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Summary

Identification of cis-regulatory motifs has been difficult due to the short and variable length of the
sequences that bind transcription factors. Using both sequence and microarray expression data, we
present a method for identifying cis-regulatory motifs that uses regression trees to refine results from
simple linear regression of expression levels on motif counts. Analysis of expression patterns from
two separate datasets for genes showing significant differences in expression between the sexes in
Drosophila melanogaster resulted in a model that identified known binding sites upstream of genes
that are differentially expressed in the germline. We obtained a strong result for motif TCGATA,
part of the larger, characterized binding site of dGATAb protein. We also identified an
uncharacterized motif that is positively associated with sex-biased expression and was assembled
from smaller motifs grouped by our model. A regression tree model provides a grouping of
independent variables into multiple linear models, an advantage over a single multivariate model.
In our case, this grouping of motifs suggests binding sites for cooperating factors in sex-specific
expression, as well as a way of combining smaller motifs into larger binding sites.

1. Introduction

The search for DNA regulatory motifs has been the
focus of much recent research, with various methods
being employed in motif discovery. Detection of tran-
scriptional regulatory motifs in the upstream region
of genes has presented a real challenge because
transcription factor binding regions tend to be short,
discontinuous, and quite variable. Saccharomyces
cerevisiae has frequently been the organism of choice
for development of methods that identify transcrip-
tion factor binding sites since many binding motifs
have already been experimentally characterized in this
organism. Nevertheless, most methods of motif de-
tection have found limited success, often resulting in
a high rate of false positives (Werner, 2002). In higher
eukaryotes, the structure of regulatory motifs is more
complex and less well defined, making the development
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of new methods and verification of results even more
difficult.

Before access to the sequence of multiple whole
genomes, many motif-detection methods involved
statistical approaches to the creation of weight
matrices. A weight matrix is derived from a number of
short sequences known to be bound by a given tran-
scription factor, and then the matrix is used to search
a sequence or a set of sequences for a match to that
motif. Examples include Matlnd and Matlnspector
(Quandt et al., 1995) and FastM (Klingenhoff ef al.,
1999). Searches that use weight matrices have a very
high rate of false positives, but results have improved
when they are used in combination with another
method such as phylogenetic comparison (Guha
Thakurta et al., 2002).

Alternative methods for motif detection involve di-
rect comparison of regulatory regions, either between
genes thought to be co-regulated or between ortholo-
gous genes from closely related species. The Gibbs
sampling method, which utilizes a modified Expec-
tation Maximization (EM) algorithm (Lawrence et al.,
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1993), has been used in the AlignACE program to
return over-represented motifs in co-regulated gene
clusters and has found some success (Hughes ez al.,
2000; Manson-McGuire et al., 2000). Advanced
application of Gibbs sampling methods in this con-
text continues to hold promise, particularly in micro-
organisms (Liu et al., 2001). With the increasing
availability of whole genome sequences of closely re-
lated species, the phylogenetic comparison of regu-
latory regions has increased. Comparisons between
human and mouse regulatory sequence showed that
phylogenetic footprinting can reduce the sequence
space to be searched for transcription factor binding
sites (Wasserman et al., 2000). Rajewsky et al. (2002)
recovered approximately 75 % of the regulatory sites
compiled for E. coli using interspecies comparisons.
Issues still remain as to how best to choose the species
for comparison and how many are required to produce
meaningful results. A recent study using proteo-
bacteria takes a formal look at these issues (McCue
et al., 2002).

A somewhat different strategy for detection of
transcription factor binding motifs searches for clus-
ters of motifs in upstream sequences (Berman et al.,
2002; Halfon et al., 2002; Markstein et al., 2002;
Rebeiz et al., 2002). These clustering methods require
prior knowledge of characterized sites and are targeted
more towards finding genes regulated by factors bind-
ing to the clusters rather than identifying the clusters
themselves. Another combinatorial approach for find-
ing synergistic motifs by Pilpel et al. (2001) also re-
quires knowledge of known regulatory motifs. An
underlying assumption in several of the above analy-
ses is that binding motifs are redundant in the pro-
moter region, as in the Drosophila yolk protein genes
(Piano et al., 1999) and the Drosophila eve stripe 2
gene (Berman et al., 2002).

Capitalizing on this redundancy property, a recent
study by Bussemaker et a/. (2001) fitted a linear model
of the logarithm of the expression ratio under two
different experimental conditions to the counts of
oligomers upstream of a set of genes. By first de-
termining statistically significant motifs with a single-
motif model of the data, a model describing the
additive effects of multiple motifs can then be created.
We incorporate this method by identifying the stat-
istically significant motifs through the single-motif
model, but instead of building a single additive model
for a given experiment, we use the significant motifs
to build regression trees. Our regression trees allow
for multiple linear models to describe the data based
on the prevalence of certain motifs and have the
potential to uncover hierarchical or non-additive
relationships between motifs.

Regression trees were originally used to generate
predictive models of regression estimates. They were
developed to deal with continuous-class learning
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problems (Quinlan, 1992; Wang & Witten, 1997), and
combine a classical decision tree with linear regression
estimations at the leaves of the tree. The prediction
accuracy of regression trees is competitive with linear
regression methods (Breiman et al., 1984), but the real
advantage of the regression tree method lies in the
model representation. The decision nodes and their
position in the tree indicate which nodes together
significantly affect the predicted values. We show that
they can be used to identify prospective regulatory
motifs bound by transcription factors, as well as
combinations of motifs that aggregate to form larger
motifs.

Other biological studies have also capitalized on
the classificatory property of regression trees. For
example, a recent investigation into the nesting habi-
tats of smallmouth bass used regression trees to give a
hierarchical view of habitat conditions that affect the
smallmouth bass’s choice of nesting site (Rejwan et al.,
1999). Similarly, they have been used to identify the
most predictive variables for patients who undergo
angiography (Pilote et al., 1996). In this study, re-
gression trees identified age as the most important
variable. However, in younger patients availability of
the angiography procedure was the next most predic-
tive factor, while age was still the second most pre-
dictive factor in older patients. This illustrates the
ability of regression trees to separate, or group to-
gether, cooperating factors under given circumstances.

In our model, we are using counts of binding motifs
as the decision points in the tree. The decision nodes
in the tree look at the counts of motifs of length & (k-
mers) taken from the upstream region of a given gene.
The change in estimated regression values between the
leaf nodes indicates whether a combination of motifs
is associated with the regulation of genes. As with the
aforementioned studies, we are not using the re-
gression tree model in its classical sense as a predictor
of response, but instead to identify the predictive
variables, namely regulatory motifs.

In this study, we searched for transcription factor
binding motifs of genes that show sex-biased ex-
pression. Our previous study on sex, genotype and age
(Jin et al., 2001) (subsequently referred to as the aging
dataset) showed evidence for between one-third and
two-thirds of the Drosophila transcriptome having
sex-biased expression. Comparisons with tudor
mutant animals that lack ovaries and testes have since
demonstrated that most of the differences in gene
expression between reproductively mature adult
male and female flies is due to germline expression
(Arbeitman et al., 2002 ; Parisi et al., 2003). To obtain
a larger number of these differentially expressed genes
for our analysis, we supplemented the aging dataset
(Jin et al., 2001) with data from another experiment
that tested the effects of nicotine on gene expression in
flies of both sexes (G. Passador-Gurgel and G.G., in
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preparation: this dataset is subsequently referred to as
the nicotine dataset). Although two different clone sets
were used to generate the data, a high concordance in
the predicted motifs was observed, and this indepen-
dent replication confirms that regression tree methods
may be a valuable new approach to characterization
of regulatory motifs.

2. Materials and methods
(1) Gene selection from microarray experiments

The genes used for analysis of sex-biased expression
are from two datasets: the aging dataset (Jin et al.,
2001) and the nicotine dataset (G. Passador-Gurgel
and G.G., in preparation). The aging array exper-
iment used a split-plot experimental design and tested
for sex as a fixed effect using a mixed-models approach
(Wolfinger et al., 2001). Array set-up and subsequent
analysis for the nicotine experiment was done simi-
larly, with 48 two-sample arrays involving three wild-
type genotypes, two sexes and treatment (control
versus drug) as fixed effects. The set of genes for the
nicotine experiment was 4856 genes from the Droso-
phila Gene Collection (DGC), which were indepen-
dently identified and amplified from those of the
White collection used in the aging experiment. From
each experiment, genes with a P value of <0-0001
resulting from the test for sex effects were chosen
for use in this analysis. The lists of genes from both
datasets and their associated expression difference
are available at http://statgen.ncsu.edu/ggibson/
SupplInfo/SexSpecificList.txt

(i) DNA sequence motifs

All possible motifs of length 6 were generated. In-
itially, we extracted counts of all possible 7-mers of
the 250 differentially expressed genes from the aging
dataset (Jin et al., 2001). Since five of the eight most
significant motifs from the linear regression contained
the sequence TCGATA, all subsequent analyses were
conducted on 6-mer motifs. Motifs were combined
with their reverse complement and the motif having
the higher lexicographic order was chosen to rep-
resent the pair. No allowance for variability in the
motif sequence was made. For each gene selected, the
1000 base-pair (bp) sequence upstream of the trans-
lation start site (ATG) was extracted from the Version
2 annotation of the Drosophila genome sequence at
NCBI (March 2002, http://www.ncbi.nlm.nih.gov).
This sequence includes variable lengths of 5 un-
transcribed and untranslated leader sequences, which
are as yet typically uncharacterized in Drosophila.
Although enhancers in the fly genome can be several
kilobases away from the translation start site, the
1000 bp upstream sequence was chosen for two
reasons. First, testis-specific promoters in Drosophila
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are usually close to the start site (Arnosti, 2003). Sec-
ondly, as more sequence is added to the analysis, the
signal-to-noise ratio of regulatory to non-functional
motifs probably drops, and with a large number of
genes we surmised that we would be most likely to
find common motifs in the upstream 1 kb region. This
approach is not intended to identify all the enhancer
elements that regulate sex-specific gene expression in
Drosophila, but rather to focus on those located
proximal to the transcription start site.

For each gene, all motifs were counted in the up-
stream 1 kb sequence (allowing overlap, namely 995
motif counts per gene). All work to extract sequence,
generate motifs and count motifs was done via Perl
scripts.

(ii1) Single-motif linear regression

The first stage of analysis uses a simple linear
regression model to fit single-motif counts and ex-
pression data. The model is defined as:

Y:ﬂo +61X

where Y is the base 2 logarithm of the expression dif-
ference between females and males. A positive Y in-
dicates greater expression in females; a negative Y
indicates greater expression in males. X'is the count of a
given motif. All genes chosen as significantly differen-
tially expressed between the sexes (in either direction)
were fitted to the model. 3, is the relative increase or
decrease in expression difference caused by each ad-
ditional copy of the motifin the upstream region of the
gene, and f3, is the grand mean expression difference.

Both the nicotine and the aging datasets were run
through simple linear regression. To account for the
large number of motifs (2080), application of the
Bonferroni correction set the experimentwise signifi-
cance cutoff from regression of expression level on
motif count for a=0:05 at P=2:4x 1073 Permu-
tation tests provided independent verification of the
appropriateness of this cutoff, but for some analyses
we included simply the top 20 motifs as these included
a few motifs that were close to the cutoff in both
datasets.

(iv) Regression and decision trees

Single-motif linear regression was used primarily as a
data reduction technique. Motifs with a P value below
the Bonferroni-corrected values were considered most
likely to affect sex-biased expression and were there-
fore used in training and validation of the regression
and decision tree models.

Regression and decision tree models were built and
trained with publicly available Weka software (Witten
& Frank, 1999) available at http://www.cs.waikato.
ac.nz/ml/weka/. Data from the nicotine experiment
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Table 1. The most significant sex-specific motifs from single-motif

regression for both the nicotine and aging datasets

Nicotine dataset Aging dataset
Rank  Motif P value sign®  Motif P value sign?
1 TCGATA 1.4e-19 + TCGATA 1.2e-12 +
2 CGATAG 2.5e-11 + ATCGAT 0-0000013  +
3 ATCGAT 3.7e-10 + ATATCG 0-0000024  +
4 GGTCAC  0.000000050  + ACGACG  0:000065 +
5 ATATCG 0-00000019 + AGTCGC  0-000092 +
6 ACACTG 0-00000024 + CGCAAC  0:00014 +
7 CACGTG  0-00000033 + CGATAG 0-00016 +
8 TAAAAA  0-0000012 + CCAAAG  0:00021 —
9 GGCGCA  0-0000022 + GCAACG  0-00021 +
10 CCGTTA 0-0000030 + ACACTG 0-00038 +
11 GTCACA  0-0000032 + CACGCA  0-00058 +
12 AAGAAG 00000032 + GCACGC 0-00063 +
13 CGCACG  0-0000057 + CCTTTC 0-00066 —
14 AGACTC  0-0000073 — AGTGTG 0-00075 +
15 CGGTAA  0-0000161 + AGGGCC  0-00099 -
16 TTAAAA 0-000016 + GTGTGA 00013 +
17 AAAATA  0:000019 + ATCGAC  0-0015 +
18 AGTGTG 0-000022 + ATTCGC 0-0015 +
19 GCGCAC  0-000022 + AGAAGA 0-0016 +
20 GCACGC 0-000028 + ACTACG  0-0020 +

Motifs in common between the two sets are indicated in bold.

¢ Positive coefficients indicate that the motif is associated with increased tran-
scription in females. Negative coefficients indicate that the motif is associated with

increased transcription in males.

were used to train the models and data from the aging
experiment were used for model validation. Specifi-
cally, the regression trees were built with the M5
software using a — O r option. The decision trees were
built with the J48 software using the — R option to
reduce error pruning and the — M option to vary the
minimum number of instances per leaf.
The models were built from motifs as follows:

Model 1: Motifs that were above Bonferroni-
corrected significance cutoff from single-motif re-
gression and were seen >4 % of the time within 20 bp
of TCGATA/TATCGA (8 total).

Model 2: Motifs seen >5% of time within 20 bp of
TCGATA/TATCGA (25 total).

Model 3: The most significant motifs from single-
motif regression at or below Bonferroni-corrected
cutoff (20 total).

Model 4: Combination of 20 most significant motifs
from single-motif regression and 20 motifs most often
seen within 20 bp of TCGATA/TATCGA.

3. Results
(1) Identification of female-specific regulatory motifs

The first stage of the analysis searched for motifs
that may contribute to male- or female-specific gene
expression in adult flies using linear regression of
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expression difference against motif count in the pro-
moters of differentially expressed genes (Bussemaker
et al., 2001). Table 1 shows the top 20 motifs after
linear regression with the two different datasets. The
significance threshold for regression of motif count on
expression difference after Bonferroni correction is
approximately 2-4 x 1075, Three motifs exceed this
threshold in the aging dataset, and 19 in the larger
nicotine dataset. Several results stand out. Most no-
ticeably, the two experiments converge on a similar
set of motifs, with the three most significant motifs
found in the aging dataset also being found within the
five most significant motifs resulting from analysis of
the nicotine dataset. Three other motifs are also
common between each dataset’s list of 20 most sig-
nificant motifs. Additionally, the motif TCGATA/
TATCGA is at a much higher significance level than
any other motif in both datasets, with a P value of
10—, Lastly, almost all the motifs are associated with
female-biased gene expression, and no case of a male-
specific motif was replicated in both datasets. Rep-
resentative linear regression profiles shown in Fig. 1
also highlight the point that none of the motifs is
either necessary or sufficient for sex-specific gene
expression: some genes with multiple copies of
TCGATA are actually male-biased, and many
female-specific genes lack the motif within 1 kb of
the translation start site.
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Fig. 1. Linear regression of expression difference on motif counts. Each diamond represents the normalized difference
between gene expression in adult females and males on a log 2 scale, given the number of copies of the indicated motif
(A: TCGATA; B: GTCACACTG) in the nicotine dataset. Only genes that are significantly different between the sexes
are included. On this scale, 1 represents a two-fold difference, 2 a four-fold difference, and so on. Dashed lines shows

linear regression fit. Female-biased genes are towards the top.

The most significant motif, TCGATA, is part of a
known binding site for the dGATAb (SERPENT)
protein, which enhances transcription of yolk proteins
in Drosophila females (Lossky & Wensink, 1995).
The entire binding site has been characterized as
GCTATCGATAGC, which highlights the fact that
TCGATA and its reverse complement TATCGA
have a 4 bp overlap. The combined 8-mer is palin-
dromic, a characteristic that is known to increase the
affinity of binding sites for transcription factors but
usually associated with head-to-tail dimerization of
individual binding sites (Drouin et al., 1992). Obser-
vations of all TCGATA/TATCGA pairs in the up-
stream regions of the genes being analysed show that
this 4 bp overlap occurs in 29 % of these incidences. A
chi-square contrast of the incidence of the palindrome
in female-biased versus male-biased and non-sex-
biased genes provides compelling evidence (P <0-001)
that this palindrome is strongly associated with sex-
biased expression, and, specifically, that it is female-
specific. A concern is that the prevalence of this
overlap artificially inflates the motif counts for
TCGATA and enhances its significance in the single
motif regression results. However, the overlap of the
motif with itself into an 8 bp palindrome creates a
more likely binding site, so counting the 6-mer twice
simply aids in this discovery.

The high significance of TCGATA could also be a
result of its pairing with itself as a composite binding
site for a transcription factor pair or for multiple fin-
gers of a zinc-finger binding protein such as SER-
PENT. Since over half of the DNA-binding proteins
in Drosophila are zinc-finger proteins (Adams et al.,
2000), we assumed that close proximity of binding
motifs would often allow for the possible binding of

https://doi.org/10.1017/50016672304006780 Published online by Cambridge University Press

multiple-fingers, which prompted us to count all the
non-overlapping motifs within 20 bp on either side
of TCGATA/TATCGA. TCGATA was found within
20 bp of itself at a greater frequency than any other
motif (Table 2), supporting the idea that it often
forms a composite binding site.

(1) Use of regression trees to identify
interacting motifs

The most significant motifs from the single-motif re-
gression can be used to create an additive model that
accounts for the combinatorial nature of cooperative
and competitive binding of transcription factors.
However, in a single additive model, each included
motif is assumed to affect every gene’s predicted
expression level. This is not always the case. Different
combinations of motifs may have dramatically dif-
ferent effects on transcription. Consider a combi-
nation of three binding motifs that cause increased
binding affinity, and thus an increase in expression
levels. If one of those binding motifs is replaced by
a different motif, transcriptional repression could
result. Regression trees have the potential to account
for these types of occurrences. Nodes at the top of
the tree indicate motifs that most correlate with
expression. As a path is traversed through the tree,
a combination of motifs affecting expression is dis-
cerned. The values at the leaves of the tree show how
the path increases or decreases the expression differ-
ence. In our case, an increase in expression difference
between paths indicates that transcription tends to be
enhanced in females. We are using the regression tree
as a model for finding important motifs identified
by nodes in the tree. A more conventional use of
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Table 2. Motifs within 20 base-pairs of

TATCGA/TCGATA
Rank Motif Number Percentage
1 TATCGA 202 18-05
2 ATCGAT 155 13-85
3 CGATAG 126 11-26
4 CGATAA 120 10-72
5 AATCGA 110 9-83
6 AAAAAT 94 8-40
7 TAAAAA 88 7-86
8 ATATCG 85 7-60
9 ATCGAA 83 7-42
10 AAAATA 82 7-33
11 AAAATT 80 7-15
12 ATTTTA 74 6:61
13 AAATAT 70 6-26
14 ATAAAA 69 617
15 AAAAAA 68 6-08
16 ATAAAT 68 6-08
17 AAAACA 68 6-08
18 CCGATA 68 6-08
19 GATAAC 66 5-90
20 CATCGA 65 5-81

“ Motifs in this range may form composite binding sites
with TCGATA/TATCGA, which was seen a total of 1119
times.

regression trees is as a predictive tool for estimating
the values at the leaves of the tree. We instead use the
predicted values simply as a test for the direction and
amount of change in expression.

As inputs into the regression tree software we used
the single motifs identified by simple regression, sup-
plemented by those that occur at elevated frequency
within 20 bp of TCGATA. Various combinations of
these motifs and corresponding data from the nicotine
dataset were used in the creation of four multiple re-
gression model trees using Weka software (Witten &
Frank, 1999; see Section 2 for details). The resulting
trees were compared via their correlation coefficients,
which measure the statistical correlation between the
actual and predicted expression level values. These
values are shown in Table 3. Models 3 and 4 show
the highest correlation coefficients and were rerun
with the aging dataset used as a test dataset. The test
dataset correlation coefficients were 0-49 for Model 3
and 0-48 for Model 4. These values are higher than
those obtained for the training dataset, and thus show
strong support for the model.

Models 3 and 4 resulted in very similar regression
trees and are shown in Fig. 2. Model 4 had one ad-
ditional node (GATAAC), a motif found within 20 bp
of TCGATA but not found to be significant by simple
linear regression. We decided not to use Model 4 as
our final regression tree model for two reasons: (i) the
motif GATAAC was added because of its proximity
to TCGATA in upstream sequences but the node
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containing the motif was not closely connected to
TCGATA in the tree and (ii) GATAAC fell out of the
model when we removed AGTGTG from the input
dataset because of its 5 bp overlap with ACACTG.
Since AGTGTG fits in the overlap with other genes in
its path in the tree, we decided to keep that motif in
the model and use the resulting tree from the set of
significant motifs from single-motif regression.

Traversal of the regression tree should identify
binding site combinations that may enhance or re-
press expression significantly in one sex or the other.
On the left side of the Model 3 regression tree, we see
that with 0 or 1 copy of TCGATA and 0 copies of
GGTCAC, we have an estimated expression differ-
ence of —0-346, indicating that genes lacking these
motifs in their upstream regions are more likely dif-
ferentially expressed in males. We then use —0-346 as
a comparison point. If we have 0 or I TCGATA, 1
GGTCAC and 0 copies of AGTGTG, the estimated
expression difference is —0-320 which is not much
different from —0-346. This indicates that the ad-
dition of a GGTCAC by itself does not change
expression. However, if we find the combination of
0 or 1 TCGATA, 1 or more GGTCACs, 1 or more
AGTGTGs and 0 ACACTGs, the expression differ-
ence changes to —0-176, which is a considerable
change. This motif combination may cause the gene
to be less differentially expressed between the sexes.
With the same combination of TCGATA, GGTCAC,
AGTGTG, but addition of 1 or more copies of AC-
ACTG, the expression difference becomes positive.
This can mean either that ACACTG activates female-
specific transcription, or that this motif could be a
repressor-binding site for male-specific transcription.
Since our analysis has not included genes that are
not differentially expressed between the sexes, a
change of this magnitude in comparison with our
other expression differences most likely indicates
up-regulation in females.

From the left traversal of the tree, a motif combi-
nation of interest is GGTCAC, AGTGTG and
ACACTG. This motif trio combines to form the 10-
mer GGTCACACTG that contains the palindromic
sub-motif GTCACACTG. Of the 238 GGTCAC-
ACACTG pairs found in the upstream regions of sex-
biased genes, 84 (or 35%) were found in this overlap.
Another chi-square test of motif presence associated
with female-biased, male-biased or non-sex-biased
genes resulted in strong evidence (P value <0-001) that
this larger motif is associated with female-specific ex-
pression. Detection of a larger, overlapping binding
site such as this is a direct observation from regression
trees. A single multiple-regression model does not
provide any type of grouping of motifs that may work
together. Regression trees separate independent vari-
ables that, together, change the dependent variable
and create multiple groupings to explain the data.
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Table 3. Regression model tree results

Training set
No. of leaf nodes correlation

Model Motifs in model in resulting tree? coefficient

1 Most significant from SLR and 3 0-3107
seen >4% of time within 20 bp

2 Seen > 5% of time within 20 bp 4 0-2904

3 20 most significant from SLR 6 0-3469

4 20 most significant from SLR 7 0-3613

plus 20 seen most within 20 bp

“ The number of leaf nodes in the resulting tree gives an indication of tree
complexity.

A. Model 3
0.1 @ >1

>=1

0-43

B. Model 4

>=1

0-43

0-168
-0-392

Fig. 2. Regression trees highlighting combinations of motifs that predict sex-biased gene expression in D. melanogaster.
See text for details of Models 3 and 4.

This is a distinct advantage over multiple-regression reproductive tissues are known to contribute to much

methods. of the overall expression difference between adult
As further verification of our method, we obtained male and female flies (Parisi et al., 2003), and ran it
data from a microarray experiment specifically tar-  through our analysis. We used genes that showed a

geting Drosophila ovaries and testes, since these four-fold or higher difference in expression between
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>0

245

-1-27

-1-99

184

<=1

>=2

—0-15

Fig. 3. Regression tree highlighting combinations of motifs that predict sex-biased gene expression in D. melanogaster
from the ovaries/testes cDNA microarray dataset. See text for details.

the sexes in order to reduce the dataset to approxi-
mately 1600 genes. The most significant motif re-
sulting from the single-motif linear regression was
TCGATA/TATCGA, and the six most significant
motifs from the ovaries/testes dataset were found in
the seven most significant motifs resulting from
regression on the nicotine dataset. Again, using the
motifs with significance below the Bonferroni-
corrected cut-off, we built a regression tree. The re-
sulting tree (Fig. 3) was strikingly similar in structure
to the regression tree built from the nicotine dataset.
The top node in the ovaries/testes regression tree is
the motif CGATAG, which has a 5 bp overlap with
TCGATA, and TCGATA is the next node in the tree
on the female-biased side. This further supports our
theory of overlapping TCGATA motifs enhancing
female expression. Additionally, expression becomes
more female from left to right among the leaves. This
tree further validates our regression tree model ob-
tained from the nicotine dataset. The differences
relative to the adult fly trees could either be due to
sampling variance, or reflect the additional contri-
bution of somatic tissues to sex-specific gene ex-
pression in whole flies.

(iii) Use of decision trees to predict sex-specific
gene expression

With the identification of motifs affecting sex-specific
expression by the regression tree, we wanted to de-
termine whether we could use these same motifs to
classify a gene as being differentially expressed in
either sex from the motifs found in its upstream
region. To do this, we created a decision tree, which,
based on motif counts, classified a gene as signifi-
cantly expressed more in males, females or neither.
The structure of a decision tree is very similar to that
of the regression tree except that the classification of
‘male’, ‘female’ or ‘neither’ is found at the leaves of
the tree instead of a predicted expression difference.
Again, various combinations of the significant motifs
from the single-motif regression model were used as
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input. Data from all differentially expressed genes and
a subset of genes not differentially expressed in males
or females from the nicotine cDNA microarray ex-
periment were used to construct the model tree, again
using Weka software (Witten & Frank, 1999). Since
the motifs used as input into the decision tree model
were determined from analysis of differentially ex-
pressed genes between males and females, the expec-
tation for the decision tree correctly classifying the
differentially expressed genes from the non-differen-
tially expressed genes was low.

Inputting only the motifs found at the regression
tree nodes into the decision tree resulted in a model
much more complicated than expected (49 nodes in
the tree) but with a correct classification percentage of
47%. After realizing that most motifs occur closer to
the promoter, we decided to narrow the upstream re-
gion of each gene to 700 bp and construct a tree using
motif counts from that smaller region. The resulting
tree was similar to our regression tree and highlighted
certain motif pairs. It is shown in Fig. 4. This tree also
had a correct classification percentage of 47 % for our
training set. On the entire nicotine array gene set,
67 % of the observed male-biased genes and 54 % of
the observed female-biased genes were correctly pre-
dicted. Classification of genes not showing sex bias
was low, as expected. To test our decision tree results,
we created 1000 decision trees with 20 random motifs
selected as input. Our model, with a 47% overall
correct classification, ranked within the top 1% of all
random trees created.

4. Discussion

(1) Regression trees and sex-specific motifs
in Drosophila

Regression provides a quantitative method of combin-
ing sequence data and expression data. We describe
here a two-step method for creating a multifactorial
model which links the prevalence of binding motifs to
changes in expression. Besides eliminating the need
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Fig. 4. Decision tree highlighting combinations of motifs that predict sex-biased gene expression in D. melanogaster.

See text for details.

for clustering of expression data, this technique im-
plies that the presence of multiple motifs in an up-
stream region is more likely to affect the level of
transcription. This concept is starting to be explored
in motif-clustering methods (Berman et al., 2002;
Halfon er al., 2002; Markstein et al., 2002; Rebeiz
et al., 2002). However, these motif-clustering methods
require prior knowledge of the sequence of the bind-
ing sites which are believed to affect expression, and
our approach does not. Furthermore, our method
provides a straightforward procedure for focusing
further analysis on a subset of the numerous sig-
nificant motifs that may arise using simple linear
regression.

Few binding sites for sex-specific expression have
been identified in Drosophila. Almost all the motifs
identified by our single-motif regression were asso-
ciated with female-biased gene expression. Therefore,
the motifs selected by the regression tree model were
mostly female-specific. Verification of the function of
the three major motifs that are highlighted in the re-
gression trees was achieved by scanning TRANSFAC
and the literature, which revealed that each of these
motifs has previously been shown to form part of
known binding sites for transcription factors during
oogenesis. Most interesting is the TCGATA/TATC-
GA motif that forms the core of the SERPENT
binding site, GCTATCGATAGC, in the promoters
of the ypI and yp2 genes (Lossky & Wensink, 1995).
Similarly, GGTCAC/GTGACC is part of the ex-
tended TAGTGTATATAGGTCACGT binding site
for chorion factor II in the chorion protein s/5 pro-
moter during oogenesis (Shea et al., 1990), and
ACACTG/CAGTGT is the core of the CCTAC-
ACTGTAAG binding site for DEP3 in the ovarian
promoter of Alcohol dehydrogenase (Bayer et al.,
1992).
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Very few male-specific motifs were found by any of
our single-motif models, and between the datasets,
the male-specific motifs that tested with higher sig-
nificance were different. Although it was surprising
that our regression tree did not find any male-specific
or antagonistic binding site combinations, it was
encouraging that known female-specific motifs were
selected and used as decision nodes in the regression
tree. Since we only looked at mature adults, our
motifs are actually associated with germline (ovary-
and testis-specific) expression. Notwithstanding the
empirical evidence discussed above that GGTCAC
and ACACTG are part of female-specific enhancers, a
possibility suggested by the regression trees is that the
presence of these motifs is sufficient to contribute to
repression of male-specific transcription. It is known,
for example, that repressor binding sites in mRNA
actively inhibit translation in the male germline
(Crowley & Hazelrigg, 1995; Blumer et al., 2002).
Extra power can be obtained by fitting regressions
over a developmental time course, and this had led to
the detection of male-specific elements as well (K. P.
White & H. J. Bussemaker, personal communication).

A multiple regression model including all the sig-
nificant motifs was also built on the same sets of mo-
tifs as the regression trees and resulted in a model with
a correlation coefficient of 0-44. Even though this was
similar to the correlation coefficient for our regression
tree, the associated model does not uncover all the
salient features revealed by our regression tree ap-
proach. The TCGATA motif stands out the most
from all our analyses as it was always at the root of
both the regression and decision trees, indicating that
it is the most highly correlated motif in sex-biased
expression. Additionally, the TCGATA motif was
found overlapping with itself in an 8 bp palindrome
29 % of the time, and this overlapping motif tested
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positively for association with sex-biased expression.
Because TCGATA is found in these situations so
often, the motif seems to be involved somehow in
regulation and deserves further investigation. Overlap
of GGTCAC, AGTGTG and ACACTG into a larger
motif is also highly suggested by our results.

(1) Advantages and drawbacks of regression trees

There are at least two situations in which regression
trees are expected to outperform direct multiple re-
gression. As documented above, one is where the
short motifs overlap and combine to perform a single
binding site. Multiple linear regression does not sug-
gest any grouping of motifs, but merely gives partial
regression coefficients indicating the contribution of
the motif to the change in expression. In fact, over-
lapping motifs will tend not to add significance to the
overall model fit once the most strongly associated
motif has been accounted for. The second situation
where regression trees should provide an advantage
is where multiple different combinations of motifs
give rise to similar expression patterns. Though
not strongly indicated here, most likely because only
a short section of each promoter was examined, in
theory combinations of motifs that act together
should generate their own arms of the regression tree.
It should even be possible for the same motif to
appear on different arms at different frequencies, as
for example TCGATAT in our decision tree, and for
repressor and activator functions to be distinguished.

The utility of regression trees is thus more likely to
lie in the perspective they provide concerning the
relationship among motifs, rather than superior per-
formance in identifying single motifs. The major
factors restricting the application of regression trees
relate to the enormous range of possible ways of
combining and formulating motifs. While 8-mer and
longer motifs may often be functional, perfect mat-
ches will often be rare in promoters of co-regulated
genes so statistical power is reduced, particularly
given that the increased number of possible longer
motifs requires more stringent significance thresholds.
Similarly, formulation of trees that combine motifs
of different lengths, or link motifs in two different re-
gions of a gene (for example, putative promoter and
distal enhancer elements), creates so many possible
combinations that it will be difficult to assess a priori
which trees are more or less probable. If the number
of co-regulated genes for which a regulatory motif
is sought is less than 20 or so, it may never be possible
to use regression-based approaches since P values
of the order of 10~® would require an unreasonably
tight relationship between motif count and transcript
abundance. Nevertheless, systematic simulation
studies and statistical modelling, including use of
other evidence to define candidate regulatory regions
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within which motifs may lie (Wasserman et al., 2000),
should improve the performance of regression trees in
the context of regulatory motif detection.

(iii) Do computational approaches identify
enhancer elements?

The standard approach to confirmation that a motif
actually regulates gene expression is to demonstrate
that it is sufficient to drive expression of a reporter
gene in the predicted pattern in a transgenic organism.
In our case, the expression data themselves demon-
strate, however, that the identified motifs are insuf-
ficient to drive female-specific expression, since a large
number of genes with each motif combination are
expressed more strongly in males than females. Several
other recent studies have failed to confirm that se-
quences identified using bioinformatic approaches are
functional. For example, Halfon et al. (2002) ex-
tracted 34 potential dorsal mesodermal enhancers
consisting of multiple binding sites for known tran-
scription factors, but only 8 of the 18 of these for
which data are available appear to drive transcription
in embryonic Drosophila mesoderm. They concluded
that there can be a high false-positive identification
rate associated with computational strategies.

Given the extremely high significance associated
with particular test statistics, it should also be con-
sidered that some potential regulatory motifs are
not classical enhancers, but rather define a class of
‘modulator’ elements that act in a more probabilistic
manner. Either the effects of individual elements are
too subtle to detect in transgenic assays, or the el-
ements act in a context-dependent manner. Promoter-
proximal elements such as those characterized in this
study are likely to require distal true enhancer se-
quences, as regulatory regions in flies typically extend
over tens of kilobases. The corollary may also be
true, that enhancers require the context of modulator
elements, such as those identified here, more com-
monly than generally recognized.

The problem remains as to how to confirm the
biological function of statistically significant motifs.
One approach is to ask whether the motifs are poly-
morphic in the promoters of genes that show variable
expression within and among species. We sequenced
the promoters of 10 wild-type strains of D. melano-
gaster for eight genes that differed between genotypes
in the level of sex-specific transcription in our micro-
array studies. Nine of the 72 SNPs and indel poly-
morphisms were located within the top 10 motifs
described here, but this fraction is not greater than
expected given the motif frequencies in the sequenced
regions. Nevertheless, polymorphism in modulator
elements is an intuitively appealing mechanism for
quantitative variation in gene expression that could
contribute to gradual evolution of gene expression.
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Phylogenetic shadowing (Boffelli e al., 2003; Kellis
et al., 2003), namely extensive genomic comparison of
promoter sequences in multiple sibling species among
which tissue-specific gene expression diverges, is likely
to aid in the functional footprinting of subtle regu-
latory motifs.
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Brian Oliver for discussions concerning sex-biased gene ex-
pression, and Kevin White for communicating unpublished
data. Rebecca Riley-Berger and Jennifer King sequenced
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IGERT training fellowship in Genome Sciences, and mi-
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by the David and Lucille Packard Foundation and NIH
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