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Abstract

The main purpose of the paper is to give necessary and sufficient conditions for the almost sure
boundedness of (Sn — ar)/B(n), where Sn = A", +X2 + ... + Xn, A'r being independent and identically
distributed random variables, and %„ and B(n) being centering and norming constants. The conditions
take the form of the convergence or divergence of a series of a geometric subsequence of the sequence
P{Sn — y.n > a B{n)), where a is a constant. The theorem is distinguished from previous similar results by
the comparative weakness of the subsidiary conditions and the simplicity of the calculations. As an
application, a law of the iterated logarithm general enough to include a result of Feller is derived.

1980 Mathematics subject classification (Amer. Math. Soc.): 60 F 15, 60 G 50.

1. Results

Let Xh i ^ 1, be independent random variables with distribution F, and let
Sn = X{ +X2+... + Xn. Many papers have been devoted to the extension of the
classical law of the iterated logarithm to the case when the variances of the X( are
infinite, and the definitive result was obtained by Kesten (1972), Theorem 6, who
showed that there are sequences y(n) ~* + oo, d(n), for which

— oo < \iminf[Sn — d(n)~]/y(n) < limsup[Sn — S(nJ]/y(n) < +oo a.s.

if and only if F is in the domain of partial attraction of the normal distribution.
This theorem, although completely general, gives little information on the

properties of y(«), and in Theorem 7 of the same paper, Kesten gave a restricted
result with a more explicit form for the norming sequence. This result is similar to
one of Feller (1968), Theorem 1, who showed (although only for symmetric Xt) that if
an is a sequence satisfying a\ = 2nK(an)loglogan, n'ian is nondecreasing and
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lim supn^ + x a2jan < + co, and

foe

/ = {V(x)\og\ogx}~idV(x)< +x,

then

lim (™v)(Sn-nEXl)/an = ±l a.s.,
n-» + oo \ ln l /

where

V(x)= «-[j\
Martikainen and Petrov (1977) give very general criteria for deciding when

lim sup SJan = 1 a.s. in terms of the convergence of divergence of a series of the
subsequence of probabilities P{Skn — St,_, > xaki); they do not even require that the
Xt be identically distributed. However, in order to give a more easily applicable
result for the case when kn is a geometric subsequence, which is an important special
case, they assume that the nondecreasing sequence an satisfies
limn_+0Oac,,/ac,,-i = l(c) for each c> 1. This implies in particular that
limsupn_ + aja2n/an < +oo, which is the same as Feller's restriction. Martikainen
and Petrov's results under this assumption can be compared with those of Baum,
Katz and Stratton (1971).

The main aim of the present paper is to give, in Theorem 1, necessary and
sufficient conditions for the almost sure boundedness of {Sn — <xn)/B(n), where an and
B(n) are centering and norming constants. These take the form of the convergence or
divergence of a series of a geometric subsequence of the sequence P{Sn — ctn > aB(n)),
where a is a constant. Results like this have been used in the proof of the law of the
iterated logarithm from the beginning, of course, and Theorem 1 is only new by
virtue of the comparative weakness of the subsidiary conditions imposed. The
symmetry of the Xt is not required, and our approach avoids any intricate
calculations with subsequences (see the working of Feller (1968) and the concluding
remark of Kesten (1972)). Our restrictions on the norming sequence are very mild
and in particular B[2n)/B(n) is not required to be bounded above to obtain
lim supn_ + x (Sn — txn)/B(n) = 1 a.s. This is important since in many cases no such
upper bound applies (for example, the last example of Feller (1968)). On the other
hand, the restriction of Theorem 1 to geometric subsequences seems of minor
concern since even the most general result (Kesten's Theorem 6) is proved with
them.

In practice, results like Theorem 1 must be applied to obtain generalized laws of
the iterated logarithm which involve only conditions on the distribution of the X,.
As an example of such a result, in Theorem 2 we derive from Theorem 1 a law of the
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iterated logarithm general enough to include Feller's result as a special case. That
this is so, we prove in a corollary, and in a further corollary, we deduce a result
related to Kesten's. Following these, we discuss the limitations of our approach and
mention some related work.

If A > 1 let kj — \_X'\ where [x] denotes the integer Dart of x.

THEOREM 1. Suppose (Sn —an)/B(n) ->p0/or constants aB, B(n), B(n) being positive,
nondecreasing and satisfying

l i m i n f B [ n / i ] / B ( n ) Ss b _ ( n ) f o r f i ^ l ,
n-» + oo

where b_( + oo) = + oo. Let 0 < a < + oo. If ~ZP{SX.-aXj > aB{Xj)} divergesfor every
X ^ X0for some Xo > 1, then

lim sup (Sn — ccn)/B(n) ^ a a.s.

If the same series converges for every Xe(l,X0)for some Xo > 1, then

lim sup (Sn — <xn)/B{n) < a a.s.
* + 00

The condition (Sn — a.n)/B(n) -^pO in Theorem 1 is imposed essentially in lieu of a
symmetry assumption. It is a very mild restriction in the context of Theorem 1 since
the almost sure boundedness of limsupn_ + 00 \Sn — a.n\/B(n) (for some an) ensures
(SB-aJ/B(n) ->,0 (for certain «„) by Theorem 7 of Kesten (1972). Other conditions
for (Sn — <xn)/B(n) -*p 0 are well known (see also the end of this section).

The assumption l i m ^ + x lim infn_ + x B[n/x]/B(n) = + oo in Theorem 1 is a mild
condition on the rate of increase of B(n), and is satisfied if B(n) is regularly varying
with positive index or if n ~6 B(ri) is nondecreasing for some <5 > 0; it is also satisfied
by the sequence of Kesten's Theorem 6.

In order to replace the conditions of Theorem 1 with conditions involving only the
distribution of Xh we need only test for the convergence or divergence of
IP{SA / -aA j ^ aB(Xj)}. The time-honoured procedure for doing this is to use
a bound on the convergence of Sn, when suitably normed and centered, to
normality. By applying a nonuniform bound for such convergence due to Nagaev
(1965), we obtain:

THEOREM 2. Suppose an is a nondecreasing sequence for which Y,P(\Xl | > an)
converges, and suppose liminfB_, + „„ B(n)/an > 0, where B2{n) = 2nV(an)log\ogn.
Then
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where

an = n \ udF(u).
J — an

If in addition limsupn^ + Q0 B[nk~\IB{n) ^ b + (k) for k ^ 1, where b + (\ +) = 1, then
{Sn — txn)/B(n) has as its set of almost sure limit points precisely the interval [— 1,1].

The case an = M* in Theorem 2 gives the classical law of the iterated logarithm
when EX] < + oo. We now give two corollaries which relate Theorem 2 to the
previously mentioned results of Feller and Kesten.

COROLLARY 1. Suppose an is a nondecreasing sequence satisfying

a\ ~ 2nV(an)loglogan, and limsup an+ xjan < + oo.
n-»+ oo

Then if I < + oo,

lim (s}1f\(Sl,-nEX^am= ±1 a.s.

If in addition limsupn^ + x a[nX]/a„ ^ a+ (k) for k > 1, vv/rere a + ( l + ) = l ,

(Sn — JT EA ' j ) / ^ /ias as its set of almost sure limit points precisely the interval [ — 1,1].

COROLLARY 2. Suppose y(n) is a nondecreasing sequence for which

£ P(\ Xi > y(n)) < + oo, and suppose

y
2(n)/nV(y(n))loglog{nV(y(n))} -» *.

Suppose also that lim supn_ + „ y(« + l)/y(n) < + oo. Then

lim fS"j)(S,,-n£A-1)M«)=±l a.s.
> + o \ ini /

If an addition l i m s u p n ^ + aoy[nk~\/y(n) ^ y + {k)for k ^ l , where y + ( l + ) = 1, then
(Sn — n £ A ' 1 ) / y ( n ) has as its set of almost sure limit points precisely the interval [ — 1 , 1 ] .

The hypotheses of Corollary 1 are considerably less restrictive than those of the
corresponding result of Feller. We do not require symmetry, or that an be a root of
a\ = 2nF(an)loglogan, and the restrictions on the rate of increase of an are weaker.
Comparing Corollary 2 with the relevant part of Theorem 7 of Kesten, it will be seen
that we impose the extra condition lim supn_ + aoy(n + l)/y(n) < + oo, under which
the index p defined by Kesten is equal to 1. It may be that Kesten's result can be
derived in full by methods similar to ours. A condition like
limsupn_ + x y[nA]/y(n) ^ y + (k) for k > 1, where y+(l +) = 1, is satisfied when y is
regularly varying.
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The simplest example of a distribution in the domain of partial attraction of the
normal distribution for which the variance is infinite, is P(\ X | > x) = x~2, x ^ 1. It
is surprising, but easily verified, that neither Theorem 2, Feller's theorem, nor
Kesten's original result, apply to this case. (The correct norming constants for this
distribution are given at the end of Feller (1968).) Clearly the arguments of Theorem
2, and like results, lack a great deal of generality.

A distribution to which all three results apply is given by a symmetric X for which
P{\ X! | > x) = (x2 logx)~1 for large x. Then V(x) ~ log log x and the conditions of
Theorem 2 are fulfilled by taking aj = 2n(log log r?)2 ~ B2(n). We could just as well
take a2 = 2«(log log ri)2 log n, in which case B(n)/an->0 although the other con-
ditions of the Theorem hold. Thus lim inf B(n)/an > 0 is not necessary in Theorem 2.

It can be shown that if (Sn — nEXt)/an converges to normality and E P(| A^ | > an)
is finite then EX\ is finite. It can also be shown that if n~*a n t + oo and
I P ( | X11 > an) is finite then (Sn-an)/an ->p0, where

ccn = n \ udF(u);
J -an

see Theorem 1 of Klass and Teicher (1977). We omit the proofs.
The results of the present paper are intended to apply to the case when

limsupn^ + aD(Sn — an)/B(n) and liminfn^ + a0{Sn — an)/B(n)are finite. Recent papers of
Klass (1976, 1977) and Klass and Teicher (1977) are concerned with one-sided
generalizations of the law of the iterated logarithm, and use methods not closely
related to ours. A paper to appear by Pruitt (1980), seen after the present paper was
submitted, generalizes these results and those of Kesten.

2. Proofs

PROOF OF THEOREM 1. Suppose the divergence of the series and let n, be the
sequenceXk;= o4- Since rij — n;-_i = /,-, ZP{Sn. — aXj — Sn._t ^ aB(A,)} = +oo, so by
independence and the Borel-Cantelli lemma, P f S ^ - a ^ - S , , ^ , > aB(Xj)io} = 1. If
/. ^ 2 , H;._! ^Xj/(A-l)^lp so (Sn._,-an._1)/B(lJ)->-p0, and from Lemma 1 of
Baum, Katz and Stratton. (1971) or Lemma 3.2 of Klass (1976), together with the
Hewitt-Savage 0-1 law, we obtain if e > 0,

-ah-ami.l > (oc-e)BiXj)io}.

This means lim sup (Snj - aA. — ani_)/B(Xj) ^ a a.s. Since
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and since Y."'=x + i^i n a s t n e same probabilistic structure as Sni_Xj = Snj_,, the
second term above has lim sup equal to

limsup(Snj_,-aBj.I)/B(/lJ.) ^ a lim sup B ^ ) / ^ ) sc a/b_(X-l) a.s.

Here we assumed lim sup (Sn — txn)/B(n) < a a.s. (if lim sup (Sn — <xn)/B(n) ^ a a.s. there
is nothing to prove), and used the inequality nj_i ^ XJ{X — 1). We thus deduce that
lim sup (SXj-ax)/B(Xj) ^ a-a/b^X-l), so lim sup (Sn - <xn)/B(n) ^ a-a/b-(X-l),
and the required result follows by letting X -* + oo, since b_( + oo) = + oc.

We now prove the second part of Theorem 1. Suppose
lim sup (Sn — (xn)/B{ri) = b > a a.s., where b^O because (Sn — an)/B(n) ^ p 0 , and
possibly b = + oo. We first show that lim sup (S[n/l] — a[nA])/B[nA] = fo a.s. for every
X e (1,2). If this were not true we would have lim sup (S[nX] — a[nA])/B[nx] < b a.s. Then
given 7 > 1 we could choose n(j) so that [A(n— 1)] < j + 1 ̂  [/«]. Since
[An] ^ In < [/(n —1)] + 3 when Ae[l ,2] , the possible values of j would be
[A(n-l)] or [A(n-1)] + 1. Since (Sn-<xn)/B(n) -<-p0 we can easily see
that (an+i— an)/B(n + l) -»0, while by hypothesis B(n) is nondecreasing. Suppose
we had lim sup XJB(n) < 0 a.s. These would mean

limsup(SWn_ 1)]+ !-ciliin-1)]+ ,)/B([A(n - 1)] + 1)

< lim sup (SWn _, ,j - alMn _

< b a.s.,

so that

n - 1 ) + 1)}

< b a.s.

This contradiction shows that indeed limsup(S[n/t] — a[nA])/B[nA] = b a.s. Next note
that S[nX] — Sn has the same probabilistic structure as S[nX] _ „, and this is the same as
S[n(/l_ u ] if n is sufficiently large. By Lemma 2 of Mailer (1979),

so we have

lim sup {(S[nX] - oclnX]) - (Sn - «

{limsup(Sn-an)/B[nA]} lim sup B[£n(X -

{limsup(Sn-an)/B[n/]}/b_U- I)"1
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because liminfB[n/x]/B(n) ^ b_(n) if n > 1. It follows, using the inequality

b = limsup(S(n<i]-aMj)/B[n/] s£ limsup(Sn-an)/B[n/.]

+ lim sup {(S[nX] - a[nA]) - (Sn - ctn)}/B[nX]

that limsup(Sn-an)/B[nA] ^ b/(\ + l /fc_(/-l)"1) .
So far we have not used the convergence of the series. An application of a version

of Levy's inequality (Mailer (1979), Lemma 2) shows that, if j 0 is large enough and
£ >0,

£ P{ max (SB - a J Ss (a +e) B(^)} < 2 P ^ - a^ ^ aB(;.;)} < + x

so by the Borel-Cantelli lemma,

lim sup max (Sn — an)/B(Aj) ^ a a.s.

Given « > A2 choose j=j(n) so that /„;_, < n ^ /v-; this means
n > /v-_ [ + 1 = [)J~'] + 1 > /.-'"', so nk > V and [n/.] $: /v-. Hence, since B(n) is
monotone,

limsup(S— a.)/B[n/.] ^ limsup max (Sn — <xn)/B(/.,)^a a.s.,
n j Ay ! < » S /y

whereas we showed that the lefthand side is ^ fc/(l +1//>_(/.~ 1) ')• Since
b_( + oc) = +oo, letting /. -> 1 + gives a contradiction.

There is one gap remaining: to show that

lim sup (S[nX] - oe[n/l])/B[n/t] < b < + oo a.s.

implies lim sup XJB(n) ^ 0 a.s.

If 1 < /. < 2 it is easy to see that [HA] — [(n — 1)/.] = 2 or 1 according as /?/. is an
integer or not (abbreviated nk = i or nk # i). Suppose there is a c > b for which

^ cB[nA]) diverges. Then

= I ^

^ . , > 0) I P(X[ni] > cB[«/.])+ Z P(X[n/(]

by independence and stationarity. Thus 2 P { S | B i ] - [̂(«—1> AJ ̂  cB[«/.]} diverges
unless X, ^ 0, in which case certainly lim sup XJB(n) < 0 a.s. In the former case,
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from Lemma 1 of Baum, Katz and Stratton (1971) we have, if 6 > 0 is such
that c > b + d,

1 = P{S[ln- 1 M ]-a[ ( B_ 1)X] ^ -SB[nX], S[nX]-Sl(n.l)X]^ cB[_nX]io}-

^ P{S[nX]-ocUn_l)X] > {c-6)BlnX]io}

which is impossible since (clearly) (a[B^ —a[(B_ni])/B[n/.] ->0 and lim sup
(S[nA] — a[n/l])/B[/!/.] < b a.s. Thus l.P(X1 ^ cB[n/]) converges, and since
liminf B(nn)/B(n) > 1 for some / /> 1, from Theorem 3.3. of Klass (1976)
1. P(X l ^ EB(n)) converges for every e > 0 and so limsup Xn/B(/;) =% 0 a.s.

PROOF OF THEOREM 2. Define the truncated rvs X{ = X, if | Xt | ^ aAj, 0 otherwise,
and let S{ = X', + X{ +... + X{. A standard argument shows that Z P{SXi -OLXI ^ x}
converges or diverges with TP{S{ —<xX] ^ x}, since Z/^Pfj Xx | > a^) converges as a
simple consequence of the convergence of Z P( | X, | > aB). Here

an = n | udF(u).

Noting that

{Xi-\"J udF(u)}/Vi(aXj)

has, for each j , mean 0 and variance 1, it is easy to deduce from Nagaev (1965),
Theorem 2, that if

e *" du,

£ | P{Si - oiXj > a(2Aj V(ax) log log / / } - {1 - <D(2 log log / . / a)} |

^ LT. kj i E | X{ | 3 V ~3/2 (aAj) (2 log;)"3/2

where Lis an absolute constant and a > 0. The last series is

*c L £ k j * V~312(ajilogjr312^ "' " 3 1 d P { \ X 1 \ > u ) \

a J < +oo,

using the fact that lim sup aB/«K(aB) log logo = Iimsupa2/B2(n) < + x (L are
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positive constants). Thus we immediately conclude that Y,P{Skj — a.Xi

converges for a > 1 and diverges for a < 1, so by Theorem 1,
limsup(Sn —an)/B(/i) = 1 a.s., where we note that liminfn^ + x B[n/i]/B(n) ^ ^ for
H ^ 1 since /?"* B(«) is nondecreasing, while (Sn — an)/B(n) ->p0 by the remark at the
end of Section 1. Replacing X, by — Xt we obtain liminf(Sn — an)/B(n) = — 1 a.s.,
while the fact that (Sn — txn)/B(n) has as its limit points the interval [— 1,1] under the
extra condition on B(n) follows from a straightforward application of Lemma 1 of
Mailer (1979).

PROOF OF COROLLARY 1. If EX2 = + ex-, it is easy to see that

V(x) - V*(x) = | u2 dF(u),

and that \dV{x)-dV*(x)\ = o{x2dV(x)\ which means that Fand V* may be used
interchangeably in the definition of /. Hence

\dP(\Xl\>u)\

dV*(u)
' ( I n - 1

^cY."a;2 dV*(u)
Jan-i

= ^S{f/*(an)loglogan}-1 | dV*(u)

^ c

since a2 ^ ca2-v Thus S P ( | X 1 1 > an) < +oo, and this also holds in the case
EX2 < + x , since then, a,, ̂  «* for n large. A simple consequence of / < + x is
V(x) < K*(x) < (logx)£forf: > Oifx ^ xo(e),son* ^ an ̂  n* + £fore > 0andnlarge.
Denning B2(n) = 2nF(an)loglog/i, we then have B2(n) ~ 2nF(an)loglogan ~ a2, so
Corollary 1 follows directly from Theorem 1. (That a,, can be replaced by nEX t is
easily seen.) Also, it is easy to reverse the above working to show that / < + x if
X P(\ Xi | > an) < + x (again limsupan+ Jan < + ao is required), so that, if
/ = 4- x , limsup (S,, —an)/«„ = + x a.s. for any an.

PROOF OF COROLLARY 2. Putting an = y(n) and B2(n) = 2nV{y(n))\og\o%n the
proof will follow from Theorem 1 if we can show that B(n)/y(n) -* 1. For this we need
only show that loglog{/iK(y(n))} ~ log log n, and this will clearly follow from
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limsuploglog{nK*(y(n))}/loglogn ^ 1. A prooflike that of Corollary 1, using the
fact that Z^ ( | A'I | > y(n)) < + oo, shows that V*(y(n)) sc (log«)c for some c> 0.
The required result is an easy consequence of this.

Acknowledgement

I am grateful to Dr. C. C. Heyde for much helpful advice on this paper.

References

L. E. Baum, M. Katz and H. H. Stratton (1971), 'Strong laws for ruled sums', Ann. Math. Statist. 42,
625-629.

W. Feller (1968), 'An extension of the law of the iterated logarithm to variables without variance', J.
Math. Mech. 18, 343-355.

H. Kesten (1972), 'Sums of independent random variables—without moment conditions', Ann. Math.
Statist. 43, 701-732.

M. J. Klass (1976), 'Towards a universal law of the iterated logarithm I, Z. Wahrscheinlichkeitstheorie und
Verw. Gebiete. 36, 165-178.

M. J. Klass (1977), 'Towards a universal law of the iterated logarithm II, Z. Wahrscheinlichkeitstheorie und
Verw. Gebiete, 39, 151-165.

M. Klass and H. Teicher( 1977),'Iterated logarithm laws for asymmetric random variables barely with or
without finite mean", Ann. Probability, 5, 861-874.

R. A. Mailer, 'An extension of Kesten's generalized law of the iterated logarithm' (submitted).
A. I. Martikainen and V. V. Petrov (1977), 'On necessary and sufficient conditions for the law of the

iterated logarithm', Theor. Probability Appl. 22, 16-24.
S. V. Nagaev (1965), 'Some limit theorems for large deviations', Theor. Probability Appl. 10, 214-235.
W. E. Pruitt (1980), 'General one-sided laws of the iterated logarithm', Ann. Probability (to appear).

Division of Mathematics and Statistics
C.S.I.R.O.
Melbourne and Perth
Australia

https://doi.org/10.1017/S1446788700021868 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700021868

