrate this technique with a final
example.

EXAMPLE 5.3. Let |G| = p2t, t < p. Then Sylow theory tells us that G has a unique
Sylow p-subgroup P, which is necessarily abelian since |P| = p2. Thus P ∼= Cp2 or
P ∼= Cp × Cp. Examples 4.4 and 4.2 have found all the p-adic obgv’s on P in both of
these cases, hence we have found all p-adic obgv’s on G.

REMARK 5.4. In general p-adic obgv’s are trickier when the Sylow p-subgroup is
not normal. The problem is that GV3 is not always satisfied if we try to extend a p-adic
obgv from the Sylow subgroup to the group. Take, for example, the case where p = 2
and G = S3. Let P be the Sylow 2-subgroup generated by (12). Let ξ be the p-adic obgv
on 〈(12)〉 given by ξ ((12)) = 1.Then ξ̄ is trivial on 3-cycles. But then

ξ ((12)(123)(12)(132)) = ξ (123) = 0 � 1 = ξ (123) + ξ (12).
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