
16

Quantum adiabatic algorithm

The authors are grateful to Dong An for reviewing this chapter.

Rough overview (in words)

The quantum adiabatic algorithm (QAA) [382], sometimes referred to as adi-

abatic state preparation, is a continuous-time procedure for (approximately)

preparing an eigenstate (typically the ground state) of a particular Hamiltonian

of interest on a quantum device. The QAA also forms the basis for a model of

quantum computation called adiabatic quantum computation which acts as an

alternative to the standard quantum circuit model.

The main idea of the QAA is to begin in an eigenstate of a simpler Hamil-

tonian that is easy to prepare, and then slowly change the Hamiltonian to be

equal to the more complex Hamiltonian of interest. The adiabatic theorem (see

[16] and references therein), a celebrated concept from physics, dictates that if

the evolution is sufficiently slow, the system will evolve to (approximately) re-

main in the instantaneous eigenstate of the continuously varying Hamiltonian

and thus finish in the desired state. The length of time required for the evolution

to succeed depends on the spectral properties of the Hamiltonian path and in

particular on the minimum spectral gap. The adiabatic algorithm can be sim-

ulated on a gate-based quantum computer with time-dependent Hamiltonian

simulation.

Rough overview (in math)

Let H(s), where s varies as 0 ≤ s ≤ 1, denote a single-parameter path through

the space of Hamiltonians, and let |ϕ j(s)⟩ and E j(s) denote the eigenstates and

eigenvalues of H(s), indexed by j in increasing order. The goal of the QAA

is to prepare a certain eigenstate |ϕ j(1)⟩ of H(1). Let |ψ(t)⟩ denote the state of

250

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.019
Downloaded from https://www.cambridge.org/core. IP address: 216.73.217.10, on 22 Jul 2025 at 00:39:25, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.019
https://www.cambridge.org/core

16. Quantum adiabatic algorithm 251

our system at time t and let T be the total evolution time. The procedure calls

for beginning in the state |ψ(0)⟩ = |ϕ j(0)⟩ and allowing |ψ(t)⟩ to evolve by the

Schrödinger equation according to the Hamiltonian H(t/T), that is, i d
dt
|ψ(t)⟩ =

H(t/T)|ψ(t)⟩ from t = 0 to t = T . Thus, as T is made larger, the path from H(0)

to H(1) is traversed increasingly slowly.

Dominant resource cost (gates/qubits)

The main resource for the continuous-time QAA is the total evolution time T .

The adiabatic theorem suggests that if T is chosen sufficiently large, and as

long as eigenvalue E j is nondegenerate along the entire path, then |ψ(T)⟩ ≈
|ϕ j(1)⟩ will hold. The often-quoted heuristic condition [16] for success is that

T ≫ max
0≤s≤1

∥∥∥ dH
ds

∥∥∥
∆(s)2

, (16.1)

where ∆(s) is the spectral gap, that is, mini, j |Ei(s) − E j(s)|, and ∥·∥ denotes

the spectral norm. Thus, the runtime needed for the QAA to have small error is

primarily governed by the minimum size of the spectral gap along the adiabatic

path. This aspect of the QAA is a common sticking point as it is often difficult

to produce lower bounds on ∆(s) that would suffice for proving upper bounds

on T . In practice, the value of T can be chosen heuristically, or by trial-and-

error, but a more detailed understanding of ∆(s) would inform smarter choices

of Hamiltonian path H(s).

While Eq. (16.1) is nonrigorous and potentially loose in specific scenarios,

the polynomial dependence of T on the inverse spectral gap is an essential

feature of the QAA. For example, it was shown in [161] that in general, any

rigorous bound on the QAA runtime must scale at least linearly in the inverse

spectral gap.

The QAA is typically formulated as a continuous-time procedure, but a gate-

based quantum computer can simulate the QAA by discretizing the path and

approximately implementing the evolution from time t to t + δt with prod-

uct formulas or with more advanced techniques for time-dependent Hamil-

tonian simulation. This incurs error in addition to the adiabatic error of the

continuous-time QAA. The number of gates needed to do this can be made

proportional to T (up to logarithmic corrections), polynomial in the number

of qubits needed to hold the state |ψ(t)⟩, and logarithmic in the approximation

error incurred (e.g., [615]).

Caveats

A technical caveat of the QAA is that rigorous formulations of sufficient con-

ditions for success (e.g., [567, 376]) are more complex than Eq. (16.1) and

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.019
Downloaded from https://www.cambridge.org/core. IP address: 216.73.217.10, on 22 Jul 2025 at 00:39:25, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.019
https://www.cambridge.org/core

252 16. Quantum adiabatic algorithm

likely looser than what is necessary in practice. Also, in most cases, the depen-

dence of the runtime T on the final approximation error ϵ = ∥|ψ(T)⟩ − |ϕ j(1)⟩∥
goes as T = poly(1/ϵ), rather than T = polylog(1/ϵ). To circumvent this and

achieve polylog(1/ϵ) dependence, one can choose more sophisticated Hamil-

tonian paths H(s) for which all time derivatives vanish at s = 0 and s = 1

[411, 16].

A practical caveat of the QAA is that the spectral gap—the main determiner

of the resource cost—is difficult to study theoretically. Numerically, it can of-

ten be computed only for small system sizes, and it is unclear whether extrap-

olations to larger system sizes would be accurate.

Furthermore, in many end-to-end applications the spectral gap is not only

unknown, but also expected to be extremely small, implying that the QAA

requires a large runtime (see §Example use cases, below). For the QAA to be

efficient, the spectral gap must decay only like an inverse polynomial of the

system size, but such scaling requires the problem instance to have a special

structure. Such structure should not be assumed to exist without justification.

NISQ implementations

The QAA is closely related to the concept of quantum annealing [591], a

term used especially in the context of near-term implementations on existing

quantum hardware. In quantum annealing, the system is exposed to a time-

dependent Hamiltonian, typically a transverse-field Ising model. The strength

of the transverse field is slowly reduced, eventually to zero, where the Hamil-

tonian is equal to a classical Ising model encoding a hard combinatorial opti-

mization problem. If implemented perfectly and sufficiently slowly, this would

be a manifestation of the QAA, and one would obtain the solution to the prob-

lem. However, the typical setting of quantum annealing is to consider faster

implementations, and to possibly allow for some amount of control noise and

finite-temperature effects (rather than evolving under a closed system at zero

temperature), which induce transitions from the ground state to excited states.

The goal is relaxed from ending in the exact ground state of the final Hamilto-

nian to ending in a low-energy state that can be considered an approximately

optimal solution to the problem. The success metric is often the quality of the

solution produced rather than the runtime required to find the best solution. As

such, it is a heuristic algorithm and must be compared with classical heuristic

algorithms, where evidence of a scalable advantage is mixed. See, for exam-

ple, [323] for a perspective on quantum annealing and the most promising

related directions.

Separately, the QAA can be related to variational quantum algorithms,

which are NISQ friendly. In particular, by applying product formulas to the

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.019
Downloaded from https://www.cambridge.org/core. IP address: 216.73.217.10, on 22 Jul 2025 at 00:39:25, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.019
https://www.cambridge.org/core

16. Quantum adiabatic algorithm 253

QAA, one obtains alternating time evolutions by H(0) and by H(1); in the

case that H(0) is a transverse field and H(1) is a classical cost function, this

is precisely an instance of the quantum approximate optimization algorithm

(QAOA) [384], a leading NISQ algorithm. In the limit of large depth, the

QAOA can fully simulate the QAA to arbitrarily small precision. However, in

a NISQ setting, the depth of the QAOA would need to be restricted, and the

QAOA would not exactly follow the QAA.

Example use cases

• Combinatorial optimization: The QAA was first invented [382] as a way

to solve hard classical combinatorial optimization problems on a quantum

computer. An example is constraint satisfaction problems, where one is

given a Hamiltonian H(1) that is diagonal in the computational basis

(i.e., “classical”) and equal to the sum of various constraints on n bits. The

ground state of H(1) is the bit string that violates the fewest constraints.

One typically chooses the initial Hamiltonian to be H(0) = −∑n
i=1 Xi,

where Xi denotes the Pauli-X operator on qubit i, whose ground state is an

easy-to-prepare product state. The QAA is guaranteed to find the ground

state of H(1) if it is run with sufficiently large evolution time. However,

in general, it is expected that the spectral gaps along the adiabatic path

become exponentially small in n [638, 1071, 517, 23, 1032], indicating that

the QAA requires exponentially long runtime.

• Quantum chemistry and condensed matter physics: A central problem of

quantum chemistry and computational condensed matter physics is the prob-

lem of finding the ground state energy of a molecule, material, or lattice

model. This can be solved efficiently with quantum phase estimation (QPE)

so long as one can prepare a state that has substantial overlap with the ground

state of the Hamiltonian. Adiabatic state preparation has been proposed as

a method for producing such a state (see, e.g., [1056, 870, 1006, 644, 966,

1031, 1072]). This initial state preparation is often the bottleneck in the end-

to-end quantum solution, as it can require exponential time for systems of

interest (see, e.g., [670]).

• Quantum linear system solvers: The state-of-the-art quantum linear system

solvers [313] leverage the QAA to produce a quantum state |x⟩ correspond-

ing to the solution of a linear system Ax = b (see also [964, 31, 689, 572]). In

particular, this method allows the runtime to scale linearly in the condition

number of the matrix A.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.019
Downloaded from https://www.cambridge.org/core. IP address: 216.73.217.10, on 22 Jul 2025 at 00:39:25, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.019
https://www.cambridge.org/core

254 16. Quantum adiabatic algorithm

Further reading

• See [16] for a comprehensive 2018 review of the QAA and adiabatic quan-

tum computation more generally.

• See [162] for a digital version of the QAA for a gate-based quantum com-

puter, but distinct from a direct simulation of the QAA. The idea is to choose

a sequence of s values 0 = s0 < s1 < s2 < · · · < sT = 1 and perform mea-

surements of H(st) for t = 0, . . . ,T in sequence using QPE. As long as the

difference between consecutive values of s is sufficiently small, the quan-

tum Zeno effect guarantees that each measurement will project onto the cor-

rect eigenstate |ϕ j(st)⟩ with high probability (see also [944, 673]). One can

also take larger jumps, and amplify their success probability with fixed-point

amplitude amplification. The resource cost has a similar dependence on the

spectral gap as the continuous-time QAA: if the “path length” traced by the

eigenstate |ϕ j(s)⟩ is L, the minimum gap is ∆, and the target error is ϵ, then

the gate cost of the algorithm is O (
L log(L/ϵ)/∆

)
. The path length L can be

upper bounded by ∥dH/ds∥/∆, which roughly recovers Eq. (16.1).

• Along the lines of the previous bullet, [1012] gives an alternative way to ef-

fect adiabatic state preparation on a gate-based computer with polylog(1/ϵ)

overall error dependence, via quasi-adiabatic continuation.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.019
Downloaded from https://www.cambridge.org/core. IP address: 216.73.217.10, on 22 Jul 2025 at 00:39:25, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.019
https://www.cambridge.org/core

