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Abstract. Methods from fibrewise homology theory are illustrated by compu-
tations of cohomology rings of certain mapping spaces arising in the geometry of
loop groups, specifically the spaces of maps from S1 to the classifying space BSOðnÞ
of SOðnÞ and maps from S2 to BSUðnÞ.
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1. Introduction. This note is concerned with the application of fibrewise
homology theory to two specific computations: the calculation of (i) the mod 2
cohomology ring of the classifying space of the loop group LSOðnÞ ¼
map ðS1;SOðnÞÞ, and (ii) the integral cohomology ring of the space map ðS2;BSUðnÞÞ
of maps from S2 to BSUðnÞ (or ‘‘space’’ of principal SUðnÞ-bundles over the
Riemann sphere, [12, p. 157]). The interest lies in the method, which interprets the
complicated cohomology rings as duals of fibrewise homology groups admitting an
easily described Hopf algebra structure; the results themselves are mostly known, at
least in special cases.

The relationship between the two problems will be clarified if we identify the
classifying space BLSOðnÞ of the loop group with LBSOðnÞ ¼ map ðS1;BSOðnÞÞ; see
[1]. (The space of maps is connected.) For any integer m � 1 and compact Lie group
G, the space map ðSm;BGÞ fibres over BG by evaluation at the basepoint:
map ðSm;BGÞ ! BG, with fibre �m�1G. The following description of this fibration is
well known; see, for example, [6].

Lemma 1.1. There is a fibre-homotopy equivalence

over BG, where the action of G on �m�1G is by conjugation on G, and the righthand
map EG �G �m�1G ! BG is the projection to EG=G ¼ BG.

One way of seeing this is to look at the homotopy functors classified by the two
spaces. A pointed homotopy class X ! map ðSm;BGÞ classifies principal G-bundles
over X � Sm together with a trivialization of the bundle over 	 � Sm. (We denote
any basepoint by 	.) Such a bundle can be described, in the usual way, by its
restriction to X � 	, which is a principal G-bundle P ! X (with a trivialization over
the basepoint of X ), and a clutching map Sm�1 ! Aut ðPÞ. It is precisely this data
which is classified by EG �G �m�1G. &
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In the two examples we are thus concerned with the cohomology of

:

More generally, let us fix a finite complex B and an n-dimensional vector bundle
� over B, where either

(i) � is real and equipped with a Euclidean inner product, or
(ii) � is complex, with a Hermitian inner product.

In case (i), we write Oð�Þ ! B for the orthogonal bundle of �; its fibre at a point
b 2 B is thus the group Oð�bÞ of orthogonal automorphisms of the fibre �b of the
Euclidean bundle. The sub-bundle of special orthogonal groups is written as
SOð�Þ ! B. In case (ii), we are interested in the bundles Uð�Þ ! B and SUð�Þ ! B
of unitary and special unitary groups. These are pointed fibre bundles (with base-
point the identity in each fibre) and we can form the fibrewise loop spaces
�BUð�Þ ! B and �BSUð�Þ ! B, which are (locally trivial) bundles whose fibre at b
is the loop space �Uð�bÞ or �SUð�bÞ, respectively.

We shall see that (i) the mod 2 cohomology ring H	ðOð�Þ; F2Þ and (ii) the inte-
gral cohomology ring H	ð�BUð�Þ; ZÞ have the structure of Hopf algebras over
H	ðB; F2Þ or H	ðB; ZÞ. These Hopf algebras or, to be exact, their duals are descri-
bed explicitly in Sections 3 and 4, respectively.

The cohomology of LBSOðnÞ and map ðS2;BSUðnÞÞ is obtained in Section 5
from these general results by taking B to be a finite skeleton of BSOðnÞ or BSUðnÞ.
The cohomology of LBSOðnÞ (¼ BLSOðnÞ) is surely well known; for computations
of LBG (or BLG) for other connected compact Lie groups G see [8]. The computa-
tion for map ðS2; BSUð2ÞÞ can be found in [9], [10].

2. Fibrewise homology and cohomology. The Pontrjagin ring structure of
H	ðOðnÞ; F2Þ and H	ð�UðnÞ; ZÞ is simpler to describe than the cohomology ring
structure of H	ðOðnÞ; F2Þ and H	ð�UðnÞ; ZÞ. We shall approach the fibrewise com-
putation in the same vein, and to do this we need to review some facts about fibre-
wise homology and cohomology. More details, including proofs, can be found in [4]
(Part II, Section 15).

Fix a base space B, which will be a finite complex. We work with locally trivial
fibrewise pointed spaces over B, which we shall call pointed fibre bundles, with fibre
a finite pointed complex. These will be denoted generically by X ! B, Y ! B and
Z ! B. The fibre of X ! B at b 2 B is written as Xb. Fixing coefficients, F2 in case
(i) or Z in case (ii), we denote the Eilenberg-MacLane space KðF2; nÞ or KðZ; nÞ by
Kn.

We define the fibrewise cohomology groups for i 2 Z, following [5], as direct
limits of sets of fibrewise pointed homotopy classes over B:

Hi
BfX; Yg :¼ lim

�!
n

½�n
BX; ðB � KnþiÞ ^B Y�B;

where �B is the fibrewise suspension. There are composition and product maps:
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Hi
BfY; Zg � Hj

BfX; Yg ! Hiþj
B fX; Zg;

Hi
BfX; Yg � Hj

BfX
0; Y 0g ! Hiþj

B fX ^B X 0; Y ^B Y 0g;

with the usual properties. The fibrewise homology category over B has as morphisms
X ! Y the ‘‘homology maps’’ H0

BfX; Yg over B.
If B is a point, we drop the suffix and write simply H	fX; Yg. In that case,

HifX; S0g is the (reduced) cohomology ~HHiðXÞ of the pointed space X, and
HifS0; Yg is the homology ~HH�iðY Þ of Y.

In general, we refer to H	
BfX; B � S0g as the fibrewise cohomology of the fibre-

wise pointed space X ! B, and to Hi
BfB � S0; Yg as the fibrewise homology of Y

over B. The fibrewise cohomology group is easily seen to be just the (reduced)
cohomology group of X modulo the subspace B included as the fibrewise basepoint:

Hi
BfX; B � S0g ¼ ~HHiðX=BÞ: ð2:1Þ

There is no similar classical interpretation of fibrewise homology groups.
Our homology computations will rest on the Leray-Hirsch lemma.

Lemma 2.2. Suppose that there exist classes

ei 2 Hni

B fX; Yg ð1 � i � mÞ;

which restrict to a basis of the cohomology H	fXb; Ybg of the fibres for each b 2 B.
Then ~HH	

BfX; Yg is free over the graded ring R :¼ H	ðBÞ on the basis e1; . . . ; em.

This can be established in the same way as the classical Leray-Hirsch lemma in
cohomology. For a discussion of this result and of the next lemma, see [4] (Part II,
Lemma 15.14).

Lemma 2.3. The following conditions on a pointed fibre bundle X ! B are
equivalent.

(i) The bundle is isomorphic in the fibrewise homology category to a trivial bun-
dle B � F with fibre F a wedge of spheres.

(ii) There exist (homogeneous) classes ei, 1 � i � m, in the fibrewise cohomology
group H	

BfX; B � S0g ¼ ~HH	ðX=BÞ that restrict to a basis of the cohomology
~HH	ðXbÞ of each fibre, b 2 B.

(iii) There exist (homogeneous) classes e0i, 1 � i � m, in the fibrewise homology
group H	

BfB � S0; Xg that restrict to a basis of the homology ~HH	ðXbÞ of each
fibre, b 2 B.

Definition 2.4. We say that a pointed fibre bundle (with fibre a finite pointed
complex) X ! B satisfying the equivalent conditions (2.3) is H-free over B.

The Künneth theorems for H-free pointed fibre bundles follow directly from
Lemmas 2.2 and 2.3.

Lemma 2.5. Let X ! B and Y ! B be H-free pointed fibre bundles (with fibres
finite pointed complexes). Then
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H	
BfX; Yg ¼ Hom	

RðH
	
BfY; B � S0g;H	

BfX; B � S0gÞ

¼ Hom	
RðH

	
BfB � S0; Xg;H	

BfB � S0; YgÞ:

In particular, there is duality between homology and cohomology over B:

H	
BfB � S0; Yg ¼ Hom	

RðH
	
BfY; B � S0g;RÞ:

Lemma 2.6. Suppose that the four pointed fibre bundles (with fibres finite pointed
complexes) X, X 0, Y and Y 0 over B are H-free. Then there is a Künneth isomorphism

H	
BfX ^B X 0; Y ^B Y 0g ¼ H	

BfX; Yg �R H	
BfX

0; Y 0g:

3. The cohomology of Oð�Þ. In this section we work in the framework (i) of
Section 1; P will be used for the real projective space, and H will denote homology
with F2-coefficients.

The reflection map PðRn
Þ ! OðnÞ includes the real projective space as the gen-

erating variety into the component of determinant �1. Writing xi for the generator
of HiðPðR

n
ÞÞ, 0 � i < n, we have an inclusion

H	ðPðR
n
ÞÞ ¼ ~HH	ðPðR

n
ÞþÞ ¼

Mn�1
i¼0

F2xi ,!

~HH	ðOðnÞþÞ ¼ F2½x0; . . . ; xn�1�=ðx
2
0 ¼ 1; x2i ¼ 0 : 0 < i < nÞ:

ð3:1Þ

For the sake of the generalization, it is convenient to adjoin a basepoint to the two
spaces, and this is denoted by a subscript ‘‘þ’’. The class x0 takes care of the two
components.

We can make exactly the same calculation over B. A subscript ‘‘þB’’ denotes
adjunction of a basepoint in each fibre; that is, disjoint union with B. The projective
bundle Pð�Þ is included as a sub-bundle in Oð�Þ, and the pointed fibre bundle Pð�ÞþB

is included in Oð�ÞþB. Now

H	
BfPð�ÞþB; B � S0g ¼ H	ðPð�ÞÞ ¼ R½½t��=ðtn þ w1t

n�1 þ . . .þ wnÞ;

where the wi are the Stiefel-Whitney classes of �, t is the Euler class of the Hopf line
bundle, and R as in Section 2 is H	ðBÞ. From Lemma 2.5,

H	
BfB � S0; Pð�ÞþBg ¼ HomRðH

	ðPð�ÞÞ;RÞ ¼
Mn�1
i¼0

Rxi;

where the basis ðxiÞ is dual to the basis ðt jÞ of the cohomology: hxi; t
ji ¼ �ij,

0 � i; j < n. Note that the generator xi 2 H�i
B fB � S0; Pð�ÞþBg has negative degree

�i. We use the inclusion Pð�Þ ,!Oð�Þ to map xi to a class, which we denote by the
same symbol, in H�i

B fB � S0; Oð�ÞþBg.
The fibrewise multiplication

Oð�Þ �B Oð�Þ ! Oð�Þ or Oð�ÞþB ^B Oð�ÞþB ! Oð�ÞþB
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determines a Pontrjagin multiplication on the fibrewise homology group

A :¼ H	
BfB � S0; Oð�ÞþBg;

which thus becomes a graded R-algebra. Using the Leray-Hirsch lemma (2.2), we see
that A is free as an R-module with basis xi1xi2 . . .xir , 0 � i1 < i2 < . . . < ir < n.

By Lemma 2.6, H	
BfB � S0; Oð�ÞþB ^B Oð�ÞþBg is equal to A �R A, and the

diagonal determines a co-multiplication � : A ! A �R A that makes A a Hopf-
algebra over R, because the group structure translates formally into the structure of
a group object in the category of graded R-algebras. The diagonal can be computed
on Pð�Þ and then extended to A as an R-algebra homomorphism. We have

�xi ¼
X

0� j;k<n

h�xi; t
j � tkixj � xk

¼
X

0� j;k<n

hxi; t
jþkixj � xk ¼

X
0� j;k<n

wi;jþk xj � xk;
ð3:2Þ

where the coefficients wi; j, 0 � i < n, j � 0, are defined by

t j ¼
X
0�i<n

wi;jt
i ð3:3Þ

in R½½t��=ðtn þ w1t
n�1 þ . . .þ wnÞ. Thus, wi; j ¼ �i; j for j < n and wi;n ¼ wn�i.

To describe the ring structure of A we need to show that the multiplication is
commutative and to compute the classes x2

i . This can be done by including � as a
summand of a trivial bundle: � � �? ¼ B � RN. Let us write the standard generators
of H	ðOðNÞÞ as Xi, 0 � i < N, and look at the maps in homology induced by the
inclusion of Pð�Þ in B � PðRN

Þ and Oð�Þ in B � OðNÞ. Since hxi; t
ji ¼ wi; j, we have

xi ¼
X
0�j<N

wi;jXj ¼ Xi þ
X

n�j<N

wi;jXj ð0 � i < nÞ:

Hence xixj ¼ xjxi, x2i ¼ 0 for i > 0 and x20 ¼ 1, by (3.1).
The antipode involution A ! A, induced by the inverse Oð�Þ ! Oð�Þ, is the

identity, because the inverse is the identity on the space of reflections Pð�Þ.
It is also routine to calculate the action of the dual Steenrod squares: we have

hð	SqÞkxi; t
ji ¼ hxi;Sqkðt jÞi ¼ hxi;

j

k

� �
t jþki ¼

j

k

� �
wi; jþk:

These results can be summarized as follows.

Proposition 3.4. As a Hopf algebra over R ¼ H	ðBÞ, the fibrewise homology of
Oð�Þ is

H	
BfB � S0; Oð�ÞþBg ¼ R½x0; . . . ; xn�1�=ðx

2
0 ¼ 1; x2i ¼ 0 : 0 < i < nÞ;

with co-multiplication given by (3.2). The sub-algebra R½x1; . . . ; xn�1� is the fibrewise
homology of SOð�Þ. The action of the dual Steenrod squares is determined by
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ð	SqÞkxi ¼
X

k� j<n

j

k

� �
wi; jþk xj: &

In principle we have thus obtained, by duality, a description of the cohomology
ring H	ðOð�ÞÞ.

4. The cohomology of �BUð�Þ. We work now in the framework (ii) of Section 1.
In this section H will denote homology with integral coefficients and P will be used
for complex projective space.

The complex projective space PðCn
Þ is included as a generating variety in �UðnÞ

and, if we write ~HH2iðPðC
n
ÞþÞ ¼ Zxi, then

~HH	ð�UðnÞþÞ ¼ Z½x0; x
�1
0 �½x1; . . . ; xn�1�

as a Pontrjagin ring. The components of �UðnÞ are indexed by the degree (in Z) of
the determinant: �UðnÞ ! �S1. The classes xi lie in the degree 1 component and
multiplication by x0 moves from one component to the next.

We can now argue almost exactly as in the previous section (ignoring, for the
moment, the fact that �UðnÞ is not a finite complex). We have

H	
BfPð�ÞþB; B � S0g ¼ H	ðPð�ÞÞ ¼ R½½t��=ðtn þ c1t

n�1 þ . . .þ cnÞ;

where the ci are the Chern classes of � and t is the Euler class of the (dual) Hopf line
bundle. The dual fibrewise homology is

H	
BfB � S0; Pð�ÞþBg ¼

Mn�1
i¼0

Rxi;

where hxi; t
ji ¼ �i;j, 0 � i; j < n, xi 2 H�2i. Again, let us write

t j ¼
X
0�i<n

ci;jt
i ð4:1Þ

in H	ðPð�ÞÞ. From the homotopy-commutativity of �BUð�Þ, we deduce that the
Pontrjagin multiplication is commutative.

Proposition 4.2. As a Pontrjagin algebra over R, the fibrewise homology of
�BUð�Þ is given by

H	
BfB � S0; ð�BUð�ÞÞþBg ¼ R½x0; x

�1
0 �½x1; x2; . . . ; xn�1�;

and admits a natural Hopf algebra structure with co-multiplication

�xi ¼
X

0� j; k<n

ci; jþk xj � xk

and antipode involution xi 7!xi determined by the n equations:
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X
0� j; k<n

ci; jþk xjxk ¼
1 if i ¼ 0;
0 if 0 < i < n:

�
&

An explicit description of the dual H	ð�BUð�ÞÞ is not so clear, but formulae can
be written down without too much trouble when n ¼ 2. The space �BUð�Þ is a dis-
joint union

�BUð�Þ ¼
a
d2Z

�
ðd Þ
B Uð�Þ

indexed by the degree d of the component of the fibre. Thus �
ð0Þ
B Uð�Þ is (homotopy-

equivalent to) �BSUð�Þ. Let us specialize to the case n ¼ 2 and write y ¼ x�1
0 x1, so

that

H	
BfB � S0; ð�BSUð�ÞÞþBg ¼ R½y� :

Then

�x0 ¼ x0 � x0 � c2x1 � x1; �x1 ¼ x0 � x1 � c1x1 � x1 þ x1 � x0;

and so

�y ¼ ð�x0Þ
�1�x1 ¼ ð1� c2y � yÞ�1ð1� y � c1y � y þ y � 1Þ;

�yk ¼ ð�yÞk ¼ ð1� c2y � yÞ�k
ð1� y � c1y � y þ y � 1Þk:

As a basis for H	ð�
ðd Þ
B Uð�ÞÞ we take the dual (over R) b

ðd Þ
j , j � 0, to the homology

basis xd
0y

i, i � 0. Now hxd
0y

k; bðd Þi b
ðd Þ
j i ¼ h�ðxd

0y
kÞ; bðd Þi � b

ðd Þ
j i. This yields the follow-

ing description of the cup product, which was first obtained (for the case d ¼ 0,
c1 ¼ 0) by Masbaum, [9], [10].

Proposition 4.3. For n ¼ 2, the ring H	ð�
ðd Þ
B Uð�ÞÞ (¼ S say) is free as an R-

module, with basis b
ðd Þ
i , i � 0, and multiplication described in terms of the formal power

series 
ðd ÞðXÞ ¼
P

b
ðd Þ
i Xi 2 S½½X�� by the identity


ðd ÞðX Þ � 
ðd ÞðY Þ ¼ ð1� c2XY Þ
d
ðd ÞðFðX;Y ÞÞ 2 S½½X;Y ��;

where FðX;Y Þ is the formal group law ðX þ Y � c1XY Þ=ð1� c2XY Þ. &

Although the discussion in Section 2 was restricted to bundles with fibre a finite
complex, there is no real problem in dealing with the cohomology of bundles such as
�BUð�Þ with fibre of finite type. But in fact there is a nice, UðnÞ-equivariant, geo-
metric filtration (due to Mitchell, [11]) of �UðnÞ by compact sub-ENRs, as dis-
cussed, for example, in [3], [13]. The filtration originates from the generating variety
Pð�Þ � �BUð�Þ. The image of the k-fold product Pð�Þ �B � � � �B Pð�Þ ! �BUð�Þ is a
sub-bundle, which we denote by Skð�Þ � �BUð�Þ, with fibre a compact algebraic
variety, and its fibrewise homology can be computed by another application of the
Leray-Hirsch lemma as the module of homogeneous polynomials of degree k:
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H	
BfB � S0; Skð�ÞþBg ¼ ðR½x0; . . . ; xn�1�Þk: ð4:4Þ

To construct a filtration we use the section � of �
ðnÞ
B Uð�Þ that restricts to the

inclusion S1 ! Uð�bÞ of the centre in each fibre, b 2 B. Multiplication by � gives a

bundle isomorphism between �
ðd Þ
B Uð�Þ and �

ðdþnÞ
B Uð�Þ, and we can filter �

ðd Þ
B Uð�Þ by

the finite-dimensional bundles ��rSdþrnð�Þ with d þ rn � 0. In particular, the com-
ponent of degree 0 is filtered as

B ¼ S0ð�Þ � ��1Snð�Þ � � � � � ��rSrnð�Þ � � � � � �
ð0Þ
B Uð�Þ:

Writing z for the class in H0
BfB � S0; ð�BUð�ÞÞþBg determined by the section �, we

have, by the Leray-Hirsch lemma again,

H	
BfB � S0; ð��rSdþrnð�ÞÞþBg ¼ z�rðR½x0; . . . ; xn�1�Þdþrn: ð4:5Þ

To compute this class z we can use a splitting principle argument.

Lemma 4.6. The cohomology class z 2 H0
BfB � S0; ð�BUð�ÞÞþBg is given by

z ¼
Yn

j¼1

ð
X
0�i<n

ð�ljÞ
ixiÞ;

where ci is the ith elementary symmetric function in l1; . . . ; ln. In particular, for n ¼ 2
we have z ¼ x20 � c1x0x1 þ c2x

2
1.

For suppose that � is a direct sum of complex line bundles: �1 � . . .� �n. Let

j : Pð�jÞ ! Pð�Þ be the inclusion, and let x0ð�jÞ denote the canonical fibrewise homo-
logy generator in H0

BfB � S0; Pð�jÞþBg. Then z is the product 
1ðx0ð�1ÞÞ � � � 
nðx0ð�nÞÞ.
In cohomology 
j maps ti 2 H	ðPð�ÞÞ to ti ¼ ð�ljÞ

i
2 H	ðPð�jÞÞ ¼ R½½t��=ðt þ ljÞ,

where lj ¼ c1ð�jÞ. Dually in homology we have 
jðx0ð�jÞÞ ¼
P

0�i<nð�ljÞ
ixi. This

establishes the result. &

Remarks 4.7. (i) If � is a complex line bundle over B, then we can identify
Uð�� �Þ with Uð�Þ by taking the tensor product with the identity on a fibre of �. In
the case n ¼ 2 the corresponding generators are related by

x0ð�� �Þ ¼ x0ð�Þ þ c1ð�Þ:x1ð�Þ; x1ð�� �Þ ¼ x1ð�Þ:

(ii) The connective complex K-theory (and, indeed, the MU-theory) of �BUð�Þ
can be calculated by the same method, with little more than changes in notation. For
Grothendieck’s description of the cohomology of the projective bundle Pð�Þ as a free
module over the cohomology of the base generalizes to any complex-oriented coho-
mology theory. See [4] (Part II, Section 15) for a brief introduction to fibrewiseK-theory.

5. Classifying spaces. We shall deal only with OðnÞ and �UðnÞ; the two cases of
(i) SOðnÞ and (ii) �SUðnÞ discussed in Section 1 are slightly easier. As in Lemma 1.1,
a group G is understood to act on �m�1G by conjugation on G. The cohomology of
EOðnÞ �OðnÞ OðnÞ is simply the inverse limit of the groups H	ðOð�ÞÞ where � is the
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restriction of the universal bundle to a finite skeleton B of the classifying space
BOðnÞ; for the inverse limit in a given dimension stabilizes. We can think of
H	ðEOðnÞ �OðnÞ OðnÞÞ as the OðnÞ-equivariant Borel cohomology H	

OðnÞðOðnÞÞ of the
group OðnÞ. (See [7] for an account of Borel homology and cohomology and [4], for
example, for a discussion of the relation between fibrewise and equivariant homol-
ogy.) The Borel homology group OðnÞH

	fS0; OðnÞþg is, similarly, the inverse limit of
the fibrewise homology groups H	

BfB � S0; Oð�ÞþBg, because the limit again stabi-
lizes in each dimension.

Proposition 5.1. The OðnÞ-equivariant Borel homology of OðnÞ is

OðnÞH
	fS0; OðnÞþg ¼ F2½½w1; . . . ;wn��½x0; x1; . . . ; xn�1�=ðx

2
0 ¼ 1; x2i ¼ 0 : 0 < i < nÞ

as a Hopf algebra, over the graded ring H	
OðnÞð	Þ ¼ F2½½w1; . . . ;wn��, with co-multi-

plication given by (3.2). &

The Borel cohomology H	
UðnÞð�UðnÞÞ ¼ H	ðEUðnÞ �UðnÞ �UðnÞÞ is again the

inverse limit of groups H	ð�BUð�ÞÞ. More care is needed in the discussion of the
Borel homology of the infinite-dimensional space �UðnÞ. The homology group of a
CW-complex of finite type is the direct limit of the homology groups of its finite
skeleta. We can define the equivariant homology of the dth component �ðd ÞUðnÞ to
be the direct limit of the equivariant homology groups of the compact UðnÞ-ENRs
��rSdþrnðC

n
Þ, for d þ rn � 0, in the filtration described in Section 4. (Here � is simply

the inclusion of the centre S1 ! UðnÞ and SkðC
n
Þ is the image in �ðkÞUðnÞ of the k-

fold product of the generating variety PðCn
Þ.) From (4.5) we find that

UðnÞH
	fS0; ð��rSdþrnðC

n
ÞÞþg ¼ z�rZ½½c1; . . . ; cn��½x0; x1; . . . ; xn�1�dþrn:

Forming the direct limit, and assembling the components, we obtain the equi-
variant homology of�UðnÞ; it is non-zero in every even dimension, positive or negative.

Proposition 5.2. The UðnÞ-equivariant Borel homology of UðnÞ is

UðnÞH
	fS0; ð�UðnÞÞþg ¼ Z½½c1; . . . ; cn��½x0; x1; . . . ; xn�1�½z

�1�

as a Hopf algebra over the graded ring H	
UðnÞð	Þ ¼ Z½½c1; . . . ; cn��, with co-multi-

plication as in Proposition 4.2. The generator xi has dimension �2i and the class z, in
dimension 0, is defined in Lemma 4.6. &

The Borel cohomology rings of OðnÞ and �UðnÞ may be deduced, in principle,
by taking duals.
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