
Journal of Glaciology

Article

Cite this article: Zikan KH, Adolph AC, Brown
WP, Fausto RS (2023). Comparison of MODIS
surface temperatures to in situ measurements
on the Greenland Ice Sheet from 2014 to 2017.
Journal of Glaciology 69(273), 129–140. https://
doi.org/10.1017/jog.2022.51

Received: 22 July 2021
Revised: 31 May 2022
Accepted: 6 June 2022
First published online: 8 August 2022

Key words:
Ice temperature; remote sensing; snow/ice
surface processes

Author for correspondence:
Karina H. Zikan,
E-mail: karina.zikan@gmail.com

© The Author(s), 2022. Published by
Cambridge University Press. This is an Open
Access article, distributed under the terms of
the Creative Commons Attribution-
NonCommercial-ShareAlike licence (https://
creativecommons.org/licenses/by-nc-sa/4.0/),
which permits non-commercial re-use,
distribution, and reproduction in any medium,
provided the same Creative Commons licence
is included and the original work is properly
cited. The written permission of Cambridge
University Press must be obtained for
commercial re-use.

cambridge.org/jog

Comparison of MODIS surface temperatures to
in situ measurements on the Greenland Ice
Sheet from 2014 to 2017

Karina H. Zikan1,2 , Alden C. Adolph1 , Wesley P. Brown1

and Robert S. Fausto3

1Department of Physics, St. Olaf College¸ Northfield, Minnesota, USA; 2Department of Geoscience, Boise State
University, Boise, Idaho, USA and 3Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark

Abstract

Remotely sensed land surface temperature (LST) data, such as the Moderate Resolution Imaging
Spectroradiometer (MODIS) LST thermal infrared products, are useful for monitoring surface
processes on the Greenland Ice Sheet in remote areas but must be validated to ensure accuracy.
Using data from the Programme for Monitoring the Greenland Ice Sheet (PROMICE), we
conducted a MODIS LST validation (MOD/MYD11 C6 swath level product) using radiometric
in-situ skin temperature records from 2014 to 2017 over 17 PROMICE sites mostly in the ice
sheet’s ablation zone. There is a significant cold bias in MODIS LST when compared to
PROMICE skin temperature, particularly when PROMICE records temperatures below 0°C
(mean bias: 2.4 ± 0.01°C mean ± standard error, RMSE = 3.2°C). Multiple linear regression
analysis reveals the difference between MODIS LST and PROMICE skin temperature is larger
at lower temperatures, lower latent heat fluxes and higher specific humidity. Our results confirm
the presence of a progressive cold bias in the MODIS LST that should be considered in use of this
product, and we identify and corroborate areas for ongoing algorithm development.

1. Introduction

In the Arctic, near-surface temperatures are rising at more than twice the rate of other regions
of the globe due to Arctic amplification (Graversen and others, 2008; Serreze and Barry, 2011).
Efforts to limit temperature increases globally to +2°C will result in an Arctic environment that
has an average annual temperature that is +4°C higher than the preindustrial period (Overland
and others, 2019). These warming trends increase ice melt and polar instability, which influ-
ence global climate and weather systems directly and indirectly through changes to the surface
energy balance exacerbated by the snow albedo feedback (e.g. Déry and Brown, 2007; Box and
others, 2012; Thackeray and Fletcher, 2016). The Greenland Ice Sheet (GrIS) is highly sensitive
to temperature changes because many locations on the ice sheet are already at or near the
melting point of ice, so further temperature increases are expanding the areas over which
melt occurs (Colosio and others, 2021). The GrIS is losing an estimated average of 121 Gt
a−1 of ice mass, relating to 0.33 mm a−1 of sea level rise (Vaughan and others, 2013), with
that value increasing over the past several decades (Shepherd and others, 2020). The rate of
ice mass loss of the GrIS is expected to increase in future years. Temperatures over the
GrIS are rising (Shuman and others, 2001; Vaughan and others, 2013), with winter tempera-
tures estimated to have increased by 4.4°C between 1991 and 2019, and summer temperatures
increasing by 1.7°C during the same period (Hanna and others, 2021). Surface melt has caused
just above 50% of mass loss between 1992 and 2018 (Shepherd and others, 2020) and is the
cause for an increasingly large fraction of total ice mass loss (Enderlin and others, 2014;
Mouginot and others, 2019). Land surface temperature (LST) is a measurement of the thermo-
dynamic temperature of the outermost (skin) layer of a surface (Guillevic and others, 2017)
and is a key determinant in analyzing surface energy processes and identifying and predicting
ice melt. The GrIS’s active role in the global climate and climate impacts makes accurate LST
measurements of the ice surface essential to monitoring the GrIS and its contribution to our
changing climate.

Due to the harsh climate and remote nature of the GrIS, in situ temperature measurements
are difficult to obtain over a large spatial and temporal scale. Rapid surface changes in the abla-
tion zone due to melt and enhanced surface velocity can make measurements and station
maintenance even more challenging. Satellite-based LST measurements provide consistent
and expansive data from the GrIS that can be used in a variety of climate analyses; however,
these data must be validated and assessed on a regular basis due to issues of sensor accuracy
and orbital drift among other concerns (e.g. Jin and Treadon, 2003). There are a number of
remote-sensing instruments that produce thermal infrared LST products including the
Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) and Landsat. The National Aeronautics and
Space Administration (NASA) launched the Aqua and Terra satellites in the early 2000s,
each carrying a MODIS instrument which is used to calculate many environmental variables,
across the globe. All three instruments (MODIS, ASTER and Landsat) are on satellites with
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solar synchronous orbits, but offer different resolutions and dif-
ferent revisit cycle times due to swath width. While ASTER and
Landsat provide higher spatial resolution than MODIS (ASTER:
90 m; Landsat: 100 m; MODIS: 1 km), they have lower temporal
resolution with a nominal 16-day revisit cycle for ASTER and
Landsat versus a nominal daily revisit cycle or greater for
MODIS. Due to the orbital pattern and swath size, MODIS col-
lects data multiple times per day over the GrIS, providing signifi-
cantly more data for comparison to in situ measurements.
Because of this extensive coverage, MODIS data are widely
used, yet there remain uncertainties in the validation that require
further investigation.

MODIS LST data have been used to estimate temperature
trends and determine GrIS melt extent (Hall and others, 2013),
to estimate near-surface air temperature over ice-covered locations
(Williamson and others, 2014; Zhang and others, 2018; Qie and
others, 2020), and for modeling ice sheet or snowpack surface
processes (Fréville and others, 2014; Shamir and Georgakakos,
2014; Navari and others, 2016). However, MODIS LST data are
limited to clear sky conditions because cloud cover obstructs
the path of radiation from the surface and therefore the ability
to calculate surface temperature. Additionally, LST measurements
can be affected by high concentrations of atmospheric aerosols
(Wan, 2014). While there have been efforts to expand coverage
during periods of cloud cover with interpolation algorithms for
treating cloudy pixels (Jin, 2000; Jin and Dickinson, 2000), this
issue of cloud cover limitation has led to a cold bias when LST
measurements are averaged over weeks or months. The cold
bias occurs because cloud cover typically creates warmer ground
conditions that are undetected by MODIS (Westermann and
others, 2012). Previous validation studies have also identified a
cold bias in individual MODIS LST measurements when com-
pared to in situ ground-based measurements (Hall and others,
2008; Koenig and Hall, 2010; Østby and others, 2014; Shuman
and others, 2014; Williamson and others, 2017; Kindstedt and
others, 2021).

When considering the topic of ‘surface’ temperature, we must
carefully define the terms that we use for various temperature
measurements, as ‘surface’ temperature in prior studies can be
used to refer to near-surface air temperature instead of the true
surface or skin temperature. In this manuscript, we will use the
terms ‘land surface temperature (LST)’ or ‘skin temperature’ to
refer to the radiometric temperature of the snow or ice surface,
typically representative of the top several microns to millimeters
of the surface given that the measurements are made in the ther-
mal infrared wavelengths (Warren and Brandt, 2008). We will use
the term ‘air temperature’ to refer to temperature measurements
made ∼2 m above the snow or ice surface, a typical measurement
on a meteorological station.

Given the importance of remotely sensed MODIS LST pro-
ducts and their limitations, it is vital to validate data accuracy
in polar regions. Previous studies have found a significant cold
bias (findings range from 0.7°C to as high as 7°C) present in
MODIS LST data (Hall and others, 2008, 2018; Koenig and
Hall, 2010; Hachem and others, 2012; Westermann and others,
2012; Østby and others, 2014; Shuman and others, 2014;
Williamson and others, 2017). Shuman and others (2014)
observed that this cold bias became more pronounced at lower
temperatures, which we refer to as a ‘progressive cold bias’.
Several past validation studies have compared MODIS LST to
∼2 m air temperature measurements. However, recent studies
on the temperature difference between 2 m and skin measure-
ments indicate that MODIS data should be validated using skin
temperatures (Adolph and others, 2018; Guillevic and others,
2017). The need to directly compare MODIS LST to skin tem-
perature instead of validating remote-sensing LST with air

temperatures is due to the presence of near-surface inversions
in snow-covered regions. One Arctic-wide study of snow- and ice-
covered surfaces found that skin temperatures were 0.65–2.65°C
lower than air temperatures on average, and inversions were pre-
sent 85% of the time (Nielsen-Englyst and others, 2019). When
comparing MODIS directly to in situ infrared measured skin tem-
peratures, Adolph and others (2018) did not find evidence of a
cold bias of the MODIS LST at Summit, Greenland, while earlier
studies that compared MODIS LST to air temperature did find a
cold bias (Hall and others, 2004; Koenig and Hall, 2010; Shuman
and others, 2014). However, the study by Adolph and others
(2018) was limited to a single site and a small range of surface
temperatures that did not include temperatures below −35°C or
above −5°C.

The study presented here compares the MODIS MOD/
MYD11_L2 Collection 6 swath-level LST product from both the
Aqua and Terra satellites to skin temperature measurements cal-
culated from upwelling and downwelling longwave radiation mea-
surements collected by Automatic Weather Stations (AWS)
installed primarily in the ablation zone of the GrIS by the
Programme for Monitoring the Greenland Ice Sheet
(PROMICE). This work builds on the findings of past validation
studies to determine if there is a MODIS LST cold bias over the
GrIS. We also investigate the progressive cold bias identified by
Shuman and others (2014). We analyze data from the years
2014 to 2017 and explore the effect of environmental influences
on the identified differences between the MODIS and
PROMICE skin temperatures.

2. Methods

2.1 MODIS land surface temperature product

This study uses the MOD/MYD11_L2 (MxD11) Collection 6
swath product from 2014 to 2017. The MxD11 product calculates
LST with a 1 by 1 km pixel footprint using a split window
technique; brightness temperature measurements from band 31
(T31, bandwidth: 10.780–11.280 μm, spectral radiance: 9.55 (300 K))
and band 32 (T32, bandwidth: 11.770–12.270 μm, spectral radi-
ance: 8.94 (300 K)) are implemented together to calculate the sur-
face temperature, taking advantage of the difference between the
two bands to account for atmospheric effects (Wan and Dozier,
1996; Wan and others, 2002; Wan, 2014). MxD11 uses the follow-
ing equation to calculate LST (Wan, 2014):

LST = b0 + b1 + b2
1− 1

1
+ b3

D1

12

( )
T31 + T32

2

+ b4 + b5
1− 1

1
+ b6

D1

12

( )
T31 + T32

2
, (1)

where ε is the mean emissivity and Δε is the difference of the
emissivity of bands 31 and 32, and b0 through b6 are a series of
coefficients that are calculated using viewing zenith angle, surface
air temperature and atmospheric water vapor content (Guillevic
and others, 2017). In the MxD11 product, emissivity values for
each pixel are estimated based on land cover type. In the dataset
we use, emissivity in band 31 ranges from 0.972 to 0.994 (mean =
0.994), and emissivity in band 32 ranges from 0.970 to 0.990
(mean = 0.990).

Because of the high latitude of the Greenland sites, there are
multiple passes of the Terra and Aqua satellites overhead in a
given day. Each swath is time stamped and images are within 5
min of the stated time. When clouds are not present, this can pro-
vide sub-daily measurements of surface temperature. We use the
built-in cloud filtering algorithm in the LST product which is
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drawn from the MOD/MYD35 cloud mask product and only
includes pixels that are calculated to have a 95% or greater prob-
ability of being cloud free. The MODIS LST data are additionally
filtered using a cloud cover estimate from the PROMICE AWS
measurements (described below) with an exclusion of >0.3 esti-
mated cloud cover fraction as the cutoff.

There are other MODIS LST products including MOD/
MYD21 (MxD21) and MOD/MYD29 (MxD29). In contrast to
the split window technique implemented in MxD11, the
MxD21 product uses a temperature/emissivity separation (TES)
technique to calculate surface temperature (Hulley and Hook,
2017), while MxD29 uses an algorithm developed by Key and
Haefliger (1992). Comparisons between the MxD11 and MxD21
product in non-glaciated areas have shown that the MxD21 prod-
uct more closely matches in situ measurements, potentially due to
overestimation of emissivity in the MxD11 product (Yao and
others, 2020; Li and others, 2021). A validation comparison
between the two products has not been tested in snow-covered
regions to our knowledge. The MxD29 product is incorporated
into a multilayer regional product MODGRNLD that was devel-
oped specifically for the GrIS (Hall and others, 2018; Hall and
DiGirolamo, 2019). Both the MxD29 and MxD11 products
were compared to the same in situ skin temperature dataset mea-
sured at Summit, Greenland in summer 2015; the mean bias for
the MxD29 product was 0.98°C while it was −0.4°C for the
MxD11 product, and the RMSE was also slightly larger for the
MxD29 product (1.3 vs 1.0°C for MxD11) (Adolph and others,
2018; Hall and others, 2018). We decided to use the MxD11 prod-
uct in this study because the results from Adolph and others
(2018) indicated that there was not a cold bias in the MxD11
product in the accumulation zone of the GrIS, but the study
was limited in temporal and spatial scope. Comparing the
MxD11 product to the large in situ dataset from PROMICE pro-
vided an opportunity to expand on the results from Adolph and
others (2018). Validating the MxD21 or MODGRNLD LST pro-
ducts, or other higher spatial resolution LST products (e.g.
ASTER and Landsat), with in situ measurements from the
PROMICE AWS datasets would be a worthwhile endeavor but
is beyond the scope of this paper.

2.2 PROMICE data

Skin temperature, near-surface air temperature, specific humidity,
albedo, latent and sensible heat flux, incoming and outgoing long-
wave radiation and estimated cloud cover fraction data were
extracted from 2014 to 2017 from the PROMICE database
(Ahlstrøm and others, 2008; van As and Fausto, 2011; Fausto
and van As, 2019). We used data from 17 automatic weather sta-
tions in eight locations on snow and ice mostly in the GrIS abla-
tion zone, with the exception of KAN_U which is in the
accumulation zone. Figure 1 shows 2019 satellite imagery of
each site (MacGregor and others, 2020) as well as the location
of each site. The PROMICE sites (Table 1) used are the
Kangerlussuaq upper, middle and lower sites (KAN_U,
KAN_M, KAN_L), the Crown Prince Christian Land upper and
lower sites (KPC_U, KPC_L), the Nuuk upper and lower sites
(NUK_U, NUK_L), the Qassimiut upper and lower sites
(QAS_U, QAS_L), the Scoresbysund upper and lower sites
(SCO_U, SCO_L), the Tasiilaq alternate and lower sites
(TAS_A, TAS_L), the Thule upper and lower sites (THU_U,
THU_L) and the Upernavik upper and lower sites (UPE_U,
UPE_L). As seen in Figure 1, the complexity of the terrain sur-
rounding each of these sites varies. We excluded PROMICE
sites on independent glaciers, sites that do not have coverage for
multiple years of the analysis, and sites near the center of the
ice sheet to focus on the ablation area.

PROMICE skin temperature (in °C) is derived from incoming
and outgoing longwave radiation measurements using the follow-
ing equation,

LST = ((LRout − (1− 1)× LRin)/(1× 5.67× 10−8))0.25

− 273.15, (2)

where LR is longwave radiation (in Wm−2), the Stefan–Boltzman
constant has units of Wm−2 K−4, and ε (surface emissivity) is set
to 0.97 for consistency with publicly available PROMICE data
(Fausto and van As, 2019; Fausto and others, 2021). Surface con-
ditions (and thus surface emissivity) vary in the ablation zone of
the GrIS, and implications of the choice of emissivity value are
explored in Section 3.6. The four-component radiation measure-
ments are made using a Campbell Scientific net radiometer
(model CNR4 or CNR1) manufactured by Kipp & Zonen. The
instrument’s pyrgeometer measures longwave radiation in the
wavelength range from 4.5 to 42 μm with an operating temperature
range of −40 to 80°C. The reported maximum uncertainty from
the manufacturer is ±10%, but in practice the maximum uncer-
tainty in daily total longwave radiation is ±5% (van den Broeke
and others, 2004; Fausto and others, 2016). The PROMICE
AWSs report values for each variable every 10min. In implement-
ing Eqn (2), temperatures are frequently calculated to be above 0°C
during summer months. However, because the AWS sites are all
on snow and ice, the surface cannot be above 0°C. Therefore, tem-
peratures above the freezing point do not make physical sense.
These temperatures calculated above zero may be due in part to
the error of the longwave measurements, due to the effect of the
longwave emissions from the atmosphere between the surface
and the sensor, or due to the presence of liquid water on the sur-
face in some instances. Both surface temperature calculations
(PROMICE and MODIS) report values above zero. We compare
MODIS values to the PROMICE values that are directly calculated
from Eqn (2) (called ‘unclipped’) and values that are corrected
such that temperatures above 0°C (from Eqn (2)) are reported
as 0°C so that they make physical sense (called ‘clipped’). Note
that the PROMICE data reported online (https://www.promice.
org/PromiceDataPortal/) already have this ‘clipped’ correction.

The emissivity value chosen to calculate PROMICE skin tem-
peratures is fixed at 0.97 (Fausto and others, 2021). Emissivity of
the ice-sheet surface varies directionally, with wavelength, and
with surface type. Hori and others (2006) report values as high
as 0.997 for dendritic snow at nadir angle at a wavelength of
10.5 μm and as low as 0.949 for bare ice at 12.5 μm. At an off-
nadir angle of 75°, the emissivity of bare ice was as low as
0.709; however, this angle is larger than we would expect from
an AWS measurement. Nielsen-Englyst and others (2019) mod-
eled snow emissivity with the spectral response function for the
type of sensor used by PROMICE stations which cover the
range from 4 to 40 μm. They reported an emissivity of 0.997, how-
ever this was for a ‘typical snow surface’, and surface type at the
PROMICE sites varies throughout the year from snow to bare ice.
Results presented throughout the current work use an emissivity
of 0.97, but in the Supplementary material we present data show-
ing the sensitivity of our results to varying the emissivity between
0.7 and 0.99 (Appendix A, Table 5).

2.3 Additional environmental variables

To aid in the analysis of the difference between MODIS LST and
PROMICE skin temperature measurements, we also used the fol-
lowing variables: solar zenith angle, air temperature, MODIS view-
ing angle, relative humidity, specific humidity, MODIS emissivity
at band 31, MODIS emissivity at band 32, error of MODIS LST,
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latitude, longitude, latent heat flux, sensible heat flux, albedo and
cloud cover. Latent heat flux, sensible heat flux, relative humidity,
specific humidity, albedo and cloud cover were extracted from the
PROMICE AWS database. PROMICE calculates specific humidity
from the relative humidity and air temperature following Goff and
Gratch (1946). Latent and sensible heat fluxes are calculated using
the Monin–Obukhov similarity theory based on vertical gradients
in wind speed, specific humidity and potential temperature.
Albedo is calculated based on incoming and outgoing shortwave
radiation measurements that are tilt-corrected (Fausto and others,
2021). Cloud cover fraction is estimated from incoming and out-
going longwave radiation measurements (Ahlstrøm and others,
2008; van As and Fausto, 2011). Solar zenith angle data were
extracted from the MODIS MxD11 product. Solar zenith angle
indicates angle of the direct incoming radiation and often corre-
lates to the amount of incoming solar radiation. Emissivity at
band 31 and band 32, viewing angle and error of MODIS LST
were also extracted from the MODIS MxD11 product.

2.4 Comparison of MODIS and PROMICE data

To conduct comparative analyses that validate the swath level
product, discrete temperature measurements from the MODIS

and PROMICE datasets must be paired spatially and temporally,
described below. We analyzed data for 4 years, 2014–2017, seek-
ing to optimize between time for data extraction and ensuring we
used more than a single year of data in case that year was anom-
alous in some way. While both data products extend temporally
before and beyond these years, 4 years of data provide sufficient
variability to identify relationships in the comparison between
datasets. Because we are not looking to identify temporal trends,
adding more data to the analysis was not necessary. In order to
pair the temperature measurements, for each of the 17
PROMICE sites, we extracted any MODIS swath LST data within
10 km (calculated using the distance algorithm by Sohrabinia
(2021)) that were available over the 4 years of the study. Each
MODIS data point is time stamped with a resolution of 5 min,
and we paired each with the temporally closest PROMICE
measurement, requiring that it be within 30 min of the MODIS
measurement. If there was not a match that met this requirement,
then the data point was not included. A sensitivity study altering
the matching distance radius from 10 km down to 1 km showed
that variation in matching radius caused negligible change in
the MODIS LST bias statistics (see Appendix Table 6). Within
each pair of data points, we subtracted the MODIS LST mea-
surement from the PROMICE skin temperature measurement
to calculate the difference between the MODIS and PROMICE
measurements, called the ‘MODIS/PROMICE difference’.
Positive values of this difference denote a MODIS LST lower
than the reference PROMICE skin temperature, and we refer to
this as a ‘cold bias’. To determine if a calculated ‘cold bias’ was
significantly different from 0°C, we conducted a t-test with a
5% significance level.

In addition to analyzing this dataset as a whole, separate ana-
lyses were conducted for two periods (1) instances when
PROMICE skin temperature was 0°C or higher (referred to
throughout as above freezing period) and (2) instances when
the PROMICE skin temperature was below 0°C (referred to
throughout as below freezing period) to determine if systematic
differences exist between these different periods. Because calcu-
lated surface temperatures from radiometric measurements are
often above zero in the above freezing period, the above freezing
period has more possible sources of complication due to tempera-
tures that do not always seem physically reasonable. We believe
analyzing these two periods separately gives clearer insight into
MODIS LST behavior over the GrIS.

Fig. 1. PROMICE AWS locations. The figure at the left shows 10m resolution 2019 satellite imagery from Sentinel-2 of each of the PROMICE sites. Imagery is from MacGregor
and others (2020), and the figure was created using QGreenland (Moon and others, 2021). The scale for all imagery is shown in the bottom right image. Map at the right
shows the location of each PROMICE site, noting that each location has multiple AWS sites at different elevations which sometimes appear as overlapping markers.

Table 1. AWS location information

AWS Latitude (°N) Longitude (°W) Elevation (m)

KPC_L 79.9108 24.0828 370
KPC_U 79.8347 25.1662 870
SCO_L 72.2230 26.8182 460
SCO_U 72.3933 27.2333 970
TAS_L 65.6402 38.8987 250
TAS_A 65.7790 38.8995 890
QAS_L 61.0308 46.8493 280
QAS_U 61.1753 46.8195 900
NUK_L 64.4822 49.5358 530
NUK_U 64.5108 49.2692 1120
KAN_L 67.0955 49.9513 670
KAN_M 67.0670 48.8355 1270
KAN_U 67.0003 47.0253 1840
UPE_L 72.8832 54.2955 220
UPE_U 72.8878 53.5783 940
THU_L 76.3998 68.2665 570
THU_U 76.4197 68.1463 760

PROMICE AWS information within each of the eight locations (Fig. 1).
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The MODIS/PROMICE difference in the below freezing per-
iod was analyzed using robust multiple linear regression using
Student’s t distributed errors (Lange and others, 1989) via the
mvsregress function from Piche (2022). Using this model, we
investigated the amount of variance in the MODIS/PROMICE
difference that can be explained by selected environmental vari-
ables. Our initial models explored the influence of day of year,
solar zenith angle, MODIS LST, PROMICE air temperature,
MODIS viewing angle, relative humidity, specific humidity, air
temperature, emissivity at band 31, emissivity at band 32, error
of MODIS LST, latitude, longitude, latent heat flux, specific heat
flux and albedo on the difference between paired MODIS LST
and PROMICE skin temperature. MODIS viewing angle, sensible
heat flux, relative humidity, specific humidity, emissivity at band
31, emissivity at band 32, error of MODIS LST, latitude, longi-
tude, albedo and solar zenith angle all had p-values above 0.05
and were removed from later models. The multiple linear regres-
sion model assumes that the predictor variables are not highly
correlated, and that the residuals express homoscedasticity and
are normally distributed. Based on an examination of the resi-
duals using quantile–quantile diagnostic plots, we found that
the residuals were symmetric and homogeneous but heavy-tailed.
They were fitted well by a Student’s t distribution with 6–7
degrees of freedom. To correct our regression analyses for the
heavy tails, we used robust multiple regression with Student’s t
distributed errors (Lange and others, 1989). A benefit of using
this distribution class is that the standard F-tests for regression
models are unaffected by the Student’s t heavy-tailed error distri-
bution (Zellner, 1976; Qin and Wan, 2004). Thus, we can present
the familiar F-tests for our regression results. A multiple linear
regression analysis was also explored for the above freezing per-
iod; however, the residuals for the above freezing period were
poorly behaved (non-homogeneous, non-symmetric) so these
results are not included in this paper.

The final multiple regression model of the MODIS/PROMICE
difference included MODIS LST, specific humidity and latent heat
flux as explanatory variables. To determine the relative influence
(effect size) of each environmental variable on the modeled differ-
ence between MODIS LST and PROMICE skin temperature, we
first calculated the overall variance explained by the multiple lin-
ear regression model (the adjusted R2 value). Then the relative
explained variance of each variable is calculated as follows. The
sum of squared residuals of the i-th variable (SSRi) is divided
by the total sum of squared residuals of the model (SST). This
gives the fraction of variance in the response variable (tempera-
ture difference) that can be explained by the i-th variable. The
fraction of variance for the i-th variable is then divided by the
sum of all fractional variances. Finally, this value is multiplied
by the adjusted R2 to give the fraction of the overall variance
that is attributed to the i-th variable.

3. Results and discussion

3.1 Comparison of MODIS and PROMICE data

Table 2 shows the number of skin temperature data points from
MODIS and PROMICE that are available at each of the 17
AWS sites over the span of the 4 years (2014–2017) of the
study, along with the number of paired data points in the two dis-
tinct periods: above freezing and below freezing. The number of
PROMICE data points varies as sites were established and decom-
missioned over this 4-year period and due to some temporary
outages that occurred during the measurement windows that
could not be repaired until the following field season. Overall,
data collection of the variables of interest had few outages during
the selected years (see Fausto and others, 2019 Appendix C). The

availability of MODIS data fluctuates with cloud presence, and
therefore the number of data points varies across sites and periods
(see Appendix Fig. 8 for a plot showing when paired MODIS LST
and PROMICE skin temperature data were available).
Additionally, the number of days in the above freezing or below
freezing period also reflects local climate effects. Figure 2 shows
the MODIS LST data and PROMICE skin temperature data
over the year of 2015 at the THU_U site as a representative sam-
ple of the time series seen in other years. The MODIS LST data
often fall below the PROMICE skin temperature data in the
spring, fall and winter. During the summer (which largely over-
laps with the above freezing period), the PROMICE skin tempera-
ture data should have an upper boundary at 0°C, as all sensors are
placed over ice; however, as mentioned above, calculated
PROMICE skin temperatures are sometimes >0°C. In the above
freezing period, we observe the MODIS LST data fluctuate both
above and below 0°C. In Figure 3, a 1:1 plot of PROMICE skin
temperature and MODIS LST is shown for the same THU_U
site data in 2015. We note that the data are further from the
1:1 line at lower temperatures, suggesting the presence of a pro-
gressive cold bias that will be investigated in our multiple regres-
sion analysis. Additionally, the large deviation from the 1:1 plot
when temperatures are at or above freezing (see Fig. 3) led us to
approach the analysis of temperatures above 0°C by analyzing
the ‘clipped’ and ‘unclipped’ data as described in Section 2.2.

When MODIS LST is compared to PROMICE skin tempera-
ture, we observe an average cold bias of 1.8°C and RMSE of
3.9°C. To put our analysis in context of past validation studies,
we also analyzed the difference between MODIS LST and
PROMICE air temperature data. When analyzing the aggregated
differences between MODIS LST and PROMICE air temperature
data, we identified an average cold bias of 4.6°C and RMSE of 5.2°
C (Table 3). We observe that the distribution of the difference
between MODIS LST and PROMICE air temperature data is cen-
tered above the 0°C line indicating the MODIS LST data are
colder than the PROMICE air temperature data in the majority
(over 50%) of cases (Fig. 4d). The histograms presented in
Figure 4 and the data in Table 3 suggest that MODIS LST mea-
surements more accurately match skin temperature measurements
than the near-surface air measurements. The same conclusion
was reached by Adolph and others (2018), showing that
MODIS LST more closely matched in situ skin temperatures
than in situ air temperature due to near-surface inversions at
Summit, Greenland. Additionally, the calculation of the MODIS

Table 2. Number of data points in the PROMICE skin temperature, MODIS LST,
below freezing period paired measurements, above freezing period paired
measurements and total paired measurements datasets for each AWS site

AWS PROMICE MODIS
Paired (below

freezing)
Paired (above

freezing)
Paired
(total)

KAN_L 13 793 3376 1444 1011 2455
KAN_M 11 369 4236 2124 631 2755
KAN_U 9957 3438 1610 346 1956
KPC_L 12 631 8823 3254 1246 4500
KPC_U 9414 10 769 3146 1210 4356
NUK_L 13 258 2976 1294 947 2241
NUK_U 10 964 3048 1403 615 2018
QAS_L 13 867 2402 1072 539 1611
QAS_U 10 531 3209 1117 605 1722
SCO_L 12 587 5744 2167 1255 3422
SCO_U 15 000 6206 2938 1537 4475
TAS_A 8567 3158 969 752 1721
TAS_L 5906 2615 480 338 818
THU_L 12 922 7224 3698 1253 4951
THU_U 13 060 7559 4099 1058 5157
UPE_L 11 149 5943 2306 1241 3547
UPE_U 32 752 6556 4543 3407 7950
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LST is fundamentally a skin temperature and not a near-surface
air temperature, and Guillevic and others (2017) indicate that
IR surface temperature measurements should be validated with
skin temperature measurements for that reason.

In order to assess if aggregating the data into monthly periods
might result in closer alignment between the datasets, we calcu-
lated monthly averages of MODIS LST and PROMICE skin tem-
perature. We only included data in the monthly average when
there were both MODIS and PROMICE surface temperatures
available so as to avoid introducing a bias by eliminating cloudy
days from the MODIS dataset but not the PROMICE dataset.
We find that monthly aggregation does not eliminate the differ-
ence between the MODIS LST and PROMICE skin temperature
(see Fig. 5). We do find that there is a larger difference between
the monthly averages during the winter months.

3.2 Above freezing period

As described above, the above freezing period analysis includes
data points when PROMICE skin temperature is reported as

≥0°C. To analyze the difference between MODIS LST and
PROMICE skin temperature, the data were aggregated across all
17 sites and all 4 years in the above freezing periods. In this ana-
lysis, we consider both ‘clipped’ and ‘unclipped’ PROMICE skin
temperature datasets, where temperatures calculated above zero
are set to zero or they are left as is, respectively. MODIS LST
values are also often above the melting point during the summer;
therefore, we hypothesized that better agreement between the in
situ and remote temperatures would occur if the PROMICE
data were unclipped. Because the unclipped PROMICE tempera-
tures were higher than the clipped values (which are fixed at 0°C
when the unclipped value is above 0°C), we see an expected cold
bias in the above freezing period MODIS data that we do not
observe when MODIS LST is compared to clipped PROMICE
skin temperature data. Statistics for this comparison are presented
in Table 3. Comparing MODIS LST to the unclipped PROMICE
skin temperatures, we identified high variability between datasets
(RMSE = 4.9°C) and a mean bias of 0.34°C (Table 3). The distri-
bution of the aggregated above freezing data for all years is shown
in Figure 4b, and individual histograms for each site do not show
a consistent bias or distribution (Appendix A, Fig. 10). When
MODIS LST was compared to the clipped PROMICE skin tem-
perature data where values above 0°C are corrected down to 0°
C (clipped), we observe a mean bias of −1.0°C and RMSE of
4.9°C.

3.3 Below freezing period

Considering all below freezing period data from all sites, the dis-
tribution of difference in the aggregated MODIS LST and
PROMICE skin temperature data during the below freezing per-
iod is distributed around a point above the zero line (Fig. 4a).
Individual histograms for each site consistently show this distribu-
tion centered above the zero line (Appendix A, Fig. 9). This sup-
ports the existence of a cold bias in the MODIS LST data during
the below freezing period, and this cold bias is present across all
ablation zones of the GrIS in this study. Analyzing the difference
between MODIS LST and PROMICE skin temperature data
aggregated across all sites and all years in the below freezing per-
iods, we identified an average cold bias of 2.4°C in the MODIS
LST data (Table 3).

We also observed that the paired MODIS LST and PROMICE
skin temperatures fall further beneath the one-to-one line at lower

Fig. 2. Time series of PROMICE skin temperatures and MODIS LST at the THU_U site for 2015. MODIS LST is shown in red and PROMICE skin temperature is shown in
blue.

Fig. 3. MODIS LST plotted against PROMICE skin temperature readings for the THU_U
site for the year 2015. The red line marks the one-to-one line. Points above the red
line indicate instances when MODIS recorded higher temperatures than PROMICE,
while points below indicate instances when MODIS recorded lower temperatures
than PROMICE.
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temperatures in Figure 3, suggesting a progressive cold bias in the
MODIS LST data. We find that when the MODIS LST tempera-
ture is between 0 and −25°C, the average bias is 2.1°C, and when
the MODIS LST temperature is below −25°C, an average cold bias
of 4.6°C in the MODIS LST data exists (Table 3). This clearly
indicates a cold bias is present in MODIS LST data during the
below freezing period that is larger at lower temperatures.

3.4 Effect of environmental variables on the bias

The multiple linear regression analysis showed that MODIS LST,
specific humidity and latent heat flux can explain variability in the
MODIS/PROMICE difference. Figure 6 shows what percent of
variance in the MODIS/PROMICE difference is explained by
each of the explanatory variables at a given site from all years

of data (see Appendix A, Table 4 for maximum, minimum and
average percentages of variance explained by each variable).
These relationships are significant with p-values <0.001 meaning
that each of the predictor variables in the model is significant in
improving the model performance; there is a significant relation-
ship between predictor variables and temperature difference, with
the exception of specific humidity at KPC_U which is not signifi-
cant. Our analysis of the variance explained by each variable
showed that the explanatory variables (MODIS LST, specific
humidity and latent heat flux) can collectively explain 7.7–
70.9% of variation in the MODIS/PROMICE difference in the
below freezing period. As shown in Figure 6, temperature typically
explains the most variance followed by specific humidity at most
sites. The variation in ability to explain the bias means that at
some sites the difference between MODIS LST and PROMICE
skin temperature is not correlated with our explanatory variables.
Less variance can be explained at sites KAN_M and KPC_U com-
pared to other sites. This same multiple linear regression with
Student’s t distribution was conducted with all data (both above
freezing and below freezing periods) and is presented in
Appendix A, Figure 11.

Our multiple regression analysis of the difference between
MODIS LST and PROMICE skin temperature data shows the
cold bias becomes stronger at lower temperatures, higher specific
humidity and when latent heat flux is negative, drawing energy

Table 3. MODIS and PROMICE comparison statistics including mean bias, median bias, root mean square error and std dev. for the above freezing period, the below
freezing period, the below freezing period when temperatures are above −25°C, the below freezing period when temperatures are below −25°C, and both above
freezing and below freezing periods combined

Temperature range MODIS dataset PROMICE dataset Mean bias (°C) Standard error (°C) Median bias (°C) RMSE (°C) Std dev. (°C) Observations

−25°C < x < 0°C - - 2.1 0.01 1.8 2.6 3.3 35 154
−25°C > x - - 4.6 0.1 4.3 3.5 5.8 8659
Below 0°C - - 2.4 0.01 2.0 3.2 4.0 37 025
Above 0°C Unclipped Clipped −1.0 −0.01 −0.1 4.9 5.0 16 045
Above 0°C Unclipped Unclipped 0.3 0.002 1.3 4.9 4.9 16 045
All Unclipped Clipped 1.4 0.01 1.2 4.1 4.3 53 070
All Unclipped Unclipped 1.8 0.01 1.7 3.9 4.3 53 070
All Clipped Clipped 2.3 0.01 1.7 3.0 3.8 44 409
All Unclipped Air temp 4.6 0.02 3.9 5.2 5.2 80 502

These statistics are reported for both unaltered MODIS LST data (‘Unclipped’) and MODIS LST data with values above 0°C set to 0°C (‘Clipped’) compared to both PROMICE skin temperature
data with values above 0°C set to 0°C (‘Clipped’) and uncorrected PROMICE skin temperature data (‘Unclipped’). All mean biases are significantly different from 0°C at a 5% significance level.

Fig. 4. Histograms of the MODIS difference calculated as PROMICE temperature
minus MODIS LST at all 17 sites for years 2014–2017. Zero is indicated by a red ver-
tical line. Figures (a–c) compare MODIS LST to PROMICE skin temperature in the (a)
below freezing period, (b) above freezing period and (c) all data. Figure (d) compares
MODIS LST with PROMICE 2 m air temperature.

Fig. 5. Temperature difference between monthly average MODIS LST and PROMICE
skin temperature shown for each month of the year. Each boxplot shows the median
for all 17 sites over the 4 years in a given month, with bounds showing the 75% quar-
tile and 25% quartile ranges. A horizontal line is included at 0°C that would represent
an exact match between the monthly average MODIS LST and PROMICE skin tem-
perature. There is more agreement between the datasets during summer months
than the rest of the year. The mean difference when all months are grouped together
is 2.94°C, indicating MODIS LST monthly averages are lower than PROMICE monthly
averages.
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Fig. 6. Stacked histograms showing percentage of variance in the MODIS/PROMICE difference explained by MODIS LST, specific humidity and latent heat flux in our
multiple regression model for all 17 sites for the below freezing period.

Fig. 7. Leverage plots from our multiple linear regression analysis of the MODIS/PROMICE difference at the THU_U site for the below freezing period for all years. In
each plot ‘adjusted temperature difference’ represents the residuals of MODIS/PROMICE temperature difference regressed against the two predictor variables not
included in the plot (i.e. in the MODIS LST plot, adjusted temperature difference is the residuals of the MODIS/PROMICE difference regressed against specific humid-
ity and latent heat flux). The adjusted MODIS LST is the residual of MODIS LST regressed against specific humidity and latent heat flux, adjusted specific humidity is
the residual of specific humidity regressed against MODIS LST and latent heat flux, and adjusted latent heat flux is the residual of latent heat flux regressed against
MODIS LST and specific humidity.
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from the surface (Fig. 7). Representative leverage plots (e.g. Sall,
1990) resulting from the multiple linear regression analysis
from a single site are shown in Figure 7, indicating that the
MODIS LST cold bias is larger at lower temperatures and higher
specific humidity. Data presented in Figure 7 are from the
THU_U site, as a representative example of leverage plots seen
at the array of sites. In the below freezing period, we found regres-
sion coefficients of −0.4°C °C−1 ± 0.2 associated with MODIS
LST, 2.9°C (g kg−1)−1 ± 1.6 associated with specific humidity
and −0.05°C (Wm−2)−1 associated with latent heat flux averaged
across sites. The fact that MODIS LST has a larger difference with
in situ skin temperature at lower temperatures affirms the progres-
sive cold bias in MODIS data over Greenland found in Shuman
and others (2014).

Studies have shown MODIS algorithms can fail to identify
cloud cover, particularly in polar regions (Ackerman and others,
2008; Williamson and others, 2013), and failure to effectively
screen out all cloudy pixels can contaminate MODIS LST data
(Westermann and others, 2012; Østby and others, 2014). It is pos-
sible that there is some undetected cloud contamination (or fog at
the surface level) that is correlated with low MODIS LST and high
specific humidity that explains some of the MODIS LST bias. The
relationship between specific humidity and the magnitude of the
MODIS LST bias may be indicative of issues with the implemen-
tation of corrections for atmospheric water vapor content, a vari-
able in the MxD11 LST algorithm. Malakar and Hulley (2016)
present a water vapor scaling model which improves the atmos-
pheric correction in thermal infrared bands and therefore can
improve LST calculations that implement the TES algorithm.
Because the MxD11 product uses the split window technique
and a fixed lookup table for emissivity, some of the variability
in emissivity may be lost and that could be correlated with
instances of high specific humidity.

Conversely, it is possible that the MODIS/PROMICE differ-
ence is larger at higher specific humidities because of increased
likelihood of hoar frost growing on the PROMICE AWS sensors,
causing the PROMICE skin temperature data to become inaccur-
ate. This measurement issue could create a false cold bias in the
MODIS LST data when conditions are favorable for frost growth.
We filter out data where relative humidity is above 99% to remove
data suspected of frost contamination to mitigate this potential
impact, but it is an imperfect attempt to eliminate this issue.

During the below freezing period, the latent heat flux would be
a result of vapor transport through sublimation or condensation.
Positive fluxes are indicative of deposition or condensation in the
form of surface hoar growth or riming of the snow surface.
Negative fluxes would result from sublimation, though at low
temperatures, the capacity of air to hold water vapor is low
(Albert and Hawley, 2000). The slope of the correlation between
the latent heat flux and the MODIS/PROMICE difference indi-
cates that when latent heat flux is negative, there is a larger tem-
perature difference. A potential mechanism to account for this
effect is unclear.

3.5 Comparison to previous MODIS validation studies

Several prior studies have compared near-surface air temperature
to MODIS LST in an effort to validate MODIS LST products
when air temperatures were the only available in situ measure-
ments. These studies found that MODIS LST was often lower
than the near-surface air temperature (Koenig and Hall, 2010;
Østby and others, 2014; Shuman and others, 2014; Williamson
and others, 2017); however, near-surface inversions may explain
some of the identified MODIS LST cold bias. Adolph and others
(2018) did not identify a cold bias in the MxD11 LST product
when compared to in situ skin temperature measurements at

the Summit station on the GrIS on 8 June to 18 July 2015.
Using the same MODIS product, in the below freezing period,
our analysis clearly identifies a cold bias in the MODIS LST
data corroborating Koenig and Hall (2010), Østby and others
(2014), Shuman and others (2014) and Williamson and others
(2017). The RMSE calculated when considering all data in our
analysis is 3.9°C, which is also comparable to RMSE values
found in prior studies that did use skin for comparison; RMSE
= 3.0°C in Østby and others (2014), and RMSE = 3.1°C in
Koenig and Hall (2010). These studies had fewer data points
and were more limited in spatial and temporal extent. Our mul-
tiple linear regression findings support a progressive cold bias,
as proposed by Shuman and others (2014). This cold bias that
is more pronounced at low temperatures could be related to issues
identified in MODIS instrument calibration at temperatures
below −20°C due to the MODIS sensors long surpassing their
design lifetime of 6 years (Wenny and others, 2012; Xiaoxiong
and others, 2015).

When MxD11_L2 Collection 6 LST data are used, accounting
for this progressive cold bias will be important to ensure that any
spatial or temporal trends that are identified are still present when
this source of error is considered alongside other sources of error
or uncertainty in the analyses.

3.6 Uncertainty in measurements and analysis

There are several spatial and temporal differences between the
MODIS LST measurements and the PROMICE in situ skin tem-
perature measurements. The MxD11 LST product averages data
over a 1 by 1 km area while the PROMICE in situ AWSs collect
data from an area on the scale of a meter. Additionally, the
MODIS LST measurements can occur up to 10 km and 30 min
away from the corresponding PROMICE skin measurement.
These differences and the inherent error of both measurements
certainly will cause some differences between any two paired mea-
surements; however, we do not anticipate that this introduces sys-
tematic bias for the following reasons. First, we are looking at the
average difference between the PROMICE and MODIS measure-
ments, and we have typically 1000–4000 data points at each site in
each period. Second, there is no embedded systematic directional
(north/south, east/west) bias in the MODIS versus PROMICE
data points; the closest (temporally and spatially) non-missing
MODIS data point was chosen. There is also no embedded sys-
temic temporal offset, either MODIS or PROMICE data may
lead or lag the other, so temperature variability on the timescale
of <1 h should not lead to a directional offset. These chosen meth-
ods follow precedent from prior studies comparing MODIS and
in situ measurements (e.g. Westermann and others, 2012;
Adolph and others, 2018). Since several of the AWS are within
10 km of the edge of the ice sheet, it is probable that some
reported MODIS LSTs are for non-snow/ice surfaces, particularly
in the above freezing period comparison. Additionally, terrain
complexity surrounding the sites varies (see Fig. 1) and could
be a source of error in our analyses. We conducted a sensitivity
study of the ‘pairing’ radius, altering it from 10 km down to 1
km so that the MODIS pixel was in closer proximity to the
PROMICE AWS. At the 1 km distance, all MODIS LSTs would
be on the ice. Constricting the paired radius did reduce the
mean bias slightly, but also had the effect of increasing the
RMSE (see Appendix Table 6). Therefore, while the choice of a
10 km radius cutoff may introduce some error to the analysis, it
does not affect the overall conclusions.

Since MODIS can only calculate LST in clear skies, average
MODIS LST is lower than average in situ temperatures over a
given time period (Westermann and others, 2012), though tech-
niques have been developed to interpolate near-surface
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temperatures that are missing due to cloud cover, and more
research on the most effective aggregation methods is needed
(Williamson and others, 2014). Because we compare data at a
given point in time, this issue does not directly affect any given
comparison point within the dataset under consideration; how-
ever, it is important to consider the combined implications of
this known clear sky cold bias with the progressive cold bias pre-
sented in this work. Given the observed progressive nature of the
MODIS cold bias, the clear sky bias would amplify the average
cold bias of the MODIS LST data. Additionally, any misidentified
cloudy days would introduce inaccuracy into the MODIS LST
data, most often resulting in temperatures lower than ground-
based temperatures. Westermann and others (2012) were able
to identify an average MODIS cold bias effect from misidentified
cloudy days, and Adolph and others (2018) were able to reduce
the MODIS cold bias with additional cloud screening. The atmos-
phere between the radiation sensor and the ice/snow surface can
also influence the outgoing longwave measurement, especially
when the air temperature is high (above 5°C) modulating out-
going radiation measurement as a combination of both surface
radiation and radiation from the warm air (Giesen and others,
2014; Fausto and others, 2016). This might lead to increased
error in PROMICE skin temperature measurements during the
above freezing period, but is unlikely to affect results in the
below freezing period.

Using the reported error of ±5% for the PROMICE AWS long-
wave radiation measurements from the pyrometers, we propa-
gated error of the calculated PROMICE skin temperature using
Eqn (2) and determined an average uncertainty in the
PROMICE skin temperature of ±3.4°C. This is a conservative esti-
mate of the error, and we anticipate that actual error is smaller.
Using the error reported in the MxD11 product, we calculated
MODIS LST data to have an average error of ±0.2°C. As a result,
the combined potential measurement error in the MODIS/
PROMICE difference is 3.41°C, which is an upper bound for
the magnitude of this error. The average bias when the MODIS
temperatures are below −25°C is 4.6°C, indicating a cold bias
that is certainly beyond potential measurement errors. The sys-
tematic nature of the cold bias that increases as temperature
decreases in the below freezing period is also unexplained by
the measurement uncertainty. Additionally, the average
MODIS/PROMICE difference in the above freezing, below freez-
ing and all periods was all found to be significantly different from
0°C at a 5% significance level using a one-sided t-test.

Because emissivity is known to vary with surface type, we
tested the effect of altering the emissivity of the surface in the cal-
culations of PROMICE skin temperature. We tested emissivity
values ranging from 0.7 to 1, and all results presented in the
manuscript implement a PROMICE emissivity of 0.97. We par-
ticularly expected that when separating the data into the above
freezing period and the below freezing period, we might see the
effect of the changing emissivity. When emissivity is decreased
to 0.7, the mean difference, median difference and RMSE all
increase, and when the emissivity is increased up to 1, these
metrics all decrease. The only exception is that the RMSE in the
above freezing period does not decrease due to the increase in
emissivity within the range from 0.95 to 1. This is likely because
the surface type (and thus emissivity) is most variable in the above
freezing period, so all emissivities within that range provide simi-
lar results. While reported statistics do change slightly as we alter
the emissivity, the progressive cold bias is evident for all emissiv-
ities tested (Appendix A, Table 5 and Fig. 12). To investigate if
using Eqn (2) to calculate surface temperature was a source of
error, we directly compared MODIS LST to upwelling longwave
radiation yielding a similar R2 value (0.92) to the direct compari-
son between MODIS LST and PROMICE skin temperature (R2 =

0.93, see Appendix A, Fig. 13). The use of look up values for emis-
sivities implemented in the MxD11 product is a known limitation
of the product (Malakar and Hulley, 2016). This issue did not
result in a cold bias in the validation by Adolph and others
(2018) where the MxD11 product was used at Summit,
Greenland. It is possible that emissivity variability was not a factor
in that study because there was significantly less variability in sur-
face type due to a shorter time window and generally less surface
variability in the accumulation zone as compared to the ablation
zone.

Other potential sources of uncertainty in the PROMICE data-
set include the possibility of liquid water at the surface during
warm periods, surface roughness and potential off-nadir measure-
ments due to sloping of the surface or tilt in the instruments. The
tilt of the weather station varies and the maximum tilt recorded at
each site and each year is reported in Appendix A, Table 7. The
maximum tilt varies from 2.8 to 26.3° in one year at one site in
the most extreme case. The tilt of the AWS will change the field
of view of the instrument. Shortwave radiation data and calculated
albedo are corrected to account for this tilt; however, other mea-
surements are not corrected.

4. Conclusion

Our findings suggest that a progressive cold bias is present in the
MxD11 LST product when temperatures are below freezing across
the ablation zone of the GrIS. An individual MODIS LST data
point could be above or below the true skin temperature, but
on average researchers should expect a cold bias in the MODIS
LST data over the GrIS, and studies utilizing this MODIS product
should incorporate this error into their analyses. In the below
freezing period, we found an average cold bias of 2.4 ± 0.01°C
(mean ± standard error) in the MODIS LST data. For MODIS
LST between 0 and −25°C, we found an average cold bias of
2.1 ± 0.01°C, and for MODIS LST below −25°C, we found an
average cold bias of 4.6 ± 0.1°C. In the above freezing period,
we observed an average cold bias of 0.3 ± 0.002°C in the
MODIS LST data. More detailed study of the above freezing per-
iod is needed as the behavior of temperature data in the above
freezing period is inconsistent in this study and ice surface tem-
perature measurements above 0°C likely do not reflect the true
ice surface temperature. Aside from temperature, specific humid-
ity and latent heat flux are the main environmental variables that
correlate with the MODIS LST bias. This conclusion supports
ongoing work to improve MODIS LST algorithms, with a particu-
lar focus on atmospheric water vapor corrections and low tem-
perature calibration (Xiaoxiong and others, 2015; Malakar and
Hulley, 2016). However, it is also possible that higher specific
humidities increase the likelihood of hoar frost growing on the
PROMICE AWS sensors causing the PROMICE skin temperature
data to become inaccurate creating a false cold bias in the MODIS
LST data. While remote AWS stations provide invaluable data for
monitoring climate, similar studies conducted at continuously-
maintained stations would allow us to ensure instruments are
operating properly and to rectify measurement issues quickly.
Such validation studies would be beneficial in definitely determin-
ing the existence and extent of the MODIS LST cold bias.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2022.51.

Data availability. AWS data from the Greenland Ice Sheet, including skin
and 2m air temperature and humidity, were acquired from the Programme
for Monitoring the Greenland Ice Sheet (https://doi.org/10.22008/promice/
data/aws). MODIS surface temperature data were acquired from NASA LP
DAAC (https://doi.org/10.5067/MODIS/MYD11_L2.006).
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