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Dimensional speech emotion recognition from
speech features and word embeddings by using
multitask learning
bagus tris atmaja1,2 and masato akagi1

The majority of research in speech emotion recognition (SER) is conducted to recognize emotion categories. Recognizing dimen-
sional emotion attributes is also important, however, and it has several advantages over categorical emotion. For this research,
we investigate dimensional SER using both speech features and word embeddings. The concatenation network joins acoustic net-
works and text networks from bimodal features. We demonstrate that those bimodal features, both are extracted from speech,
improve the performance of dimensional SER over unimodal SER either using acoustic features or word embeddings. A signif-
icant improvement on the valence dimension is contributed by the addition of word embeddings to SER system, while arousal
and dominance dimensions are also improved. We proposed a multitask learning (MTL) approach for the prediction of all emo-
tional attributes. This MTL maximizes the concordance correlation between predicted emotion degrees and true emotion labels
simultaneously. The findings suggest that the use of MTL with two parameters is better than other evaluated methods in repre-
senting the interrelation of emotional attributes. In unimodal results, speech features attain higher performance on arousal and
dominance, while word embeddings are better for predicting valence. The overall evaluation uses the concordance correlation
coefficient score of the three emotional attributes.We also discuss some differences between categorical and dimensional emotion
results from psychological and engineering perspectives.
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I . I NTRODUCT ION

Speech emotion recognition (SER) has become more
important recently. It is now used in call-center applications
for analyzing both customers and call-center staff. In other
applications, a voice assistant application uses SER tech-
nology to detect the affective state and mood of the user
for more natural interaction and wellbeing measurement.
In the near future, other applications like driver emotion
detection, affective humanoid robots, and voice analysis of
gaming users will enter the market.
The research leading to the implementation of the vari-

ous applications above is the backbone of the acceleration
from psychological theory to engineering implementation.
Research on automatic speech emotion recognition started
at the end of the 1990s, following the success of emotion
recognition from facial expressions. This research using
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only the speech modality is intended to extract human
emotion when other modalities, like facial expressions and
movements, cannot be recorded. At that time, call-center
applications, which are now being implemented, were the
target of future implementation. Nevertheless, this research
area is still growing and suffering from some difficulties.
The growth of speech/vocal emotion research is mainly

conducted in terms of recognizing/predicting categorical
emotions. In this approach, the predictor is trained to
detect the emotion of a given utterance, whether it is
joy, calm, anger, sorrow, or another emotion. The current
method applying deep learning techniques for the clas-
sifier has achieved high accuracies, as reported in [1–4].
Many researchers in psychology have argued, however, that
it is necessary to go beyond categorical emotions [5]. Apart
from enabling degrees of emotions in a continuous space,
using emotional dimensions offers other advantages such as
investigation of cognitivemental states andmeasurement of
productivity and burnout [6].
In dimensional emotions, some dimensions or attributes

of emotions are mapped onto a two- (2D), three- (3D),
or four-dimensional (4D) space. The 2D space con-
sists of two attributes: valence (positive versus negative)
and arousal/activation (high versus low excitation). Most
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research on dimensional emotion recognition has used this
2D approach for describing emotional degrees [7–9]. Other
researchers have used a 3D approach in which the third
dimension is either dominance (weak versus strong) [10,
11] or likability/liking [12, 13]. Finally, a 4D model incorpo-
rates expectancy (predictiveness by the subject with respect
to conversation) [14, 15].
The research described here uses a 3D emotion model

with valence, arousal, and dominance: the VAD model.
While a 2D emotion model can be used to characterize cat-
egorical emotion, the prediction of dominance can be used
to perform other analysis of aspects such as the energy or
urgency of speech. In addition to observing blended emo-
tion, the response or performance of emotion recognition
for particular emotion attributes can be analyzed on a con-
tinuous scale. Furthermore, in automatic emotion recog-
nition development, one advantage of using dimensional
emotion is that there is no need to balance the distribution
of the dataset.
The benefits of the dimensional approach above require

high performance on recognizing emotional dimensions.
For instance, if the performance of dimensional emotion
recognition is weak, then conversion from dimensional to
categorical emotion cannot be performed. Unfortunately,
the current results on dimensional SER suffer from this con-
dition [7, 16]. Another issue is whether it is necessary to
combine acoustic features from the speech modality with
other features like facial expressions and head and hand
movements [17].
Our current research is conducted to tackle both issues,

by using speech or speech/acoustic features and word
embeddings to improve the performance of SER. Because
the target implementation is a speech-based application
(e.g. a call-center application), the only modality used to
extract emotion from human speech is the acoustic infor-
mation. Text information can now be extracted accurately,
however, because of the advancement of automatic speech
recognition (ASR) technology. Hence, text transcription
can be used to generate word embeddings, providing text
features for the emotion classifier. Thus, by using both
acoustic and linguistic information, we expect a significant
improvement in dimensional SER.
Although the use of both acoustic and linguistic infor-

mation for SER is not new, most reported works used
categorical emotion recognition rather than dimensional
emotion recognition. A challenge called the Continuous
Audio/Visual Emotion Challenge (AVEC) has been held
since 2012 to promote this dimensional affective approach
[15]. One result on the use of acoustic and linguistic infor-
mation, a report by Tian et al. [18], showed low perfor-
mances, i.e. mean accuracy of 69.9 for AVEC2012 dataset
and 55.3 for Interactive EmotionalDyadicMotionCapture
(IEMOCAP) dataset. The authors used hierarchical fusion
to combine several acoustic and linguistic features.
Using accuracy for dimensional emotion recognition

may not be relevant, as the task is regression. Another
researcher reported low concordance correlation coefficient
(CCC) score on predicting valence, arousal, and dominance

simultaneously on two-group datasets using acoustic fea-
tures [11]. The metric used in the latter report is more
relevant and has become the gold standard for measuring
dimensional emotion recognition performance. Since the
evaluation metric use CCC as the score, the use of CCC
loss as the cost function is more reasonable than other cost
functions.
Because the goal of dimensional emotion recognition is

to predict three outputs, i.e. valence–arousal–dominance
(VAD), simultaneously, we propose CCC-based multitask
learning (MTL). In thisMTL approach, themodel is trained
to leverage the results from the three emotional dimen-
sions. In the traditional approach,which is called single-task
learning (STL), the model is only trained to maximize the
performance of a single variable by minimizing a loss func-
tion.OurMTL approach uses the opposite of theCCCas the
loss function, with the dimensional emotionmodels trained
to minimize the loss function for three variables. Section 4
describes the details of this MTL approach.
The contribution of this paper is the combination of

acoustic and text information for dimensional SER via con-
catenation networks with the CCC-based MTL proposal
to train those networks, which is not shown in the previ-
ous reported works. We extend our work to evaluate the
following sub-issues: (1) which pair of architectures (Acous-
tic+Text) including their optimal dropout rates performs
best; (2) evaluation of different MTL methods with zero
parameters, two parameters, and three parameters; and (3)
the similarities and differences in conducting categorical
and dimensional emotion recognition on the same dataset.
First, however, the next three sections describe the related
work, feature sets, and the architectures of dimensional SER
systems.

I I . RELATED WORK

In this section, we reviewed some research done in the past
closely related to this research theme. The advantages and
disadvantages of its proposed method will be briefly dis-
cussed. At the end of this section, we summarized how
this research differs from those reviewed research and con-
tributes to filling the existing gaps.
In recent years, there are several attempts to improve

the performance of SER. Parthasarathy and Busso pro-
posed a framework to learn shared feature representations
that maximize the performance of regression models [11].
Their model used mean squared error (MSE) of valence,
arousal, and dominance with two weighting factors. Atmaja
andAkagi [19], however, showed that correlation-based loss
function is more effective than MSE for MTL dimensional
SER.
Sridhar et al. [20] used higher regularization (dropout

rate) for valence than for arousal and dominance. They
reported an improvement from CCC score of 0.29 to
0.31 on MSP-Podcast dataset [21]. Apart from that pro-
posal using higher regularization, an approach using lex-
ical feature was proposed by Aldeneh et al. [22] using
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pretrained word2vec with Mel Filterbank for the acous-
tic feature. They converted the regression task into the
classification task by dividing valence scores into nega-
tive, neutral, and positive categories. The method improved
unweighted average recall (UAR) from 0.59 with acous-
tic modality to 0.694 with acoustic-lexical modalities on
the IEMOCAP dataset. Using a similar idea, Zhang et
al. used acoustic and lexical features to recognize valence
from the speech on three valence categories IEMOCAP
dataset. Instead of extracting lexical feature of words, they
extracted lexical feature of phonemes, i.e. 40-dimensional
unique phoneme including an “out of vocabulary” label.
Themethod improvedUAR from0.64with acousticmodal-
ity to 0.74 with acoustic-lexical (phonemes) modality. All of
those research aimed to improve valence prediction only on
categorical emotion (valence) recognition.
In [7], the authors used semantic features from the affec-

tive dictionary along with the MFCC feature to predict
valence and arousal. They reduced mean absolute error
from 1.98 and 1.29 (acoustic), for valence and arousal, to
1.40 and 1.28 (acoustic+ semantic). Although the authors
attempted to predict the degree of dimensional emotions,
only valence and arousal are counted. The use of the affec-
tive word is also limited by the number of vocabularies;
words that are not listed in the dictionaries can not be
included in the computation of semantic features.
In [1, 23], the authors used different deep learning archi-

tectures to predict categorical emotion from both speech
and text. Some authors used phonemes instead of text for
predicting emotion category, such as in [3, 24] and another
author compared text feature from ASR with manual tran-
scription to investigate the effectiveness of its combination
with acoustic features for categorical emotion recognition
[25]. Those research, although used audio and text features,
only predicted categorical emotion.
Huang et al. proposed to use audio-word-based embed-

ding with convolutional neural network (CNN) [26]. First,
a set of low-level descriptors (LLD) are extracted, then,
a set of audio words is generated from an audio code-
book. The word2vec-based embedding is applied to obtain
word vector for each audio word. While word embeddings
are used to quantify the similarities among audio words,
CNN is adopted to characterize the temporal variation of
LLD.Using this technique, the authors reported an accuracy
improvement of 5.6 compared to long short-termmemory
(LSTM) and 3.4 compared to LLD raw features. Besides
predicting emotion categories only, this proposed technique
may suffer from the computation time when it is imple-
mented in real-time application. It needs several steps to be

processed in a sequence: LLD extraction, audio codebook
generation, word2vec extraction, and CNNmodeling.
In contrast, ourwork incorporatedMTLwithCCC losses

not only for speech or text networks but also for a com-
bination of both. We also investigate MTL models with
different numbers of parameters and their impact on over-
all performance. We target three emotion dimensions in
floating-point degrees, while others convert those degrees
into categories. Additionally, we use input features which
can be quickly extracted, e.g. mean and standard deviation
(std) of LLDs from speech features and word embeddings
that are feasible for future real-time implementation.

I I I . F EATURE SETS

The two most important aspects of machine learning are
feature extraction and classification. For this paper, we eval-
uated both aspects for SER. While the main idea was the
fusion of features from acoustic and text information, the
classifiers were also evaluated for optimality. This section
describes what the features were and why they were used in
this research.
Features as the input of SER system play an important

role in its performance. We evaluated two acoustic features,
including both LLD and high-level statistical functions, and
three different text features. We introduce the mean and std
of pyAudioAnalysis [27] to investigate the effectiveness of
these functionals, which proved effective for GeMAPS fea-
ture set [9]. In total, four acoustic features and three text
features are searched to find the best one for each modality.
This pair will be evaluated along with other pairs.
Figure 1 shows the block diagram of proposed system.

Each acoustic feature set is evaluated in the acoustic net-
work, as well as each text feature set. A concatenation net-
work joins a pair of acoustic-text networks to evaluate those
different feature sets. The proposedMTL systemminimizes
the cumulative errors from three variables: valence, arousal,
and dominance, simultaneously based on a defined loss
function. For now, we will describe the input features used
in that system.

A) Acoustic features
We extend the work of our previous research [1] with the
Geneva Minimalistic Acoustic Parameter Set (GeMAPS).
GeMAPS represents a proposal to standardize the acous-
tic features used for voice research and affective computing
[28]. The feature set consists of 23 acoustic LLDs such as

Fig. 1. Block diagramof proposed dimensional emotion recognition system from speech features andword embeddings; themultitask learningwill train theweights
of the network based on acoustic and text input features to predict degrees of valence, arousal, and dominance simultaneously.
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Table 1. Acoustic feature sets: GeMAPS [28] and pyAudioAnalysis [27]. The numbers in parentheses indicate the total numbers of features (LLDs).

GeMAPs (23) pyAudioAnalysis (34)

LLDs Intensity, alpha ratio, Hammarberg index, spectral slope
0–500Hz, spectral slope 500–1500Hz, spectral flux, 4
MFCCs, F0, jitter, shimmer, harmonics-to-noise ratio
(HNR), harmonic difference H1-H2, harmonic
difference H1-A3, F1, F1 bandwidth, F1 amplitude, F2,
F2 amplitude, F3, and F3 amplitude.

Zero crossing rate, energy, entropy of energy, spectral
centroid, spectral spread, spectral entropy, spectral
flux, spectral roll-off, 13 MFCCs, 12 chroma vectors,
chroma deviation.

HSFs Mean, std Mean, std

F0, jitter, shimmer, and formants, as listed in Table 1. As
an extension of GeMAPS, eGeMAPS also includes statistics
derived from the LLDs, such as the minimum, maximum,
mean, and other statistical values. Including the LLDs, the
total number of features in eGeMAPS is 88. The statistical
values are often called high-level statistical functions (HSF).
The authors of [9] found, however, that using only themean
and standard deviation from the LLDs inGeMAPSgave bet-
ter results than using eGeMAPS and audiovisual features.
We thus incorporated that finding in our research.
In addition, we extended the idea of using the mean and

std to another feature set called pyAudioAnalysis (pAA)
[27], which was also used in the previous research [1] upon
which this research was built. Specifically, pAA is an open-
source Python library that provides a wide range of audio
analysis procedures, including feature extraction, classifica-
tion of audio signals, supervised and unsupervised segmen-
tation, and content visualization. Of those capabilities, only
feature extractionwas used in this research. A total of 34 fea-
tureswere extracted for each frame, including time-domain,
spectral-domain, and other features as listed in Table 1.
Although pAA was designed for multipurpose audio analy-
sis, some research has reported its effectiveness for affective
speech research, including speech emotion recognition and
depression classification (e.g. [25]).
For both GeMAPS and pAA feature sets, frame-based

processing was applied with a 25ms window length and a
10ms hop size. The longest utterance was used to define the
frame margins, as utterances shorter than the longest one
were paddedwith zeros to achieve that length. The total fea-
ture vectors from all utterances were concatenated to give
the resulting feature sizes of (10 039, 3409, 23) for GeMAPS
and (10 039, 3411, 34) for pAA. The difference in the number
of longest-frame sequences betweenGeMAPS and pAAwas
due to the different processing methods. By extracting both
the LLDs and HSFs for each feature set, we obtained four
acoustic feature set variants, as listed in Table 1. Note that
“HSF” in the table refers only to the mean and std of each
corresponding LLD. The size of the HSF input was (10 039,
46) for GeMAPS and (10 039, 68) for pAA.

B) Word embeddings
Numeric vectors are needed to feed the input text to a deep
learning system. One of the common features used in text
processing is word embeddings or lexical features (text fea-
tures). A word embedding is a vector representation of a

Table 2. Word embedding feature sets.

Feature Description

WE Word embedding obtained directly from word sequence
in text transcription.

GloVe WE weighted by pretrained GloVe embeddings
(300 dimensions, 2.2M vocabulary size).

FastText WE weighted by pretrained FastText word vectors
(300 dimensions, 2M vocabulary size).

word. Numerical values in the form of vectors are used to
enable a computer to process text data, as it can only pro-
cess numerical values. The values are points (numeric data)
in a space whose number of dimensions equals the vocab-
ulary size. The word representations embed those points
in a feature space of lower dimension [29]. In the original
space, every word is represented by a one-hot vector, with a
value of 1 for the corresponding word and 0 for other words.
The element with a value of 1 is converted into a point in the
range of the vocabulary size.
To obtain a vector of each word in an utterance, that

utterance in the dataset must be tokenized. Tokenization is
the process of dividing an utterance into a number of con-
stituent words. For example, the text “That’s out of control”
from the IEMOCAP dataset is tokenized as [“That’s”, “out”,
“of”, “control”]. Thus, if the number of vocabulary items is
3438, then the obtained word vector contains integers less
than or equal to 3438, for instance:

text_vector = [42, 44, 11, 471].

In the above text vector example, each word is coded into a
one-dimensional vector, e.g. “out” is coded into 44. In this
research, we used a 300-dimensional vector with the 100
longest token sequences, e.g. “out” has a 300-dimensional
vector, as well as all 3438 vocabularies. A set of zeros can be
padded before or after the obtained vector to obtain a fixed-
length word embedding for each utterance. This research
used pre-padded zeros.
Instead of directly converting word sequences into vec-

tors, several researchers have obtained effective vectors
from certain words [30–32]. The vectors of those words can
be used toweight word vectors obtained previously.We thus
used two pretrained word embedding models to weight the
original word embeddings (WE): the GloVe embedding [31]
and FastText [32]. Table 2 describes thoseword embeddings.
Note that we did not synchronize speech and text features
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per word (but per sentence) since we assumed that pro-
cessing of both information is independent of each other. A
spoken wordmay have different time segments, depends on
how it is pronounced, but the semantic of that word remains
the same. The WE, GloVe, and FastText treat each word to
have the same vector regardless of the context.

I V . D IMENS IONAL SPEECH
EMOT ION RECOGN IT ION SYSTEM

A) Architecture for unimodal feature
The conventional modern SER process consists of two
main blocks: an acoustic feature and an acoustic net-
work/classifier. The acoustic feature is fed into the acoustic
network to predict the output of the emotion label, given
input data-label pairs. The performance of the acoustic net-
works is then evaluated to determine the combination of
the acoustic network and text network in the early fusion
method.
Two main deep learning architectures were evaluated in

this research: LSTM and a CNN. These two architectures
are the most-used deep learning systems. Apart from that,
we also sought to re-observe the finding in [33] that a CNN
achieved higher performance in SER. In this case, we used
acoustic features similar to those reported there, i.e. the
mean and std of GeMAPS LLDs.
Figure 2 shows the architectures of both the LSTM and

CNN used for dimensional SER from a unimodal feature.
Although this figure represents the acoustic network, the
only difference from the text network was the last layer:
the text network used a dense layer instead of a flatten
layer. This structure was found effective from an empiri-
cal study. Both architectures consisted of three main layers.
We designed them to have a similar number of trainable
parameters for comparison.
For acoustic-based emotion recognition, four different

features were evaluated as inputs to the unimodal sys-
tem. For instance, first consider feeding pAA LLDs into
the LSTM network. Batch normalization was performed

Fig. 2. Overview of the LSTMandCNNmodels used in the acoustic network. A
number in parentheses represents the number of units, with the second number
for the convolutional layers representing the kernel size. The numbers after #
represent the numbers of trainable parameters. For the text network, the flatten
layer was replaced by a dense layer.

at the first layer before entering the LSTM stack. We
kept the full sequence output of the last LSTM layer (i.e.
return_sequence=True) and flattened it with a dropout rate
of p = 0.3. After that, three dense layers with one unit were
added to generate a continuous value of valence, arousal,
and dominance. The model was trained with a CCC-based
loss function (explained in Section 5). Then, the samework-
flow was applied for the pAA HSF, GeMAPS LLD, and
GeMAPS HSF feature sets. For each architecture (LSTM or
CNN), we chose the result with the highest performance,
one out of four, to combine with the result from the other
modality, i.e. the text network. Hence, we obtained the two
best architectures from the acoustic network and the two
best architectures from the text network.
For text-based emotion recognition, the three features

explained previously were fed separately into the text net-
work, which did not use a batch normalization layer as
in the acoustic network. Instead, an embedding layer was
used for converting positive integers into dense vectors, and
for weighting with a pretrained model, if necessary (for
the GloVe and FastText features). Then, the three LSTM
or CNN layers were stacked. Another difference from the
acoustic network was that the last LSTM layer only out-
putted the last sequence (i.e.return_sequence=False) and
combined it in a dense layer with 64 units and a dropout
rate of p = 0.3, before the output was split into three one-
unit dense layers. As in the acoustic network, the last three
dense layers were used to predict a continuous value of
valence, arousal, and dominance. All the LSTM layers in
this research were built using a GPU-based CuDNN [34]
implemented with the Keras toolkit [35].
In total, we obtained eight results from the acoustic net-

work (4 feature sets× 2 architectures) and six results from
the text network (3 feature sets × 2 architectures). The best
architectures from the acoustic and text networks were then
paired in a combined system. In addition, the best architec-
tures from each modality were paired with a dense network
to investigate our previous findings [1]. To obtain consis-
tent results, a fixed random number was initialized at the
beginning. All experiments were also bounded by a callback
method using early stopping criteria with a patience value of
10. This means that, if the training process did not improve
within 10 epochs, it stopped and used the last highest-score
model to predict the test data.

B) Architecture for bimodal feature fusion
A naive method for combining multimodal features in pat-
tern recognition is by using an early fusion method that
can be performed, for instance, by feature concatenation
or network concatenation. The former approach combines
features (e.g. the acoustic and text features) into the same
network, while the latter approach combines the networks
for different modalities. We used network concatenation by
combining the acoustic and text networks with dense lay-
ers. This strategy was based on the assumption that human
perception processes acoustic and linguistic information
differently. Apart from that assumption, the combination of
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two networks also had the benefit of not requiring the two
feature sets to have the same size or dimension.
Mathematically, the combined bimodal network was for-

mulated as in equation (1). Here, f (y) denotes the output of
the corresponding layer; W1,W2 denote the weights from
previous layers (a: acoustic; t: text) and the current hidden
layer, respectively; xa and xt are the acoustic feature and
word embedding, respectively; b is a bias; and g is a linear
activation function. Thus, the output of the first dense layer,
after concatenation, was the following:

f (y) = W2g([W�
1axa + b1a;W�

1t xt + b1t]) + b2. (1)

The above process continued because we used two dense
layers with 64 and 32 units before splitting the output of
the second dense layer into the last layers. The last layers
are three one-unit dense layers with linear activations for
regressing the degree of valence, arousal, and dominance.
We constructed the combined bimodal networks by con-

catenating the previous unimodal networks. The essential
modificationwas the insertion of a concatenation layer with
dense layers after the flatten or dense layer following the
last LSTM or CNN layer. This concatenation block, with
a dropout rate of p = 0.4, was followed by three one-unit
dense layers. These last layers were used to predict the
degree of valence, arousal, and dominance as in the uni-
modal network. Figure 3 shows a typical implementation of
the combined bimodal network fusion using the HSFs of
pAA for the acoustic network and GloVe embeddings for
the text network.
Eight pairs of acoustic-text networks were evaluated in

combined bimodal systems. Four pairs derived from the
highest scores for each architecture in each modality, while
the other four pairs derived from pairing the best architec-
ture from each modality with a dense network. We evalu-
ated all eight pairs under the same conditions (number of
units, dropout rate, batch size). For each pair, we experi-
mented 20 times and observed its deviation with the same
callback criteria as used for the unimodal networks. This
repetition was conducted to determine the most reliable
pair.

V . MULT ITASK LEARN ING

MTL is an approach to jointly learn multidimensional tar-
gets in a training process to estimate those targets. For
example, if a target consists of variables y1 and y2, instead of
optimizing either y1 or y1, MTL would optimize both vari-
ables. In contrast, the traditional approach of optimizing a
single variable is called STL.
In this research, an MTL approach is proposed to

simultaneously learn three emotional dimensions: valence,
arousal, and dominance. The proposed approach begins
from a CCC, because the goal is to optimize the CCC
score. Here, the CCC is a measure of the relation between
predicted and true value, with the score penalized if the

Fig. 3. Architecture of a combined system using LSTMs for both the acoustic
and text networks. HSF: high-level statistical functions; WE: word embedding;
V: valence; A: arousal; D: dominance.

prediction shifts the true value. The CCC is formulated as

CCC = 2ρxyσxσy

σ 2x + σ 2y + (μx − μy)2
, (2)

where ρxy is the Pearson coefficient correlation between x
and y, σ is the standard deviation, and μ is the mean. This
CCC formulation is based on Lin’s calculation [36]. The
range of CCC is from −1 (perfect disagreement) to 1 (per-
fect agreement). Therefore, the CCC loss function (CCCL)
to maximize the agreement between the true value and the
predicted emotion can be defined as

CCCL = 1− CCC. (3)

In STL, the loss function would be one for either valence
(CCCLV), arousal (CCCLA), or dominance (CCCLD). In
MTL, when the total CCC loss is used as a single met-
ric for all arousal, valence, and dominance, CCCLtot is the
following combination of those three CCC loss functions:

CCCLtot = CCCLV + CCCLA + CCCLD. (4)

We refer to this MTL equation as “MTL without parame-
ters”, because there is no weighting among valance, arousal,
and dominance. In this case, the relation among the three
emotional dimensions is determined by joint learning in
the training process. As it has been stated that these three
emotional dimensions are related in a systemic manner [5],
we introduce two parameters to weight the valance and
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arousal, with the weight for dominance determined by sub-
tracting those two parameters from 1. This MTL with two
parameters is defined as

CCCLtot = α CCCLV + β CCCLA
+ (1− α − β)CCCLD, (5)

where α and β are the weighting factors for the valence
and arousal loss functions, respectively. This proposedMTL
is similar to that defined in [11]. While those authors used
the MSE as the loss function, we have proposed using this
CCC-based loss function. In addition, we can add a param-
eter γ for dominance to obtain independent scales among
valence, arousal, and dominance. The resulting MTL with
three parameters is defined as

CCCLtot = α CCCLV + β CCCLA + γ CCCLD. (6)

For comparison with the previous MTL without parame-
ters; α, β , and γ were set to 1 in that equation (4), which can
be seen as a special case in this MTL with three parameters.
These MTL approaches compare the predicted output

from the three one-unit dense layers with the ground truth
labels. The training process mechanism relies on the above
loss function. Hence, the performance of the produced
model is based on this mechanism, too. The choice of loss
function is a critical aspect ofmachine learning, andwe thus
proposed this MTL based on the CCC loss to learn valence,
arousal, and dominance concurrently.
We implemented MTL approaches for both LSTM and

CNN and both unimodal and bimodal systems. We split
last dense layer for each system into three dense layers
with one-unit node and compute the loss functions above
(equations (4), (5), and (6)). The results presented in the
unimodal feature (Section 6.2) are obtained usingMTLwith
two parameters (equation (5)), while the results presented
in bimodal feature fusion (Section 6.3) are obtained by both
MTL with two parameters and all three MTL approaches.

V I . EXPER IMENTAL RESULTS AND
D ISCUSS ION

The code to reproduce these experimental results is
available in the following repository: http://github.com/
bagustris/dimensional-ser. The raw dataset used for exper-
iment resource can be obtained from https://sail.usc.edu/
iemocap.

A) Dataset
We used the IEMOCAP dataset, which is provided by
the University of Southern California (USC). It includes
recordings of 10 actors in dyadic sessions with markers
on the speech and transcriptions. It also includes informa-
tion on the actors’s facial expressions and head and hand
movements during both scripted and spontaneous spoken
communication scenarios, but that data were not used in
this research. The dataset is freely available upon request,

including its labels for both categorical and dimensional
emotions. While previous research used categorical emo-
tions [1], this research targeted dimensional emotion scores.
These scores in terms of valence, arousal, and dominance
ranged from 1 to 5 andwere annotated via a Self-Assessment
Manikin (SAM) evaluation. Some labels with scores lower
than 1 or higher than 5 were normalized to 1 or 5, respec-
tively. All labelswere then converted to floating-point values
in a scale [−1, 1] when fed to a deep learning system. The
conversion is given by the following MinMax scaling [37],

xstd = x − xmin

xmax − xmin
, (7)

xscaled = xstd × (max − min) + min, (8)

where x is the original label score, max is 1, min is −1, and
xscaled is the new label score.
The speech data used to extract acoustic features had a

16 kHz single channel per sentence. The manual transcrip-
tion of speech in the dataset was also used to generate word
embeddings from word sequences, instead of using auto-
matic transcription. No further preprocessing was applied
to either feature, except as explained in this paper.
We split the dataset into training and test portions with

a ratio of 7869:2170. The splitting criterion was a speaker-
independent condition in which we excluded the last ses-
sion (denoted as Session 6) in the training process (i.e.
leave one session out, or LOSO). About 20 of the training
data were used for validation (1573 utterances). We did not
use a speaker-dependent condition, because the speaker-
independent condition was more challenging and more
suitable for real-life analysis.

B) Results on unimodal feature
A unimodal feature is a feature set from either acoustic or
text (e.g. pAA LLD). At first, we trained each feature set
on both LSTM and CNN classifier independently. Tables 3
and 4 list our unimodal dimensional emotion results from
those acoustic and text networks, respectively. Each table
lists the scores for valence, arousal, and dominance in terms
of the CCC, along with averaged CCC scores to determine
which method performed better. We grouped the results
by modality and architecture. They all use the same metric
scale and were obtained under the same conditions. Hence,
these results can be compared directly with each other.
In the acoustic-based modality, we obtained consis-

tent results among the feature sets on both architectures.
From bottom to top, the performance order was pAA
LLD, GeMAPS LLD, GeMAPS HSF, and pAA HSF. Thus,
although GeMAPS performed better for LLDs, the HSF for
pAA performed best on both the LSTM and CNN archi-
tectures. This result supports the previous finding that the
mean and standard deviation outperform the LLDs defined
in GeMAPS. Furthermore, we can generalize this finding to
the means and standard deviations from the other feature
sets, as well. In our case, the HSF for pAA performed better
than the HSF for the affective-designed GeMAPS.
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Table 3. CCC score results on the acoustic networks.

Feature set V A D Mean

LSTM
pAA LLD 0.0987 0.5175 0.3536 0.3233
pAA HSF 0.1729 0.5804 0.4476 0.4003
GeMAPS LLD 0.1629 0.5070 0.4433 0.3711
GeMAPS HSF 0.1818 0.5306 0.4332 0.3819

CNN
pAA LLD 0.0687 0.3665 0.3382 0.2578
pAA HSF 0.1310 0.5553 0.4431 0.3764
GeMAPs LLD 0.0581 0.4751 0.4203 0.3178
GeMAPs HSF 0.0975 0.4658 0.4170 0.3268

Table 4. CCC score results on the text networks.

Feature set V A D Mean

LSTM
WE 0.3784 0.3412 0.3638 0.3611
GloVe 0.4096 0.3886 0.3790 0.3924
FastText 0.4017 0.3718 0.3771 0.3835

CNN
WE 0.3740 0.3285 0.3144 0.3390
GloVe 0.3843 0.3646 0.3911 0.3800
FastText 0.3786 0.3648 0.3147 0.3527

Comparing the LSTM and CNN architectures, we found
that the LSTM performed better than the CNN did. In
terms of all emotional dimensions and the average, the score
obtained by the highest-performing LSTM was higher than
that obtained by the highest-performing CNN. We thus
chose the cases with the best scores from the LSTM and
CNN architectures in the acoustic networks to combine
with the text networks.
As for the text networks, word embeddings with pre-

trained GloVe embeddings performed better than either
word embeddings without weighting or word embeddings
weighted by the FastText model did. The text networks also
showed that the LSTMwithGloVe embedding is better than
the CNN with the same input feature. In this dimensional
emotion recognition, however, the highest performance of
a text networkwas lower than the highest performance of an
acoustic network. As with the acoustic networks, we chose
two networks, GloVe with LSTM and GloVe with CNN, to
combine in the bimodal network fusion.

C) Results on bimodal feature fusion
1) Performance of bimodal networks
According to their unimodal network performance, eight
pairs of bimodal acoustic-text networks were evaluated.
Table 5 lists their performance results in the same way as for
the unimodal results. Among the eight pairs, the combina-
tion of the LSTM acoustic network and the LSTM text net-
work achieved the best performance. This result in bimodal
feature fusion is linear with respect to the obtained results
for the unimodal networks, in which the LSTM performed
best on both the acoustic and text networks.
In terms of both emotional dimensions and the average

CCC score, the LSTM+ LSTMpair outperformed the other

bimodal pairs. Moreover, the deviation of the LSTM+
LSTM pair was also the lowest. We can also state that, apart
fromattaining the highest performance, the LSTM+ LSTM
pair also gave the most stable results. This suggests that the
LSTMnot only attained comparable results to theCNNwith
a similar number of trainable parameters but also attained
better performance, which differs from what was reported
in [33].
To our knowledge, one reasonable explanation for why

the LSTM performed better is the use of the full sequence
instead of the final sequence in the last LSTM layer. In most
applications, the last layer in an LSTM stack only returns the
final sequence, so that it can be combined with the outputs
of other layers (e.g. a dense layer). In our implementation,
however, we returned all sequences outputted from the last
LSTM layer and flattened the output before combining with
the output of another dense layer. This strategy may keep
more relevant information thanwhat is returned by the final
sequence of the last LSTM layer. On the other hand, we
only observed this phenomenon on the acoustic network. In
the case of the text network, the last LSTM layer returning
the final sequence performed better than the LSTM return-
ing all sequences did. In that case, we directly coupled the
output of the last LSTM layer with that of a dense layer.
If we choose the highest unimodal score as a base-

line, i.e. the HSF for pAA, then the relative improvement
of the highest bimodal score was 23.97. We also per-
formed a significance test among the bimodal pair results
and observed a significant difference between an LSTM+
LSTM pair and other pairs such as a CNN+ LSTM pair
on a two-tail paired test. The small p-value (�10−5) indi-
cated the strong difference obtained by the LSTM+ LSTM
and CNN+ LSTM pairs. While the CNN+ LSTM pair
obtained the third-highest score, the second-best perfor-
mance was by a Dense+ CNN pair with CCC = 0.485.
The significance test result between the LSTM+ LSTMpair
and this pair was p = 0.0006. The more similar the perfor-
mance of two acoustic-text network pairs was, the higher
the p-value between them was. We thus assert that the
LSTM+ LSTM pair had a strong difference from the other
pairs with p < 0.005.

2) Evaluation of MTL with weighting factors
As an extension of the main proposal to jointly learn the
valence, arousal, and dominance from acoustic features and
word embeddings by using MTL, we also evaluated some
weighting factors for the MTL formulation (equations (4),
(5), and (6)). In contrast, the above results were obtained
using MTL with no parameters (equation 4). Thus, the fol-
lowing results show the effect of the weighting parameters
on the MTL method.
MTL with two parameters is an approach to capture the

interrelation among valence, arousal, and dominance. In
equation 5, the gains of valence and arousal are provided
independently, while the gain of dominance depends on
the other gains. This simple weighting strategy may rep-
resent the relation among the emotional dimensions if the
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Table 5. Results of bimodal feature fusion (without parameters) by concatenating the acoustic and text networks; each modality used either an LSTM,
CNN, or dense network; batch size = 8.

Acoustic+ Text V A D Mean

LSTM+ LSTM 0.418 ± 0.010 0.571 ± 0.017 0.500 ± 0.017 0.496 ± 0.010
LSTM+ CNN 0.256± 0.052 0.531± 0.031 0.450± 0.036 0.412± 0.030
CNN+ LSTM 0.401± 0.020 0.545± 0.016 0.478± 0.015 0.476± 0.012
CNN+ CNN 0.399± 0.015 0.541± 0.020 0.475± 0.014 0.472± 0.012
LSTM+ Dense 0.274± 0.050 0.553± 0.019 0.484± 0.015 0.437± 0.018
CNN+ Dense 0.266± 0.038 0.497± 0.059 0.457± 0.047 0.407± 0.040
Dense+ LSTM 0.368± 0.105 0.564± 0.015 0.478± 0.025 0.470± 0.043
Dense+ CNN 0.398± 0.015 0.570± 0.013 0.487± 0.015 0.485± 0.013

Fig. 4. Surface plot of different α and β factors for MTL with two parameters.
The best mean CCC score of 0.51 was obtained using α = 0.7 and β = 0.2. Both
factors were searched simultaneously/dependently.

obtained results are better than the results without this
weighting strategy.
Figure 4 shows a surface plot of the impact of varying α

and β from 0.0 to 1.0 with the corresponding average CCC
score. Clearly, performance improvement could be obtained
by using proper weighting factors in two-parameter MTL.
We found that α = 0.7 and β = 0.2 were the best weight-
ing factors, and they were also used by the text network. In
the unimodal network, the best factors for MTL with two
parameters were α = 0.7 and β = 0.2 for the text network,
and α = 0.1 and β = 0.5 for the acoustic network. These
factors were used to obtain the unimodal results above. We
cannot be sure whether these same obtained factors for the
bimodal network were contributed by the unimodal net-
work or caused by other factors. Investigation on the cause
of this finding is a challenging issue for both theoretical and
empirical studies.
Next, MTL with three parameters provided all values for

three variables, with the scale of each emotional dimension
independent of the other emotional dimensions. MTL with
no parameters is also a subset of MTL with three param-
eters, with α = 1.0, β = 1.0, and γ = 1.0. We optimized
the weighting factors with three parameters by using linear
search independently on each emotion dimension. Figure
5 shows the impact of the weighting factors on MTL with
three parameters. In this scaling strategy, the best weighting
factors were α = 0.9, β = 0.9, and γ = 0.2. The obtained
result of CCC = 0.497 with these factors was lower, how-
ever, than that obtained by MTL with two parameters, i.e.
CCC = 0.508. While the previous Table 5 presented results

Fig. 5. CCC scores forMTL with three parameters obtained to find the optimal
weighting factors. Linear search was performed independently on each param-
eter. The best weighting factors for the three parameters were α = 0.9, β = 0.9,
and γ = 0.2.

with batch size = 8, results in Table 6 are obtained with
batch size = 256, to speed up computation process. The
results listed in Table 6 show thatMTLwith two parameters
obtained the best performance among the MTL methods.
This result suggests that MTL with two parameters may be
better at representing the interrelation among the emotional
dimensions.

3) Evaluation of dropout for different
modalities
To extend our results and discussion, we investigated the
impact of the dropout rate for the acoustic and text networks
in bimodal feature fusion. In this evaluation, we varied
the dropout rate from each modality before concatenating
them. The goal of the evaluation, at first, was to investigate
the dropout rates for the different modalities.
Figure 6 shows the impact of different dropout rates and

the obtained CCC scores. From the figure, using dropout
rates of p = 0.1 and p = 0.4 for the acoustic and text net-
works, respectively, achieved the best score ofCCC = 0.510.
In fact, these dropout rates were used to obtain the above
results on the bimodal network.
From the obtained dropout rates, we believe that this

factor depends on the size of the feature/input rather than
on modality differences. The acoustic network used the
smaller HSF for pAA, a 68-dimensional vector, as com-
pared to the word embedding’s size of 100 sequences ×
300-dimensional word vectors. Because the goal of using
dropout is to avoid overfitting, it is reasonable that, on small
data, the dropout rate is small, while on larger data, the
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Table 6. Results of MTL with and without parameters for bimodal feature fusion (LSTM+ LSTM); batch size = 256.
MTL method V A D Mean

No parameter 0.409± 0.015 0.585± 0.011 0.486 ± 0.016 0.493± 0.010
Two parameters 0.446 ± 0.002 0.594 ± 0.003 0.485± 0.003 0.508 ± 0.002
Three parameters 0.419± 0.012 0.589± 0.012 0.483± 0.011 0.497± 0.008

Fig. 6. Analysis of dropout rates applied to the acoustic and text networks
before concatenating them. The dropout rates were applied independently on
either network while keeping a fixed rate for the other network.

dropout rate increases. Hence, in this research, we believe
that dropout rates depend on the size of the input rather
than its modality.

D) Discussion in terms of categorical
emotions
This paper on dimensional SER using bimodal features is an
extension of a similar approach for the categorical method.
We found both similarities and differences as compared to
the previous categorical research. Here, we limit the discus-
sion to the best bimodal pairs and the impact of feature sets
from different modalities.
In dimensional SER, we found more consistent results.

We observed low variation among the experiments, while
the previous categorical research only used the highest
accuracy from many experiments. Both the categorical and
dimensional approaches gained performance improvement
over unimodal emotion recognition by combining acoustic
features and word embeddings. Using pairs of acoustic-text
networks, we found that LSTM networks on both modal-
ities performed best in dimensional emotion recognition.
This result was also supported by a small standard devia-
tion and significant differences with respect to other results.
In the categorical research, a Dense+ LSTM pair attained
the highest result, followed by a Dense+ CNN pair. We
observed high performance in some of the 20 experiments
with the Dense+ LSTM pair. Its average performance
ranked fifth, however, among the eight acoustic-text net-
work pairs. The Dense+ CNN pair, which was the second
best in the categorical emotion research, also ranked sec-
ond in this dimensional emotion approach. This result from
dimensional emotion recognition was supported by the fact
that the LSTM also attained the highest performance on
unimodal emotion recognition. Similar unimodal results
were also observed in the categorical approach, in which

the LSTM architecture performed the best among all the
architectures.
A second important finding is that we found differ-

ent results between categorical and dimensional emotion
recognition from the feature/modality perspective. Feature
set/modality, which attained the highest performance in
the categorical approach, is different from the dimensional
approach. In the categorical approach with the IEMOCAP
dataset, word embeddings gave the highest performance in
the unimodal model, as reported in [1, 2, 4, 25]. In con-
trast, in the dimensional approach, the average performance
of acoustic features gave better performance over text fea-
tures. This phenomenon can be explained by the fact that
text features (word embeddings) contribute to valencemore
than acoustic features do (see Tables 3 and 4). While the
authors in [22] found this result, the authors in [7, 8, 12]
extended it to find that, for arousal, acoustic features con-
tribute more than text features do. Our results here further
extend the evidence that text features contribute more in
valence prediction, while acoustic features give more accu-
racy in arousal and dominance prediction. Given this evi-
dence, it is more likely that acoustic features will obtain
higher performance in the unimodal case as compared to
text features, because they provide better performance for
two of the three emotional dimensions. As suggested by
Russell [38], however, a categorical emotion can be charac-
terized by its valence and arousal only. This relation shows
why text features achieve better performance than acoustic
features do on categorical emotion.
As a final remark, we emphasize some of our findings

on combining acoustic and text features for dimensional
emotion recognition. Dimensional emotion recognition is
scientifically more challenging than categorical emotion
recognition. In this work, we achieved more consistent
results thanwhat we did in categorical emotion recognition.
The combination of LSTM networks for both the acous-
tic and text networks achieved the highest performance on
bimodal feature fusion, as the same architecture did on uni-
modal emotion recognition. Our proposal on using MTL
for simultaneously predicting valence, arousal, and domi-
nance worked as expected, and we found that MTL with
two parameters represented the interrelation among the
emotional dimensions better than other MTLmethods did.

V I I . CONCLUS IONS

This paper has reported an investigation of using acoustic
features and word embeddings for dimensional SER with
MTL. First, we conclude that using acoustic features and
word embeddings can improve the prediction of valence,
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arousal, and dominance. Word embeddings help improve
valence prediction, while acoustic features contribute more
for arousal and dominance prediction. All the emotional
dimensions gained prediction improvements on bimodal
acoustic and text networks, the highest improvement was
obtained using LSTM+ LSTM architectures pair. Second,
our proposed MTL with two parameters could improve
the prediction of all emotional dimensions as compared
to MTL with no parameters. The weighting factors given
to valence and dominance may represent the interrela-
tion among the emotional dimensions. We think, however,
that this formulation only partially represents that interre-
lation, because the obtained improvement was still small.
The formulation can be improved for future research by
implementing other strategies, particularly those based on
psychological theories and experiments. Third, we found
a mismatch between categorical and dimensional emotion
recognition. For categorical emotion, text features obtained
better results than acoustic features did, but for dimensional
emotion, the result was the opposite. This can be explained
by the argument that categorical emotion only relies on
the valence-arousal space, in which the higher valence pre-
diction obtained by word embeddings may result in better
categorical emotion prediction than prediction by acoustic
features.
In summary, a combination of speech features and word

embeddings can solve the drawback of dimensional SER.
The low score of the valence dimension in acoustic-based
SER is improved by word embeddings. The combination
of both features not just improved valence but arousal and
dominance dimensions too. MTL also works as expected;
it can simultaneously predict the degrees of three emotion
dimensions instead of predicting one by one dimension
using STL. This human perception-inspired strategy may
mimic how our emotion perception from speech works.
Based on the obtained performances, however, there is
room for next improvements when comparing human emo-
tion perception (i.e. labels) with automatic emotion recog-
nition by computers/robots.
Future research directions can be taken to improve the

performance of dimensional SER. While the state-of-the-
art categorical method achieves more than 70 accuracy,
the current dimensional approach still suffers from low
performance in terms of the CCC score. For reporting
dimensional emotion recognition performance, we encour-
age other researchers to use the CCC measure to enable
benchmarking with respect to both previous and future
research.
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