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A Note on Locally Nilpotent Derivations
and Variables of k[X,Y, Z]

Daniel Daigle and Shulim Kaliman

Abstract. We strengthen certain results concerning actions of (C, +) on C3 and embeddings of C2 in

C3, and show that these results are in fact valid over any field of characteristic zero.

Introduction

The Lefschetz principle [15] suggests that any result, which has been proved over the

field C of complex numbers and which involves a finite number of points and of vari-

eties, remains valid over any universal domain (i.e., over an algebraically closed field
with infinite transcendence degree over the prime field) of characteristic zero. In this

form the principle was proved by Eklof [3]. Furthermore, any statement of the first
order predicate calculus true over C is valid over any algebraically closed field of char-

acteristic zero, without restriction on the transcendence degree (see [11]). However,

the situation changes when one tries to extend results to all fields of characteristic
zero, which is what the present paper does for the following results.

(1) Let B = C[X,Y, Z], let D : B → B be a locally nilpotent derivation and let A =

ker D. Then the map Spec B → Spec A, determined by the inclusion A →֒ B, is

surjective (see [1]).

(2) Every free algebraic C+-action on C3 is a translation in a suitable polynomial
coordinate system (see [5]).

(3) Every polynomial f ∈ C[X,Y, Z] whose general fiber is isomorphic to C2 is a

variable of C[X,Y, Z] (see [4]).

Our ability to go beyond the Lefschetz principle in (1) and (3) is essentially based

on Kambayashi’s theorem (see 1.3) in combination with other serious results. We also
present slightly stronger versions of results (1) and (3) and we show (see Corollary

3.3, Proposition 4.9 and Corollary 4.12) that under some additional assumptions the

analogue of Kambayashi’s theorem holds in dimension 3.

In the stronger version of (3) the assumption on the general fiber is replaced by

the condition that there exists a Zariski-dense subset U of C such that the fiber of f

over any point of U is an affine plane. We shall verify in Section 2 that this weaker

hypothesis implies the stronger one, but it is worth mentioning that this implication
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is also a corollary to the fact that for any morphism ϕ : X → Y of algebraic vari-
eties, {y ∈ Y | ϕ−1(y) ∼

= A2} is a constructible subset of Y . Actually, consider the

following more general question:

If ϕ : X → Y is a morphism of algebraic varieties and S is an affine algebraic
surface, is {y ∈ Y ′ | ϕ−1(y) ∼= S} a constructible subset of Y ′ (where Y ′ is the

set of closed points of Y )?

Classification of surfaces S with this property will be given in a subsequent paper.

1 Locally Nilpotent Derivations of k[X,Y, Z]

Definition 1.1 • If B is an algebra over a ring A, then the notation B = A[n] means

that B is A-isomorphic to a polynomial ring in n variables over A.
• Let B be a ring. A derivation D : B → B is locally nilpotent if for each b ∈ B there

exists an integer r > 0 satisfying Dr(b) = 0.
• A subring A of an integral domain B is called an inert subring of B if the conditions

x, y ∈ B \ {0} and xy ∈ A imply x, y ∈ A. It is well known that if B is an integral

domain of characteristic zero and D : B → B is a locally nilpotent derivation, then

ker(D) is an inert subring of B; it follows that ker(D) contains all units of B and,
consequently, that if k is any field contained in B then D is a k-derivation.

We begin with the following simple observation.

Lemma 1.2 Let k ′/k be a field extension, B a k-algebra and B ′
= k ′ ⊗k B.

(i) The map Spec B ′ → Spec B, corresponding to the natural map B →֒ B ′, is surjec-

tive.

(ii) Suppose that D ′ : B ′ → B ′ is a k ′-derivation, D : B → B is a k-derivation and

D ′ extends D. Then ker(D ′) ∼
= k ′ ⊗k ker(D). Consequently, Spec(ker D ′) →

Spec(ker D) is surjective.

Proof Since k ′ is free over k, B ′ is a free, hence faithfully flat, B-module; assertion (i)
follows (see for instance [7, p. 28]. Applying the exact functor k ′ ⊗k – to the exact

sequence 0 → ker(D) → B
D
−→ B gives ker(D ′) ∼

= k ′ ⊗k ker(D). Then assertion (i)

implies that Spec(ker D ′) → Spec(ker D) is surjective.

We need the following result of Kambayashi (see [6], or [12] for a different proof).

Proposition 1.3 Let k ′/k be a separable field extension and let A be a k-algebra. If

k ′ ⊗k A = k ′[2]
then A = k[2].

We also require the following result of Miyanishi:

Proposition 1.4 Let k be a field of characteristic zero, B = k[X,Y, Z] = k[3] and

0 6= D : B → B a locally nilpotent derivation. Then ker D = k[2].

Actually, Miyanishi [8] proved the case k = C, and the general case 1.4 follows

from Miyanishi’s result by a straightforward application of Kambayashi’s result 1.3.

We include the proof for the sake of completeness.
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Proof Choose a finite subset F of k which contains all coefficients of the polynomials
DX, DY and DZ and define the field k0 = Q(F) and the algebra B0 = k0[X,Y, Z];

then D restricts to a nonzero locally nilpotent derivation D0 : B0 → B0. Since ker D =

k ⊗k0
ker D0 by 1.2, it suffices to show that ker D0 = k[2]

0 . Since k0 is isomorphic to a

subfield of C, it suffices to prove 1.4 in the case where k ⊆ C.

Assume that k ⊆ C, let B ′
= C[X,Y, Z] = C[3] and consider the extension D ′ :

B ′ → B ′ of D. By Miyanishi’s result we have ker(D ′) = C[2], so Lemma 1.2 gives

C ⊗k ker(D) = C[2]. Then Kambayashi’s result 1.3 gives ker D = k[2].

Next we prove the following generalization of Bonnet’s result.

Theorem 1.5 Let k be a field of characteristic zero, B = k[X,Y, Z] = k[3], D : B → B

a locally nilpotent derivation and A = ker D.

(i) B is faithfully flat as an A-module.

(ii) The ideal A ∩ D(B) of A is principal.

Remarks. (i) Faithful flatness has the following standard consequences, (see [7,
pp. 28, 46]).

(a) The map π : Spec B → Spec A, determined by the inclusion A →֒ B, is
submersive, i.e., π is surjective and a subset E of Spec A is closed if and only

if π−1(E) is closed.

(b) Each ideal I of A satisfies A ∩ IB = I.

(ii) The fact that B is flat over A is well known for any field k of characteristic zero

(if D 6= 0, one can show that every nonempty fiber of π has dimension 1). Thus,
π is also an open map.

(iii) Bonnet also proved (but he did not publish this part) that the ideal A ∩ D(B) is

principal when k = C; our proof of this fact is a simplification of his argument.

2 Proof of Theorem 1.5

Consider the following condition on a field k:

(B) Let B = k[3]; then for every locally nilpotent derivation D : B → B

the map Spec B → Spec(ker D) is surjective.
As mentioned in the introduction, P. Bonnet proved the following.

Proposition 2.1 C satisfies (B).

We begin with the following Lemma.

Lemma 2.2 If k ′ is a field of characteristic zero which satisfies (B), then every subfield

of k ′ satisfies (B).

Proof Let k be a subfield of k ′, X,Y, Z indeterminates over k ′, and

B = k[X,Y, Z] ⊆ B ′
= k ′[X,Y, Z].

Consider a locally nilpotent derivation D : B → B and let A = ker D. Note that D

extends uniquely to a locally nilpotent derivation D ′ : B ′ → B ′. Let A ′
= ker D ′. In
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the commutative diagram

Spec B

π

��

Spec B ′

β
oo

π ′

��

Spec A Spec A ′

α
oo

the map π ′ is surjective because k ′ satisfies (B) by assumption, and α is surjective by
Lemma 1.2. It follows that π is surjective, as desired.

Lemma 2.3 Every field of characteristic zero satisfies (B).

Proof By 2.2, it suffices to prove that every algebraically closed field of character-
istic zero satisfies (B). This follows from 2.1 and the Lefschetz Principle, but we

include the proof for the sake of completeness (actually, verifying that the hypothesis
of Eklof ’s Theorem [3] is satisfied is roughly equivalent to the following argument).

Let k be an algebraically closed field of characteristic zero, B = k[X,Y, Z] = k[3]

and D : B → B a locally nilpotent derivation; let A = ker D. In order to show that
π : Spec B → Spec A is surjective, we may assume that D 6= 0; then A = k[2] by

1.4. Let p ∈ Spec A. If p = 0, then clearly p is in the image of π. If ht p = 1, then

p = pA for some prime element p of A; since A is an inert subring of B, it follows
that A∩ pB = pA and that pB is a prime ideal of B, so again p is in the image of π. So

we may assume that p is a maximal ideal of A. Since A = k[2] and k is algebraically

closed, we may choose f , g such that A = k[ f , g] and p = ( f , g)A.

Consider a finite subset F of k which contains all coefficients of DX, DY, DZ, f

and g; let k1 = Q(F) and B1 = k1[X,Y, Z] ⊆ B. Then D restricts to a nonzero locally
nilpotent derivation D1 : B1 → B1; let A1 = ker D1, then A1 = k[2]

1 by 1.4; actually

we have A1 = k1[ f , g], because f , g ∈ B1.

Spec B1

π1

��

Spec B
β

oo

π

��

Spec A1 Spec A
α

oo

Note that β is surjective by Lemma 1.2(i). Since k1 is a finitely generated field exten-
sion of Q , it is isomorphic to some subfield of C. By 2.1 and 2.2, it follows that k1

satisfies (B), so π1 is surjective. Consequently, α◦π is surjective. Let p1 = ( f , g)A1 ∈
Spec(A1). Then the fibre of α over p1 is {p} (because p1A = p is maximal). This and
the fact that α ◦ π is surjective imply that p belongs to the image of π, which shows

that π is surjective and consequently that k satisfies (B).

We may now finish the proof of Theorem 1.5.
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Let k, B, D and A be as in the statement of the theorem and let π : Spec B →
Spec A be the map determined by A →֒ B. Since B is flat over A and (by 2.3) π is

surjective, it follows that B is faithfully flat over A [7, p. 28, Theorem 3]. As mentioned
in the remark following the statement of the theorem, it also follows that each ideal I

of A satisfies A ∩ IB = I.

Next, we show that if f1, f2 are nonzero elements of A ∩ D(B), then gcd( f1, f2) ∈
A ∩ D(B); of course, this implies that A ∩ D(B) is a principal ideal. (Remark: Given

x, y ∈ A, gcdA(x, y) = gcdB(x, y) because A is an inert subring of B.)

For each i ∈ {1, 2}, choose si ∈ B such that D(si) = fi. Define I = ( f1, f2)A.
Then clearly s1 f2 − s2 f1 ∈ IB; since D(s1 f2 − s2 f1) = 0, we have in fact s1 f2 − s2 f1 ∈
A ∩ IB = I, so there exist a1, a2 ∈ A such that s1 f2 − s2 f1 = a1 f2 − a2 f1. Thus
(s1 − a1) f2 = (s2 − a2) f1. Write fi = f ′

i d where d = gcd( f1, f2). Then (s1 − a1) f ′

2 =

(s2 − a2) f ′

1 and gcd( f ′

1 , f ′

2 ) = 1. So if we define

s =

s1 − a1

f ′

1

=

s2 − a2

f ′

2

,

then s ∈ B and clearly Ds = d ∈ A, whence d ∈ A ∩ D(B). This shows that A ∩ D(B)
is a principal ideal of A.

The proof of Theorem 1.5 is complete.

3 Free Locally Nilpotent Derivations of k[X,Y, Z]

Definition 3.1 Let B be a ring. A locally nilpotent derivation D : B → B is free if

the ideal of B generated by D(B) is equal to B.

Consider the case B = k[3], where k is a field of characteristic zero. There is a
natural bijective correspondence between the set of locally nilpotent derivations of B

and the set of Ga-actions on Spec(B) = A3
k (see [10]). Consider an action α and the

corresponding derivation D; the following facts are well known.

• A maximal ideal m of B is a fixed point of α if and only if D(B) ⊆ m; so D is free if

and only if α is free of fixed points. As an example, consider the locally nilpotent
derivation D of Q[X,Y, Z] given by D(X) = D(Y ) = 0 and D(Z) = X2 − 2; then

D is not free and the corresponding action on A3
Q has many fixed points, but no

fixed point is in Q3.
• The condition D(B) = B is equivalent to α being a translation in a suitable poly-

nomial coordinate system of A3
k (cf. [16, Proposition 2.1]).

Theorem 3.2 If k is a field of characteristic zero and D a free locally nilpotent deriva-

tion of B = k[3], then D(B) = B. (Equivalently, every fixed point free Ga-action on A3
k

is a translation in a suitable polynomial coordinate system.)

Proof By [5] the case k = C is true, so [3] implies that the theorem is true whenever

k is a universal domain of characteristic zero. Suppose that k, B and D satisfy the
hypothesis of the theorem. Consider a field extension k ′/k where k ′ is a universal

domain. Then D extends uniquely to a locally nilpotent derivation D ′ on B ′
= k ′ ⊗k

B = (k ′)[3]. As D is free, it is clear that D ′ is free; since the theorem is true for k ′,
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D ′ : B ′ → B ′ is a surjective map. Note that D ′ is obtained by applying the functor
k ′ ⊗k – to D; since k ′ is a free (hence faithfully flat) k-module, D : B → B must be

surjective.

Corollary 3.3 Let B be an algebra over a field k of characteristic zero such that B ⊗k

k ′ ≃ (k ′)[3] for some field extension k ′/k. If D : B → B is a free locally nilpotent

derivation, then B = k[3] and D(B) = B.

Proof Extend D to a locally nilpotent derivation D ′ of B ′
= k ′ ⊗k B = (k ′)[3].

Then D ′ is free, so D ′ is surjective by Theorem 3.2 and D(B) = B by faithful flatness.

By [16, Proposition 2.1], the surjectivity of D implies that B = A[1] where A =

ker(D). We have k ′ ⊗k A = ker(D ′), and ker(D ′) = (k ′)[2] by 1.4. So A = k[2] by
Kambayashi’s result 1.3 and this implies that B = k[3].

4 Variables of k[3]

Definition 4.1 Let k be a field, B = k[3], and f ∈ B. We say that f is a variable of B

if B = k[ f , g, h] for some g, h.

Notation Suppose that R is a subring of a ring B. If p ∈ Spec R, we write κ(p) =

Rp/pRp for the residue field at p and we consider the κ(p)-algebra B⊗R κ(p). Define
U (R, B) = {p ∈ Spec(R) | B ⊗R κ(p) = κ(p)[2]}.

Suppose that f ∈ B = k[3] is such that U (k[ f ], B) 6= ∅, i.e., at least one fiber of f

is an affine plane. Then the Abhyankar–Sathaye embedding conjecture asserts that f

is a variable of B. We shall prove a weaker statement:

Theorem 4.2 Let B = k[3], where k is a field of characteristic 0. If f ∈ B is such that

U (k[ f ], B) is a dense subset of Spec k[ f ], then f is a variable of B.

Let us first recall some known facts.

Proposition 4.3 Let f ∈ B = C[3] and suppose that one of the following conditions is

satisfied.

(i) The zero ideal of C[ f ] belongs to U (C[ f ], B) (i.e., the generic fiber of f is an affine

plane);

(ii) U (C[ f ], B) contains all closed points of Spec C[ f ], except possibly a finite number

of them, i.e., the general closed fiber of f is an affine plane.

Then f is a variable of B.

Proposition 4.4 Let ϕ : X → Y be a morphism of complex irreducible quasi-projective

algebraic varieties. Then there exists a Zariski-dense open subset Y0 of Y so that the fibers

of ϕ over any two closed points of Y0 are homeomorphic in the standard topology.

Proposition 4.5 Let S be a smooth complex algebraic variety homeomorphic to R4 in

the standard topology. Then S is isomorphic to A2
C as an algebraic variety.

Case (ii) of Proposition 4.3 is given in [4]; it follows that case (i) also holds, as

it is easy to see that if the generic fiber of f is an affine plane, then so is the general
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fiber. Proposition 4.4 is a special case of the Varchenko equisingularity theorem [14,
Theorem 5.2] and Proposition 4.5 is a consequence of Ramanujam’s result [9]. Now

Propositions 4.3–4.5 imply the following.

Proposition 4.6 Theorem 4.2 is valid in the case k = C.

So our task consists in showing that validity over C implies validity over any field

of characteristic zero. First note that Kambayashi’s result, Proposition 1.3, has the

following consequence.

Lemma 4.7 Let k ′/k be an extension of fields of characteristic zero, let R ⊂ A

be k-algebras and define R′
= k ′ ⊗k R and A ′

= k ′ ⊗k A. Then U (R′, A ′) =

π−1(U (R, A)), where π : Spec(R′) → Spec(R) is the surjective map determined by

R →֒ R′.

Proof Since R′ is a free R-module, it is in particular faithfully flat and consequently

π is surjective. Let q ∈ Spec(R′); it suffices to show

(4.1) q ∈ U (R′, A ′) ⇐⇒ π(q) ∈ U (R, A).

Let p = π(q) ∈ Spec(R) and write κ = κ(p) = Rp/pRp and κ ′
= κ(q) = R′

q
/qR′

q
;

note that κ ′ is a separable extension of κ. We have

κ ′ ⊗κ (κ ⊗R A) = κ ′ ⊗R A = κ ′ ⊗R ′ R′ ⊗R A = κ ′ ⊗R ′ (k ′ ⊗k R ⊗R A)

= κ ′ ⊗R ′ (k ′ ⊗k A) = κ ′ ⊗R ′ A ′.

Thus, by 1.3, κ ′ ⊗R ′ A ′
= κ ′[2]

if and only if κ ⊗R A = κ[2]; in other words, (4.1)

holds.

We thank Sathaye for pointing out the following fact to us.

Proposition 4.8 (Sathaye) Let B be a regular affine domain over a field k of charac-

teristic zero. If f ∈ B and U (k[ f ], B) = Spec k[ f ], then B = k[3] and f is a variable of

B.

Proof If m is a maximal ideal of R = k[ f ], then the assumption implies that

U (Rm, Bm) = Spec Rm, so the main result of [13] gives Bm = R[2]
m . Then [2] im-

plies that B is the symmetric algebra of a finitely generated projective R-module P

but R = k[1] implies that P is free and hence that B = R[2].

Combining the results of Kambayashi and Sathaye, we obtain the following.

Proposition 4.9 Let k ′/k be an extension of fields of characteristic zero, let B be a

k-algebra and let f ∈ B. Suppose that k ′ ⊗k B = (k ′)[3] and that f is a variable of

k ′ ⊗k B. Then B = k[3] and f is a variable of B.

Proof Let R = k[ f ], B ′
= k ′ ⊗k B, and R′

= k ′[ f ] = k ′ ⊗k R. Since f is a variable

of B ′, we have B ′
= R′[2]

so in particular U (R′, B ′) = Spec(R′); then U (R, B) =

Spec(R) by 4.7. Since the assumption k ′ ⊗k B = (k ′)[3] implies that B is a regular

affine domain over k, the desired conclusion follows from Sathaye’s result 4.8.
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The following is immediate.

Corollary 4.10 Let k ′/k be an extension of fields of characteristic zero, let X,Y, Z be

indeterminates over k ′ and let f ∈ k[X,Y, Z] ⊆ k ′[X,Y, Z]. Then

f is a variable of k[X,Y, Z] ⇐⇒ f is a variable of k ′[X,Y, Z].

We make the trivial observation.

Lemma 4.11 Let k ′/k be an extension of fields, let T be an indeterminate and let

π : Spec k ′[T] → Spec k[T] be the map defined by π(q) = q ∩ k[T]. For any subset E

of Spec k[T],

E is dense in Spec k[T] ⇐⇒ π−1(E) is dense in Spec k ′[T].

Proof of Theorem 4.2 Let k be a field of characteristic zero, let X,Y, Z be indetermi-

nates and let f ∈ B = k[X,Y, Z] be such that U (k[ f ], B) is dense in Spec k[ f ]. Let F

be a finite subset of k which contains all coefficients of f and define k0 = Q(F) and

B0 = k0[X,Y, Z]. Note that f ∈ B0 and that (by 4.7 and 4.11) U (k0[ f ], B0) is dense

in Spec k0[ f ]. Fix a homomorphism of fields k0 →֒ C and regard f as an element
of B ′

= C[X,Y, Z]. Using 4.7 and 4.11 again, we find that U (C[ f ], B ′) is dense in

Spec C[ f ]. Since Theorem 4.2 is known to be true over C (see 4.6), f is a variable of
B ′. By 4.10, f is a variable of B0 and hence a variable of B.

Corollary 4.12 Let B be an algebra over a field k of characteristic zero such that B ⊗k

k ′ ≃ (k ′)[3] for some field extension k ′/k. If f ∈ B is such that U (k[ f ], B) is a dense

subset of Spec k[ f ], then B = k[3] and f is a variable of B.

Proof Let B ′
= B ⊗k k ′

= (k ′)[3]. By 4.7 and 4.11, U (k ′[ f ], B ′) is dense in
Spec k ′[ f ], so Theorem 4.2 implies that f is a variable of B ′. The desired conclu-

sion follows from 4.9.

Remark. Suppose for a moment that the Abhyankar–Sathaye embedding conjecture
is true over C, i.e., if f ∈ B = C[3] and U (C[ f ], B) 6= ∅, then f is a variable of B.

Then the conjecture holds over any field of characteristic zero and 4.12 remains true
if the word “dense” is replaced by “nonempty”. To see this, simply replace “dense” by

“nonempty” in 4.11 and in the proofs of Theorem 4.2 and of 4.12.
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