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ABSTRACT

In this paper we study a class of Mixed Bivariate Poisson Distributions by extend-
ing the Hofmann Distribution from the univariate case to the bivariate case.

We show how to evaluate the bivariate aggregate claims distribution and
we fit some insurance portfolios given in the literature.

This study typically extends the use of the Bivariate Independent Poisson
Distribution, the Mixed Bivariate Negative Binomial and the Mixed Bivariate
Poisson Inverse Gaussian Distribution.
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1. INTRODUCTION

In this paper we study a family of bivariate counting distributions. These dis-
tributions are of interest in actuarial sciences when one wants to work with
frequencies of dependent variables such as material damage and bodily injury
claims in third party liability automobile insurance.

The general family of bivariate distributions we present in this paper has
the following particular cases: the Mixed Bivariate Negative Binomial Distri-
bution (MBNBD) and the Mixed Bivariate Poisson Inverse Gaussian Distribu-
tion (MBPIGD). These particular cases have already been discussed in Besson
and Partrat (1992) and in Partrat (1994).

By extending the univariate Hofmann Distribution described in Walhin and
Paris (2000b), we give a general setting for studying Mixed Bivariate Indepen-
dent Poisson Distributions.

Note that we use the term Mixed Bivariate Independent Poisson Distribu-
tion in order to stress on the fact that it is a Bivariate Distribution obtained
by mixing the Bivariate Independent Poisson Distribution.
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124 J.F. WALHIN AND J. PARIS

The bivariate version of the Hofmann Distribution obtained by mixing
the Bivariate Independent Poisson Distribution will be called the Mixed Bivari-
ate Hofmann Distribution. It remains important to stress on the "Mixed"
because Bivariate Hofmann Distributions can also be constructed via the
trivariate reduction method (see Walhin and Paris (2000c)).

The rest of the paper is organized as follows. Section 2 reviews the concept
of bivariate ordinary generating functions. Section 3 describes the Mixed
Bivariate Independent Poisson Distribution. Section 4 extends the univariate
Hofmann Distribution to the bivariate case. Section 5 addresses the problem of
estimating the parameters of the distribution. Section 6 gives a stable recur-
sion for the aggregate claims distribution which is based on a two-stage algo-
rithm. Section 7 gives the fits for the data sets given in Besson and Partrat (1992)
and in Partrat (1994). The two-stage algorithm is also applied. Section 8 gives
the conclusion.

2. BIVARIATE ORDINARY GENERATING FUNCTIONS

In the following sections we will use the concept of bivariate ordinary gener-
ating functions. This is a generalization of the ordinary generating functions
(see Panjer and Willmot (1992) for an application in actuarial sciences).
Let us assume a sequence {anm, n e Z, m e Z} of real numbers.
The ordinary generating function of this sequence is defined as

OO 00
n m

V

n-0 m=0

Obviously u and v must be chosen in such a way that the sum exists.
Ordinary generating functions have the following nice properties:

- There is a one-to-one correspondence between {«„,„,, n e Z , m e Z } and

I dndmTanm(u,v)
M«. m

n\m\ dundv"
K = 0 , v=0

- c«,w = aaH_m + /$„ , m « TCn m (w, v) = uTari m(u, v) + pTbrt m (u, v).

- c«,m= S ^taKlbn-Km-i« rCnra(w,v)= ranra(M,v)r,,nm(w>v)-

- Tnan Ju,v)=u~ Tan m (u, v).

The philosophy behind using ordinary generating functions is the following:

- look for a relation between some sequences anm, bnm, cnjm, ...
- go in the (u,v) map if the calculations become easier (think of the convolu-

tion that becomes a product).
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- go back in the initial map by inverting the expression in (w,v) thanks to the
properties.

In this paper, the sequences anm will be probability functions and so, ordinary
generating functions are just probability generating functions. In this case we
have the convergence of the bivariate sums at least if \u\ < 1 and |v| < 1.

3. THE MODEL

We are going to study the random vector (N,M) of counting variables. We
will obtain the distribution of (N,M) by mixing the conditional distribution
of (N,Af) with a random variable A with distribution function U(X):

/*oo

P(N=n,M=m)=j P(N=n, M=m\A = X)dU(X). (1)

Furthermore we assume that

- Conditionally on A the random variables N and M are independent.
- The conditional distributions of N and M given that A = X are univariate

Poisson with parameter respectively X and fiX.

The probability generating function of (N,M), y/HM(u, v) = E[uNvM], writes

ey ' P l 'dU(X).

Kemp (1981) introduced the notion of Homogeneous Bivariate Distribution:

Definition: A bivariate probability generating function i//(u, v) is said to be of
the homogeneous type if

y/(u, v) - H{axu + a2v),
with

H(ox + a2) = 1 •

If one chooses H such that

we immediately get that (N,M) is a Bivariate Homogeneous Distribution with
CT) = 1 and <r2

 = P-
Kocherlakota and Kocherlakota (1992) have given the following characteriza-
tion theorem:

Theorem: The probability generating function y/NtM(u, v) is of the homogeneous
type if and only if the conditional distribution of N given N + M = z is Bino-
mial distributed: Bi(z,-^~\. •
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126 J.F. WALHIN AND J. PARIS

In our case we have that

a result that also has been obtained by Partrat (1994) and Hesselager (1996).
From Hesselager (1996) it is possible to extend the result of Kocherlakota and
Kocherlakota (1992) by

VN, M(U, V) = I//N+M(PIU + Pi v),

00

where y/N+M(u)='^lP[N + M= i]u is the probability generating function of N+M.

4. THE MIXED BIVARIATE HOFMANN DISTRIBUTION

Walhin and Paris (2000b) described the Hofmann Distribution. Let us recall
some concepts.

Let N(t) be the number of claims occurring in the time interval (0,/] with
./V(0) = 0. Assume N(t) is an infinitely divisible Mixed Poisson process (see
Grandell (1997)) for which

n(n, t)=¥ [N(i) = n] =/o°° e~k ^f dU(X), (2)

and
n(O,t)=P[N(i)=O] = e~0(t),

where 6{t) is a Bernstein function:

0(0 >o,
0(0)= 0,

- j - 6 (i) completely monotone.

The probability generating function of N(t), y/N(t)(u)= E\uN(t)\ writes

With the particular choice
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we have a Hofmann process (see Hofmann (1955) or Kestemont and Paris
(1985)).
By integration, one has

9{t) = Y ln(l + ct) by continuity for a = 1.

Particular cases of interest are: a = 0 (Poisson), a = 0.5 (Poisson Inverse Gaus-
sian), a = 1 (Negative Binomial), a = 2 (Polya-Aeppli), a —>°°, c —>0, ac —>b
(Neymann Type A).

For fixed t, it is possible to express the random variable N(t) in the form
of a compound Poisson distribution:

L(t) .

where L(t) is Poisson distributed with mean 9{t), independent of the St which
are independent and identically distributed. Moreover as

the probability distribution of S is a member of the (r, s, 1) class of counting
distributions. The (r,s, 1) class is just a reparametrization of the classical
(a, b, 1) class in order to avoid confusion with the a of the Hofmann Distrib-
ution.

Thanks to this property, it is possible to use the Panjer algorithm in order
to evaluate the aggregate distribution of S:

N(i)

It is however necessary to apply the algorithm two times: we first introduce
the random variable

and then L(r)

1=1

The distribution of U can be evaluated by the extended Panjer algorithm (see
Sundt and Jewell (1981)) whereas the distribution of S can be evaluated by
the Panjer algorithm (see Panjer (1981)).

For fixed /, in the sequel we will write IJpca(n,t) for IJ(n,t) in order to specify
the use of the Hofmann Distribution Ho(p,c,a).
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From now on let us fix t = 1 and let us use the Hofmann Distribution in our
bivariate case. Let us assume that A is the mixing variable leading to the Hof-
mann Distribution.
From (1) and (2) we immediately get

^ ^ ^ ^ (4)

where it is easy to see that

l)c>a(n + m, 1).

In fact our model introduces dependency such that:

N~ Ho(p,c,a),

M~Ho(pp,cp,a),

N+M~Ho(p{\+p),c(\+P),a).

This clearly generalizes the reasoning of Partrat (1994) where only A Gamma
or Inverse Gaussian distributed are considered.

5. ESTIMATION OF THE PARAMETERS

Let us assume that we have observed a sample («,-, m,), 1 < / < q of (N, M).
The log-likelihood writes

l(p,p, c, a) = In [ ] P (N = n,•, M= m,)
(=i

- C+ \np j]m,- ln(l + p)2 fa + m>) + ln+m(P,P,c,a),
i=\ i=\

where ln+m(fi,p, c, a) is the log-likelihood for the univariate Hofmann Distrib-
ution Ho({\+P)p,{\+P)c,a) with the sample («, + m,), 1 <i< q and C is a term
that does not depend on the unknown parameters.

As shown in Besson and Partrat (1992), -^ ln+m(P,p, c,a)- 0 at the maximum

likelihood estimate. So we immediately get

n m
P n'

where n (resp. m) is the experimental mean of TV" (resp. M).
By standard results on the univariate Hofmann Distribution (see Hiirli-

mann (1990)), we know that the maximum likelihood estimate of the mean is
the observed frequency. Therefore maximizing ln+m(fl,p, c, a) implies that

p(\ + P) - n + m.
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So the estimates p and ft are derived analytically. The other two estimates
c and a have to be found by standard numerical maximization techniques.
Note that one has to be careful because the likelihood may be very flat and
local extrema are not excluded.

6. A STABLE TWO-STAGE RECURSION FOR THE AGGREGATE

CLAIMS DISTRIBUTION

In the conclusion of his paper, Partrat (1994) addresses the problem of find-
ing recursions like Panjer's recursion (see Panjer (1981)) in order to obtain the
distribution of the aggregate claims.

Let Xt be the random variable representing the zth claim amount of type
N and Yt the random variable representing the /th claim amount of type M.
We will assume, as usual, that the X( and Y{ are mutually independent random
variables. They are also arithmetic. The Xt are identically distributed. The Yt
are identically distributed. We also assume that the Xt and Yt are independent
of N and M. We are interested in the distribution of

( N M

ZJ A " ZJ
1=1 1=1

In the case of the Mixed Bivariate Negative Binomial Distribution the answer
to Partrat's question was given by Hesselager (1996). In his paper, Hesselager
(1996) gives a stable algorithm for the evaluation of the joint probability func-
tion of (5,7) for the particular case of the Mixed Bivariate Negative Binomial
Distribution, i.e. when A is Gamma distributed.

In this section we will use the same methodology as in Hesselager (1996)
in order to derive stable algorithms for the distribution of (5,7). As we know
that U is infinitely divisible, it follows from Maceda (1948) that the distribu-
tion of (N,M) is also infinitely divisible.

Then we know from Sundt (1999a) that (N,M) can be interpreted as a bivari-
ate Compound Poisson distribution:

i=i i=i

where the £",- and Qt are not independent and L is Poisson distributed inde-
pendently of the (Eh Q,).

To be able to use the bivariate Panjer algorithm, we introduce the auxiliary
vectors

and then

i= i
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130 IF. WALHIN AND J. PARIS

We will use the following notation:

Probability functions

P(N=n,M=m) = p(n,m),
P(K=k) =fKQc), (K=N+M),
P(X=x) = /*(*),
P(Y=y) =fr(y),

P(S = s,T=t) =fSyT(s,t),
P(S = n,Q = m) =fs,a(fi,my

Probability generating functions
oo

¥x{u) = J]fx(x)ux,
x=Q

y=0

VK(U) =
r=0

«=0 m=0
OO 00

Vs, T(u, v) = 2 2 fs, r(x,y)uxvy,
x=0 y=0

VS,Q{U,V) =
«=0 m=0

The bivariate Panjer's algorithm described in Walhin and Paris (2000a) as well
as in Sundt (1999b) and Ambagaspitya (1999) will be used in order to find the
distribution of (S,T) knowing the distribution of (U, V).
In a first time we are interested in deriving the distribution of (U,V). There-
fore we first need to derive the distribution of (S, Q).
Remember that we have

We find

where

6(1 +B)
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(S, Q) also has a bivariate homogeneous distribution. Indeed

0(0
i OQ. + P) '

l.

The Taylor expansion around (1 + /?) of (5) gives after a few calculations

R

(m + n)\ P n\m\ '

As we have

we immediately get

with

and

^2=TT
Indeed

^»<M)= Vs,

_ 1

A Taylor expansion around (1 + /?) of (6) immediately shows that
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132 J.F. WALHIN AND J. PARIS

With the particular form of the distribution of W, we immediately find, with
fw(w)=P(W=w),

Mw) _ c{\+p) c(l+fl(g-2) 1
fwiw-l) \+c(\+p) \ + c(\+P) w ^ 1 '

which is well in the form of the (r, s, 1) class with

/«<0)=0,

Now let us study the distribution of

(U,V)=(Xl+... + Xs,Yi+...+ YQ).

As Wis a member of the (r,s,l) class we have:

[l-ra]£M»)=M)+H^)M«)- (7)

We are now able to extend Hesselager's methodology to find the aggregate
claims distribution.

Theorem 1

We have ,

), (8)

fs,a(n,m) = pi\r+-jfs>a(n-l,m)

+ rp2fs,a(n,m-l), n>\ unless if (n,m) = (\,Q), (9)

(10)

-)fE,Q(n,m-I)

+ rplfSQ(n- l,m), m>\ unless if(n,m)= (0,\), (11)

Prao/

We already noticed that

. (12)
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By differentiating (12) with respect to u, and using (7), we get

(1-rpiU- rp2v)-^y/s,a(u, v) = pl(/V(l) + (r + s)y/s,Q(u, v)).

Inverting this expression we immediately get (8) and (9).
(10) and (11) are derived similarly. •

Theorem 2

We have

0Q + P\

fu, v(x,0)= 1 - ^ ^ ( 0 ) (P i M

fu. Ax,y) = l-

; = 1 J

v(x-i,Q>)\, x>0, (14)

/// K(0, V)= "i r sr\\ \ P2 fw(^)fY(y)

~~ "' v(O,y-i)l y>0, (15)

v(x,y-A x>0,y>0, (16)
7 = 1

-j,y)\ y>0,x>0. (17)

Proof

As/[/ K(0,0)=(//Si2(/x(0),/r(0)) we immediately find (13) by using equation (5).
From (9) we get

fs.a(fl,m) = Pi(r+jjV3,Q(fi-hm) + rp2f3,a(ri,m-l) (18)

nfs,a(n,m) = rpi(n-l)fs,Q(n-\,m)

s)fSiO(?i-l,m)+rp2nfs,a(n,m-l). (19)
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Multiplying both sides of (19) by «^~'(«) ^^(w)^/™^) and summing on n =
1—>o°, m — \—>°o gives

^ , v(", v) + rp2y/Ut v(«, v)y/y (v).

Inverting and rearranging this expression gives (16).
Multiplying both sides of (19) by uy/"x'\u)-^y/x(u)i//y(0), summing on n = 2

—> oo, m = 0 -» oo and adding fs,ai\,0)u -j^y/x(u) on both sides gives

-^y/x (u)y/u, v (u, v).

Inverting and rearranging this expression gives (14).
(15) and (17) are derived similarly.

Knowing the distribution of (U,V) it remains to evaluate the distribution of

;=i

This is easily done with the bivariate Panjer's algorithm.
We have

x y
u,v(x,y), s>

^ v ( x , y ) , t >

where we use the following notation:

x,y
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7. NUMERICAL APPLICATIONS

In this section we fit two data sets given in Partrat (1994).
Data set 1 gives the yearly frequencies of hurricanes affecting two zones

(zone 1 and zone 3) of the United States.
Data set 2 gives the yearly frequencies of an automobile third party liability

portfolio, divided in material damage (type 1) and bodily injury (type 2) claims.

TABLE 1

DATA SET 1

zonel

0

1

2

3

obs
a = 0
a = 0.0057

obs
a = 0
a = 0.0057

obs
a = 0
a = 0.0057

obs
a = 0
a = 0.0057

zone3

0

27
27.67
27.59

24
20.45
20.47

8
7.57
7.59

1
1.88
1.88

1

9
13.04
13.05

13
9.66
9.69

2
3.59
3.59

0
0.89
0.89

2

3
3.08
3.09

1
2.29
2.29

1
0.85
0.85

2
0.21
0.21

3

2
0.49
0.49

0
0.36
0.36

0
0.14
0.13

0
0.03
0.03

For this data set, the maximum likelihood procedure for the Mixed Bivariate
Hofmann Distribution (a = 0.0057) gives almost the Bivariate Independent Pois-
son Distribution (a = 0).

The characteristics of the fit are given in the next table. In order to compute the
X2 statistic, some cells have been grouped in order that the theoretical frequencies
are all larger than 1 and about 80% of the theoretical frequencies are larger than 5.

In the present case we work with 8 classes: (0,0), (0,1), (1,0), (1,1), (2,0),

TABLE 2

PARAMETER ESTIMATES, LOGLIKELIHOOD AND y} TEST - DATA SET 1

p
p
c
a

X
X2

df
p-value

BIPD

0.6377
0.7419

0

-187.9615
3.73
5
0.589

MBHD

0.6377
0.7419
0.5137
0.0058

-187.9607
3.77
3
0.287
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A likelihood ratio test does not reject the null hypothesis that Bivariate Poisson
Distribution is adequate against the more general model Mixed Bivariate Hof-
mann Distribution. Within the latter model we cannot reject the fact that both ran-
dom variables are independent. In this case the principle of parsimony indicates
that the Bivariate Independent Poisson Distribution (BIPD) should be retained.
Now let us study our second data set:

Material damage

0

1

2

3

4

TABLE 3

DATA SET 2

obs
a = 0
a=\
a = 0.5
a = 0.2982

obs
a = 0
a = l
a = 0.5
a = 0.2982

obs
a = 0
a = 1
a = 0.5
a = 0.2982

obs
a = 0
a = l
a = 0.5
a = 0.2982

obs
a = 0
a = l
a = 0.5
a = 0.2982

Bodily injury

0

171345
171086.9
171348.8
171348.7
171345.8

8273
8726.4
8275.5
8279.5
8289.4

389
222.5
398.2
391.5
381.9

31
3.8
19.1
21.3
23.5

1
0.0
0.9
1.3
1.9

1

918
946.0
897.1
897.5
898.6

73
48.2
86.3
84.9
82.8

5
1.2
6.2
6.9
7.6

1
0.0
0.4
0.6
0.8

0
0.0
0.0
0.0
0.1

2

2
2.6
4.7
4.6
4.5

0
0.1
0.7
0.8
0.8

0
0.0
0.1
0.1
0.1

0
0.0
0
0
0

0
0.0
0.0
0.0
0.0

TABLE 4

PARAMETER ESTIMATES, LOGLIKELIHOOD AND %2 TEST - DATA SET 2

p
c
a
X

x2

df
p-value

MBPD

0.1084
0.0510

0

-43251.57
369.76
5
0

MBNBD

0.1084
0.0510
0.8934
1

^3143.09
11.54
4
0.021

MBPIGD

0.1084
0.0510
1.8235
0.5

-43141.79
8.72
4
0.068

MBHD

0.1084
0.0510
3.0695
0.3006

-41141.27
7.44
3
0.059
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The MBPD and MBNBD are rejected at the 5% level. The MBPIGB and
MBHD are not rejected at the 5% level. The grouped cells are: (0,0), (0,1),
(1,0) , (1,1), (2,0), (2,1), (3,0), the rest.

Let us work with the portfolio given in table 3 and the Mixed Bivariate
Hofmann fit of this portfolio.

Let us assume that the distributions X (material damage) and Y (bodily
injury) are given by:

TABLE 5

CLAIMS DISTRIBUTIONS

X

1
2
3
4
5
10
20

fx(x)
0.2
0.2
0.2
0.1
0.1
0.1
0.1

Y

5
10
20
50
100

My)
0.2
0.36
0.22
0.11
0.11

We find the aggregate claims distribution:

7"=0
T=5
T=\0
7=15

TABLE 6

AGGREGATE CLAIM;

5 = 0

0.9410275
0.0100336
0.0101349
0.0102375

S = l

0.0010876
0.0000219
0.0000223
0.0000228

i DISTRIBUTION

5 = 2

0.0019589
0.0000395
0.0000403
0.0000411

5 = 3

0.0000042
0.0000001
0.0000001
0.0000001

Obviously, as the span of the Y claims is 5, it is most convenient (and less
time consuming) to rescale the Y claims by division by 5 and then to revert the
scaling for the final bivariate aggregate claims distribution.

8. CONCLUSION

In this paper we have extended the use of traditional Mixed Bivariate Indepen-
dent Poisson Distributions into a general family of bivariate counting distri-
butions. This family has interesting properties. On the one hand it authorizes
a maximum likelihood estimation in a univariate setting. On the other hand
it gives stable algorithms for the evaluation of the bivariate aggregate claims
distribution.

The fits of some insurance portfolios are improved thanks to the use of
the Mixed Bivariate Hofmann Distribution.
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REMARK

A first version of this paper has been presented at the Royal Statistical Society
Conference 1999, Warwick.

Three anonymous referees are greatly acknowledged for very detailed and
constructive comments on earlier versions of this paper.
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