
ANGULAR MEASURE AND INTEGRAL CURVATURE 

HERBERT BUSEMANN 

T H E Gauss-Bonnet Theorem leads through well known arguments to the fact 
that the integral curvature1 of a two-dimensional closed orientable manifold M 
of genus p equals 47r(l — p). This implies, for instance, that the Gauss curva­
ture1 K can neither be everywhere positive nor everywhere negative, if M is 
homeomorphic to a torus. 

The relations between the sign of K and the topological structure of M have 
been the subject of many investigations. Those of Cohn-Vossen [4, 5] are par­
ticularly interesting, because they are not restricted to closed manifolds. 

Hadamard [6] showed that the condition K < 0 determines to a great extent 
the shape of the geodesies (on closed or open manifolds). The already men­
tioned papers of Cohn-Vossen show also how the condition K > 0 influences 
the behaviour of the geodesies. 

All these investigations rest on the Gauss-Bonnet Theorem, which states in 
its most primitive form that the integral curvature of a geodesic triangle equals 
the spherical excess of the triangle. Thus they depend ultimately on the concept 
of angular measure. This concept is in turn derived from the local, that is the 
Euclidean geometry, where it means amount of rotation. 

The Minkowskian geometry is the local geometry of non-Riemannian 
metric spaces. It does not permit general rotations. If the distance is sym­
metric, which will always be assumed here, the Minkowskian geometry permits 
reflection in a point, which in the Euclidean case is equivalent to rotation 
through 7T. Therefore no particular angular measure can be entirely natural 
in Minkowskian geometry. This is evidenced by the innumerable attempts 
to define such a measure, none of which found general acceptance. 

Of course, it is generally agreed that angular measure must be additive for 
angles with the same vertex. In view of our previous observation, it is natural 
to add the requirement that straight angles have measure ir. It will be shown 
here that any angular measure with these two properties permits us to establish for 
general spaces most of the above quoted results on Riemann spaces, provided we 
interpret conditions like K > 0 on M to mean that every non-degenerate small 
geodesic triangle on M has positive spherical excess. For some results it is 
necessary to add a condition, which is always satisfied by the ordinary angles 
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xThe English expression ''total curvature" corresponds to the German "Gauss'sche Krum-

mung," whereas the German expression "Totalkriimmung" is "integral curvature" in English. 
In order not to confuse the reader interested in the original literature, the present paper avoids 
"total" altogether by using "Gauss curvature" corresponding to the German, and "integral 
curvature" corresponding to the English custom. 
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in Riemann spaces, and which states essentially that, in a uniform way, an angle 
cannot be nearly straight without having a measure close to IT. 

The main point of the present paper is the tenet that angular measure in 
Finsler spaces is—contrary to the prevailing views—a very fruitful concept, and 
that it becomes unnatural and barren only through insistence on particular mea­
sures. 

The extent of the material in the Riemannian case precluded its full dis­
cussion here. Except for a glance at the connection of excess with the theory 
of parallels (Sec. 2) and the topological structure of compact manifolds (Sec. 3) 
the paper concentrates on the work of Cohn-Vossen, whose arguments are 
partly reproduced here. 

Hadamard's results are only briefly touched because the author showed 
recently in [3], although not in connection with angular measure, that they do 
not depend on the Riemannian character of the metric. 

1. Angles in systems of plane curves. In the Euclidean plane E with the 
(Euclidean) distance xy let 5 be a system of curves with the following pro­
perties : 

I. Each curve is an open Jordan curve, that is, it has a representation q(t), 
— oo < t < oo where q(t) is continuous and q(t{) ^ q(t2) when h ?£ t2. 

II. q(t)q(0) —>oo when \t\ —»<». 
III . Any two distinct points of E lie on exactly one curve of 5. 

The curve in 5 (5-curve) determined by the two points a, b will be denoted 
by $(a, b). On g (a, b) the points a, b bound an arc t(a, b). The symbol (acb) 
means that a, b, c are three different points and that c lies on t(a, b). We also 
put t{a, a) = a. 

The 5-curves satisfy all the axioms of order and connection of Hilbert, in 
particular the axiom of Pasch.2 In addition, av—> a and &„—> b implies t(a„, &„)—> 
i{a, b) and, if a 9^ b, also g(a„, bv)—•> g (a, 6). The arrow indicates here that 
t(a, b) or g (a, b) is Hausdorff's closed limit of the sets t(av, bv) or g(a„, bv).

2 A 
point p of an 5-curve g divides g into two (closed) rays ti, x2, which we call 
opposite. 

If ri and X2 are two different rays with the same origin p, then Xi U X2 
divides E into two (closed) domains Di and D2. The sets of all rays with origin 
p in D\ and D2 respectively are the two angles with legs x± and x2. They are 
called straight if X\ and x2 are opposite. Otherwise exactly one of the domains 
is S-convex3 and we call the corresponding angle the convex angle (ti, t2)vex, 
and the other the concave angle (ti, r2)cav. It is convenient to complete this 
definition by letting (ti, t i)v e x mean the set consisting of ri alone and (ti, t i ) c a v 

the set of all rays with origin p. If a,b, c are three points not on one 5-curve, 
then Z abc means the convex angle whose legs are the rays from b through 
a and c. 

2Proofs are found in [1, Sec. 111.3]. 
3A set X is S-convex if o, b eX implies t(a, b)(ZX. Compare [1, Sec. III.3]. 
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We now assume that an angular measure \D\ has been defined for the angles 
D in 5 with the following properties: 

1) \D 
2) \D 

Ï0. 
= 7T if and only if D is straight. 

3) If D\ and Z)2 are two angles with a common leg but with no other common 
ray, then |Z?iU£>2| = |-Di| + |# 2 | . 

We say that the angle Dv tends to the angle D, if the legs of Dv tend to the 
legs of D, and if xveDv and xv—» r implies xeD. We call the angular metric 
continuous if 

4) Dv-> D implies \DV\ -> \D\. 

Some consequences of 1), 2), 3) are 
a) \D\ = 0 if and only if the legs of D coincide. 

For if the legs ti , r2 of D coincide, let Df denote one of the two straight angles 
with r i = X2 as one leg. Then D U D' = Df, therefore by 2) and 3) 

7T = \D U D'\ = \D\ + \D'\ = \D\ + T, 

so that \D\ = 0. Conversely let \D\ = 0. Its legs ri and X2 cannot be opposite 
by 2). Denote the opposite ray to ri by tz. If Xi and X2 did not coincide and 
D = (n, r2)cav then by 1), 2), 3) \D\ = T + |(r3, r2)vex | > T. If D = (rx, r2)vex 

then * =\D\ + |(r2, r3)vex | = |(r2, r3)vex | although (r2, r3)vex is not straight. 
b) Convex angles have measure less than w and conversely. 

Concave angles have measure greater than -K and conversely. 
c) Vertical angles are equal. 
d) The sum of the measures of the angles in a triangle abc (set bounded by 
three segments t(a, 6), t(&, c), t(c, a), where a, b, c are not on one 5-curve) is 
positive and less than 3ir. 
e) If the angular metric is continuous and the points av, bv1 cv are not on an S-curve 
and tend to a point p, then the sum of the angular measures in the triangle avbvcv 

tends to ir. 
A proof follows immediately from the observation that g(a„, &„), $(bv1 cv) and 

§(cv1 av) may be assumed to converge. Then Z bvavcv and the vertical angles 
to Z avbvcv and Z avcvbv tend to three angles whose union is a straight angle. 

Some of the preceding remarks extend in the usual way to degenerate 
triangles and will be used for such triangles. 

The excess e(abc) of the triangle abc is defined as 
(1) e(abc) = \abc\ + \bca\ + \cab\ — TT, 
where \abc\ = | Z abc\ . 

Degenerate triangles have excess 0. If the triangle abc is decomposed (sim-
plicially by S-curves) into the triangles avbvcv then 

e(abc) = 2e(avbvcv). 

If au . . . , an are the vertices of a simple closed polygon P with sides 
t(ai, a;+i) and ai is the measure of the angle at a* measured inside the closed4 

4In this paper domains bounded by geodesic polygons are always understood to be closed. 
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domain G bounded by P then for any simplicial subdivision of G (by 5-curves 
is always understood) into triangles avbvcv 

(2) e(avbvcv) = 2TT - 2(TT - a») = 2a; - (w - 2)TT. 

Let Vi and r2 be two opposite rays with origin p determining the two straight 
angles Dx and D2. If diexu a^ p and qeDi — ( t iUr 2 ) then a ray xx with origin £ 
and through a point xet(ai, q) U t(g, a2) traverses monotonically all rays in Dx as 
x traverses t(ah q) + t(q, a2). Therefore |(ri, rx)v e x | = <t>(xx) is a strictly in­
creasing function with c/>(ti) = 0, <£(r2) = *"• The values of </>(rx) = |(ti, r2) c a v | 
for xxeD2 are determined by 2). If D is any angle with vertex p which does not 
contain r\ and has legs r', r", then 

(3) \D\ = |<KO - 4,{x")\. 
If Z> contains ri, then 

(3') \D\ = 2* - |<KO - *(r")| • 

Conversely, if in Di any strictly increasing function <t>(xx) with $(ti) = 0, 
0(r2) = 7T is given, and 0(rx) is determined in D2 to satisfy 2), then (3) and (3') 
determine an angular measure at p which satisfies 1), 2), 3). 

2. Excess and parallels. The present section is concerned with the relation 
of the angular metric in a system 5 to the theory of parallels. It will not be 
needed later on but will elucidate the meaning of an angular metric. 

If Q+ is an oriented 5-curve and x traverses g+ in the positive sense, then the 
line §(p, x) converges for any fixed point p to a line a. If Q+(a, b) denotes 
generally the line g (a, b) with the orientation in which b follows a then Q+(£, x) 
tends to an orientation ct+ of a. We call a(a+) the (oriented) asymptote to g+ 

through p (for a proof of this and the next statements see [1, Sec. 111.3]). The 
line a does not intersect g. The asymptote to g+ through any point qea is again 
a. But in general g+ is not an asymptote to ct+, for an example see [1, Sec. 111.5]. 

Let the parallel axiom hold, that means, through a given point p not on a 
given line g there is exactly one line f) which does not intersect g. If we deter­
mine angular measure at one point p as at the end of the preceding section but 
with a continuous </>, and define measure for an arbitrary angle as equal to the 
corresponding angle at p with legs parallel to the given angle, then condition 
4) is also satisfied and the excess of any triangle is 0. 
(4) A system S in which the parallel axiom holds possesses continuous angular 
metrics with excess 0. 

However, it is not true that zero excess implies the parallel axiom nor does 
the parallel axiom imply that every continuous angular metric has excess 0. 
The only statement which holds without further conditions on the angular 
metric is the following: 
(5) If the excess is non-positive and the angular .metric is continuous then the 
parallel axiom implies zero excess. 

Let abc be a non-degenerate triangle. If (abx) and x traverses g + = g+(a, b) 
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then \bac\ + \acx\ < w and g+(c, x) tends to the asymptote ï)+ to g+. H y 
follows c on ï)+ then \acx\ —> \acy\ = |acft| + \bcy\ so that 

(6) |&ac| + \acy\ ^ 7r. 

If (ycyf) and (&ax') then g+(c, y') is, because of the parallel axiom, the asymptote 
to g+(&, a) through c. As before we see 

(60 \x'ac\ + \acy'\ ^ T 

and since \xfac\ = T — |ftac|, |ac;y'| = 7r — |acj | it follows from (6) and (6') 
that \bac\ + \acy\ = \xfac\ + \acy'\ = w so that \bac\ = |acy|. For the same 
reason \abc\ = \bcy\ and since |acy'| + \acb\ + |ôcy| = T the theorem is 
proved. 

It is clear that this argument and the additivity of the excess yield the fol­
lowing more general fact: 
(7) / / the excess is non-positive and the metric is continuous and there is only 
one line I) through a point p not on Q which does not intersect g, then any 
triangle, whose vertices are in the closed strip bounded by g and f), has excess 0. 

The arguments in the above proof could be reversed if \cxb\ —> 0. The 
following examples will show that further progress is impossible without this 
property. A hemisphere H without the bounding great circle can be mapped 
on the Euclidean plane E in such a way that the arcs of great circles in H go 
into the Euclidean straight lines in E. If we assign to an angle in E the 
measure of the corresponding spherical angle (in the usual sense), then the 
excess in any triangle of E is positive in spite of the parallel axiom. With 
this measure the same holds for the straight line pieces in the interior of a 
circle in E. On the other hand the Euclidean angles in E may be used as 
angular measure for those same pieces. This means that both positive and 
zero excess are compatible with the hyperbolic parallel axiom. 

We call an angular metric in a system 5 of curves complete if it is continuous 
and \pxq\ —> 0 whenever x traverses a ray with origin p from p toward <». 
(8) In a complete angular metric the excess cannot always be positive. 

With the same notation as above positive excess would yield e(x'cx) >e(abc) 
> 7T. Because of \cxx'\ —>- 0 and \cx'x\ —> 0 it would follow that for x and x' 
which are sufficiently far away \x'cx\ > T which is impossible. 
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(9) In a complete angular metric zero excess implies the parallel axiom. 
For then \cax\ + \acx\ + \axc\ = ir and \axc\ —>0. Moreover t(cy x) tends 

to a ray r which lies on the asymptote r + through c to g+. If zex, z 7^ c then 
\acx\ —» \acz\, hence \cax\ + |acz| = TT. Similarly t(c, #') tends to ray r' on the 
asymptote through c to Q+(&, a) and if s'er', z'V c, then |cax'| + \aczf\ = 7r. 
It follows from \cax\ + |cax'| = IT that |acz| + \acz'\ = 7r, so that r and r' are 
opposite rays, q.e.d. 
(10) In a complete angular metric with non-positive excess asymptotes are sym­
metric. 

If r + is an asymptote to g+ and g+ were not an asymptote to r + then the 
asymptote to r + through a point b of g+ would be a line f+ different from g+ 

(see Figure). If cex+ and u follows b on f+ then g(c, w) intersects g+ by the 
definition of asymptotes in a point x with (eux). Because the excess in bux is 
non-positive 

\cub\ ^ \ubx\ + |6xw| > \ubx\ > 0 

but |ctt6| —> 0 when u traverses f+ in the positive sense. 
Example 1) in [1, Sec. III . 5] yields, with the ordinary Euclidean angles, a 

complete angular metric and non-symmetric asymptotes which shows that (10) 
would not hold without the assumption that the excess is non-positive. 

(9) and (10) are first examples of statements which connect conditions on 
the excess with topological properties (in this case of the system S). 

3. Angular measure for curve systems on two-dimensional manifolds. The 
word surface will be used here to denote a connected two-dimensional topo­
logical manifold. 

As in Sec. 2 for the plane we consider on a given surface M a system 5 of 
curves with the topological properties of geodesies. The existence of such a 
system is guaranteed by the following two conditions. 

1) Every point p of M has a neighbourhood U(p) homeomorphic to the plane, in 
which a system Sp of curves is distinguished with the properties I, II, III of Sec. 1. 

2) If a, b, die in U(p) D U(q) then (abc) holds with respect to Sp if and only if 
it holds with respect to Sq. 

By 2) a segment t (a, b) in Sp is also a segment in Sq. Therefore the notation 
t(a, b) can be used without reference to a definite system Sp as long as a and b 
both lie in some U(p). 

The concept of a geodesic will actually not be used in the sequel. But since 
1) and 2) are derived from this concept, we mention that an 5-geodesic is to be 
defined as a continuous curve x(t), — 00 < t < 00 with the following property: 
if to is given and x(t0) eU(p) then a suitable subarc h< t < t2 with t\< t0< t2 

of x(t) represents a curve in Sp. The existence of geodesies can be established 
by the procedure of [2, Sec. II.5]. 

If a eU(p) Pi U(q) then a ray xp with origin a in Sp will, in general, not be 
a ray in Sq> but by 2) the ray xp either contains, or is contained in, a ray xq with 
origin a of Sqi which is uniquely determined by xp. 
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If tp1, rp
2 are two rays with origin a in Sp and r^1, vq

2 are the corresponding 
rays in Sq, then 2) clearly implies that Xp1 and xp

2 are opposite if and only if 
Xq1 and xq

2 are. Also, if r^1 and rp
2 are not opposite, then a ray in (tp1, rp

2)vex 

or (rp \ rp
2)cav corresponds to a ray in (r^1, ra

2)vex or (r a \ rg
2)cav respectively. 

These facts lead to the following formal definition of a ray x with origin a in 
S: x is a set of rays in the local curve systems with these properties: 
a) x contains exactly one ray of every Sp for which aeU(p) and no ray of any 
other Sp. 

b) If rper and xqex then either rp Dxq or r p C xq. 
The meaning of angles in S, of symbols like (ti, t2)vex, and of convergence of 

angles is now obvious. 
An angular measure for the angles in S is then characterized by the properties 

1), 2), 3) of Sec. 1 and a continuous angular measure by the additional property 
4). Through the natural one-to-one correspondence between the angles with 
vertex a in S and the angles with vertex a in Spi U{p) Z)a, an angular measure 
in 5 induces an angular measure in Sp. 

Whenever the word triangle is used it is understood that its vertices lie in 
one U(p). The excess of a triangle is still defined by (1). A geodesic polygon 

n 
P on M is a curve of the form U t(a», ai+i), a^ a»+i. Some of the angles of P 

may be straight, that is the segments t(a»_i, a») and t(a*, Qi+i) may belong to 
opposite rays with origin a*. 

We then call ai an improper vertex of P , otherwise a proper vertex. If all 
vertices of P are improper then P is a geodesic arc. If in addition ai = a n + i 

and the angle at a\ is straight, we call P a closed geodesic. 
Let G be a compact domain of finite genus on M which is bounded by n 

simple closed mutually non-intersecting geodesic polygons. If G is simplicially 
divided into triangles, then the number of vertices minus the number of sides 
plus the number of triangles is an integer X(G) which depends only on G and 
not on the choice of simplicial division. According to the terminology pre­
vailing in topology, X(G) is the negative Euler characteristic of G.5 

Any simplicial division of G into triangles avbvcv satisfies the following 
fundamental relation 
(11) X > 0 A O = 2irX(G) - £(*- - a<), 

v i 

where a* are the angular measures of the angles at the vertices of the boundary 
of G measured in G.6 It is immaterial whether a; traverses the angles at all or 
only the proper vertices. 

If M is compact and has finite genus p we find that for any simplicial decom­
position of M into triangles avbvcv 

5Compare Kerekjarto [8] and Seifert-Threlfall [9]. Cohn-Vossen [4] calls X(G) (and not 
— X(G)) the characteristic of G. 

6A modification of the topological proof for (11) which is adapted to the present conditions 
is found in [4, p. 120], 
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UTT(1 -
(2TT(2 -

no\ v- / 7, \ o v/nr\ ) ™ vx — £) ^ M is orientable, 
' ° - ' ° £) if M is not orientable. 

The number He(avbvcv) in (11) or (12) which is independent of the simplicial 
division is called the integral curvature C(G) of G or C(M) of M. We say that 
M or a domain G on ÂT has positive, negative, non-positive, non-negative, or 
zero curvature if for every non-degenerate triangle abc in M or G 

e(abc) > 0, < 0, ^ 0, ^ 0, or = 0 respectively. 

If the curvature of a two dimensional Riemann space R is non-negative, non-
positive, zero, positive, or negative in the usual sense then R has the same 
property in the present sense. The converse is true in the first three cases, 
but not always in the last two. If the Gauss curvature of R is positive (nega­
tive) except on some curves or isolated points, R has still positive (negative) 
curvature in the present sense. The existence part of the following theorem 
follows therefore from well-known facts regarding Riemann spaces, the re­
mainder is a consequence of (12). 

(13) THEOREM. A compact surface M can be provided with a system S of geo­
desies and an angular measure such that curvature is: 
a) non-negative, if and only if M is homeomorphic to the sphere, torus, one­

sided torus (also called Klein-Bottle), or the projective plane. 
b) non-positive, if and only if M is not homeomorphic to the sphere or the 

projective plane. 
c) positive, if and only if M is homeomorphic to the sphere or the projective 

plane. 
d) negative, if and only if M is not homeomorphic to the sphere, torus, one­

sided torus or the projective plane. 
A torus or one-sided torus with non-positive or non-negative curvature 

has curvature 0. 

4. Two dimensional metric manifolds. No statements which approach (13) 
in completeness seem to be possible for non-compact surfaces unless the curves 
in S are really geodesies in the metric sense, and not only curves with the 
topological properties of geodesies. That M is a space with metric geodesies 
is expressed by the following conditions: 

A. M is a metric space with distance xy. 
B. M is finitely compact, or a bounded sequence has an accumulation point. 
The fact that the three points a, b, c are different and satisfy the relation 

ab + be = ac will be written as {abc). 
C. M is convex, that is, for any two distinct points a, c a point b with (abc) 

exists. 
D. Prolongation is locally possible, or for every point p there is a p(p) > 0 

such that for any two different points aif a2 with a%p < p(p) a point d 
with (aiCLtfL) exists. 

E. Prolongation is unique, or, if (aia2d'), (aia^d") and a2d' = a^d" then 
<f= d". 
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These axioms guarantee the existence of geodesies (compare [2]). In the 
present case we add 

F. M has dimension 2 (in the sense of Menger-Urysohn). 
It can be proved that M is a connected topological manifold or a surface 

(for this and the following statements see [1, Sec. 1.4]). A space which satisfies 
Axioms A to F will be called a G-surface. 

A metric segment is an isometric map of a Euclidean segment. If U(p) is 
the interior of a sufficiently small geodesic triangle on M, then the open metric 
segments in U(p) with endpoints on the boundary of U(p) form a curve system 
Sp with properties 1) and 2) of Sec. 3. 

Since any two points of M can be connected by a metric segment, only those 
metric segments are segments in the previous sense, which lie entirely in one 
U(p). But since every metric segment can be divided into a finite number of 
metric segments each of which lies in one U(p), and the angles at the points 
of division are straight, the distinction between the two kinds of segments 
turns out to be immaterial and will therefore be dropped. 

If M has finite connectivity it can be represented topologically as a compact 
manifold M of finite genus which has been punctured at a finite number of 
points Zi, . . . , zk. Let P be a simple closed geodesic polygon which bounds 
on i f a simply connected closed domain T which contains exactly one Zi, say 
Z{Q. Because of B the set T — z?;0 appears on i f as a set which looks like a half 
cylinder and extends to °°. We call T a tube (Fluchtgebiet in the terminology 
of Cohn-Vossen [4]). 

The tubes are the new feature of non-compact M as compared to compact 
surfaces. The study of non-compact M" must therefore be based on the prop­
erties of tubes. The remainder of this section investigates tubes. 

With the above notation, consider on T the class C(u), u > 0, of all curves 
C which are homotopic to P on T and have distance at most u from P. Whether 
this distance is measured on M or on T is immaterial. For if measured on i f 
then a segment connecting a point of P to a point of C exists whose length 
equals the distance of P and C on M. This segment cannot contain a second 
point of P and lies therefore entirely in T. 

C(u) contains curves of finite length (for instance P). Since T, considered 
as space, satisfies B and every member of C(u) contains a point whose distance 
from P is at most w, there is a shortest curve R(u) in C(u) (for a proof compare 
[1, p. 10] and [2, p. 234]). The length \(u) of R{u) is obviously a non-increasing 
function of u and the triangle inequality yields easily that \{u) is continuous 
(see [4, §16]). We represent R(u) with the arc length / as parameter in the 
form x(t), 0 ^ / ^ X(«). x(0) = x(\(u)). Notice first 
(14) If x(t0) is not a vertex of P and has either distance greater than ufrom P or 
is not the only point of R(u) whose distance from P is at most u then the subarc7 

to— à ^ t ^ t0+ ô of x(t) is a segment for sufficiently small ô > 0. 
7This inequality is to be replaced by the two inequalities 0 ^ t ^ ô and X(«) — ô ^ / ^ X(«) 

if to « 0 or /o5* X(«). 
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For otherwise the subarc to— 8 ^ t ^ t0+ 8 can be replaced by a segment 
with the same endpoints. If 8 > 0 is small enough, the new curve R' will still 
lie in P, even when x(t0) lies on P , but is not a vertex of P . Moreover R' will 
still be homotopic to P and have distance < u from P. But the length of R' 
would be less than \(u) which contradicts the definition of R(u). 

(14) implies that R(u) is a geodesic polygon. Moreover, if R(u) contains 
points with distance < u from P then R(u) contains infinitely many such 
points and none of them can be a vertex of R(u). Therefore we see 
(15) R(u) is either a closed geodesic, or all its vertices are vertices of P , or R(u) 
has exactly one vertex and its distance from P equals u, whereas all other points 
of R(u) have greater distance from P than u. 

We show next that R(u) is a, Jordan curve. Since R(u) is homotopic to P 
and T is homeomorphic to a halfcylinder, R(u) must contain subpolygon R' 
which is a Jordan curve and homotopic to P . If R 7e R' then R' cannot have 
distance ^ u from P , otherwise Rf would belong to C(u) and be shorter than 
R(u). Therefore R(u)— Rf contains a point r with distance ^ u from P ; r 
may be chosen as x(0). Then R' is a subarc of x(t) of the form 0 < a ^ t ^ 
]8 < \(u) with x(a) = x(fi). The arcs 0 ^ t ^ a and 0 ^ t ^ \(w) of #(/) must 
have the same length, otherwise replacing the longer by the shorter would 
yield a curve in C(u) with smaller length than \{u). 

Replacing the arc /3 ^ t ^ \{u) by the arc 0 ^ t ^ a, that is defining j(/) = 
*(/) for 0 ^ t ^ p and y(* + 0) = x(a - /) for 0 ^ / ^ a = X(w) - /3, yields 
again a curve P * in C(u) of length X(w). Statement (14) would then apply to 
P*, hence for small 8 > 0 the arcs a - < 5 ^ ^ a + <5 and /3 - 8 ^t^(3 + 8 
would be segments. By construction the arcs a — 8 ^ / ^ a and f3 ^t^/3 + 8 
coincide. The uniqueness of the prolongation E would imply that the arcs 
a ^ / ^ a + 8 and ($ — 8 ^ t ^ /? also coincide, but then R' would not be a 
Jordan curve. 

Since R(u) is a simple closed geodesic polygon homotopic to P it bounds a 
subtube T(u) of P. If a vertex r of P(«) is a vertex of P , then the angle of R(u) 
at r measured in T(u) cannot be convex, otherwise R(u) could, because of 
u > 0, be shortened without violating the conditions for belonging to C{u). 

Finally it will be proved that in case R{u) has exactly one vertex q with 
distance u from P , the angle at q measured in T(u) must be convex. Let t be 
a segment of length u connecting q to a point d on P . Then t cannot contain 
other points of either P or R(u) because the distance of R{u) from P would 
then be smaller than u, contrary to (15). If the angle D at q in P(w) were con­
cave, let Cu C<L be points on the legs of D and close to q. Then the interior i* 
of the triangle qciCi would lie outside of T(u). Also, I U T(u) contains a 
neighbourhood of q. The segment t connects d to q without entering T(u). 
It must therefore cross t(ci, Ci) at a point gr and qr has distance u'<u from P . 
If then the arc t(ci, <z)Ut(g, c2) of JR(w) is replaced by t(ci, c2), the length 
decreases so that \(u')< \(u), which is impossible. 

Thus we have proved the Theorem of Cohn-Vossen : 
(16) R(u) is a simple closed geodesic polygon. It is either a closed geodesic, or all 
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its proper vertices are also vertices of P and the corresponding angles measured in 
T(u) are concave, or R(u) has exactly one proper vertex q, which is the only point 
on R(u) with distance ufrom P and the angle at q in T(u) is convex. 

5. Angular metric and structure of non-compact metric surfaces. We now 
assume that an angular measure has been denned for the system of geodesies 
of a G-surface M of finite connectivity. With the notations of the preceding 
section we associate with the points Zi a set of k mutually disjoint tubes T% 
each bounded by a geodesic polygon Pi. 

Let Ui> 0. By Cohn-Vossen's Theorem T% contains a subtube 7\-(w») 
bounded by a geodesic polygon Ri(U{) such that Ri(Ui) is either a closed geo­
desic, or all angles of !?»(«») measured in Ti(ui) are concave, or Ri(ui) has 
exactly one convex angle whose measure in 7\-(w») is not zero because Ri(ui) is 
a Jordan curve. Let k' (^k) denote the number of the J?»(w») with a convex 
angle. 

Call G the compact domain on M bounded by the 2?t(«»•). Since concave 
(convex) angles of Ri(ui) measured in Ti(tii) are convex (concave) when mea­
sured in G, the relation (11) yields 

(17) C(G)^ 2irX(G)+k'w, 

where the equality sign holds only when all Ri{ut) are closed geodesies. 
It is well-known (see [8, pp. 145, 147]) that 

Y(C\ = (2 - (2P + k)> P •£ Q it M 'ls orientable, 
1 ^ " \2 - (p + k), p Ï 1 if M is non-orientable, 

where p is the genus of M or G. 
Hence for non-compact M (that is k ^ 1) and C(G) ̂  0 only the following 

cases are possible. If M is orientable, then p = 0 and 1) k = 1, k'= 0, 1; 
2) k = 2,fe'= 0, 1,2; 3) k = £ '= 3. If M is not orientable then p = 1, 
k = 1, fc'=0, 1. 

Taking first only k into account we find in addition to Theorem (13) : 
(18) THEOREM. A non-compact G-surface with non-negative curvature is homeo-
morphic to a plane, a cylinder, a sphere with three holes, or a Moebius strip. 

This agrees again with the known facts regarding Riemann spaces, except 
for the sphere with three holes. It may therefore be of interest to discuss this 
exception in some detail. 

For that and other purposes we divide the tubes, following Cohn-Vossen, 
into three categories. Let T be a tube bounded by the simple closed geodesic 
polygon P , /3 the greatest lower bound of the length of all curves nomotopic to 
P on T. We call minimal sequence a sequence of curves on T homotopic to 
P whose length tends to 0. 

If there is no bounded minimal sequence, we call T contracting. 
If no subtube of T is contracting we call T expanding. 
If T is neither contracting nor expanding we call T bulging.3 

8Cohn-Vossen calls a contracting tube a Schaft, and uses Kelch for both bulging and ex­
panding tubes. The latter are distinguished as "eigentliche Kelche." 
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The following facts are obvious (Compare [4, §18]): 

(19) A subtube of a contracting tube is contracting. 
(20) A subtube of an expanding tube is expanding. 
(21) A subtube of a bulging tube which is sufficiently far away is contracting. 

An expanding or bulging tube contains a bounded minimal sequence. This 
sequence contains a converging subsequence which tends to a curve R homo-
topic to P of length fi (see [1, Sec. 1.1]). If the distance of R from P is u' then 
R(u) =R for every u > u'. By the Theorem of Cohn-Vossen R(u) is either a 
closed geodesic or all its angles measured in T(u) are concave. 

In the preceding discussion k' may therefore be interpreted as the number 
of contracting tubes and we see: 
(22) A sphere with three holes and non-negative curvature has only contracting 
tubes and the angle of at least one Ri{u%) measured in r»(w») must be less than 
TT/3. 

Cohn-Vossen proves that u can be chosen such that the angle of an R{u) 
on a contracting tube is as close to TT as desired. This is not true for general 
angular metrics. 

An instructive example can be obtained as follows: In the ordinary space 
consider the surface M of revolution z = ( x 2 + y2) -1 . It is homeomorphic to 
a cylinder or a sphere with two holes, one corresponding to z — <», the other 
to z = 0. If P\ and P2 are two simple closed geodesic polygons associated 
with those holes as in the beginning of this section, say Pi to z = °o and P 2 

to z = 0, and J\- is the tube bounded by Pi, then Pi is contracting and P 2 is 
expanding. Well-known facts on geodesies on surfaces of revolution yield 
readily that the Ri(u) have all exactly one convex angle D{u) in Ti(u) whose 
vertex q(u) has distance u from P . Because M is a surface of revolution and 
the meridians are geodesies the q{u) either lie, or can be assumed to lie, on one 
meridian. 

Let a(u) be the ordinary radian measure of D(u); by Cohn-Vossen's already 
mentioned result a(u) —-> w for u —> œ. We now define an angular measure at 
q(u) as follows. If D(u) = (ri, r2)vex let D be the straight angle of the form 
(ti, t'i) that contains D(u). For any xeD let a(r) be the ordinary radian measure 
of (ti, r)vex , so that a(r2) = a(u) and define <£(r) by 

M _ ( ôa(x) for v*D(u), 0 < Ô < 1, 
* W \ ôa(u) + (a(T)~ a(u)) • (T - 8a(u)) • (x - a{u))~l 

for r eD - D(u). 
We use <£(r) as at the end of Sec. 1 to define an angular measure at the point 
q(u). 

For points on the same parallel circle as q(u) we define angular measure in 
an obvious way by rotation of q(u) about the s-axis. On the remainder of M 
we use the ordinary angular metric. Then the new angular metric is con­
tinuous on M except on the parallel circle corresponding to u —> 0 + . It can 
easily be smoothed out there. 

Then D(u) = ôir for all u > 0, so that D(u) does not approach IT for u —» «>. 
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By the same method a sphere with three contracting tubes can be constructed 
for which the angles of all Ri(ui) are less than 7r/3, SO that (22) cannot be 
improved without a new condition on the angular metric. The example shows 
also in which direction such a condition has to go: 

An angular metric is called uniform on a subset G of If if two positive 
functions 5(e) and p(p, e), where 0 < e < 1 and peG, exist, such that the rela­
tions 0 < dip = a2p < p(p, e) and aia2/{a\p + pa2) ^ 1 — d(e) imply for peG 
that |ai£a2| ^ T — e. 

The uniformity is contained in the requirement that 5(e) is independent of p. 
The usual angular metric of a Riemann space is uniform, because |aipa2 | —> 
2 arc cos [(1 — 5)/2] for a»—> p and a\a2/{aip + pa2) =1—8. According to 
Cohn-Vossen (16) may be completed by 

(23) THEOREM. If the angular metric on the tube T is uniform, then for a suitable 
uo> 0 the curve R(uo) is either a closed geodesic, or all angles of R(u0) measured 
in T(uo) are concave, or the angle of R(u0) at its only vertex q is at least IT — e. 

Proof. Consider the function 

/ ( « ) = X(w) + 25(e)u, u ^ 1. 
Since \(u) is non-negative and continuous, f{u) reaches its minimum at some 
value Uo ( ^ 1). Therefore 

\(uo+ h)+ 26(e)(u0+ h) ^ \(u0)+ 2ô(e)u0, for h > 0, 

(23a) 2d(e)h ^ \(u0)- \(u0+ h), for h > 0. 
If R(uo) is not a closed geodesic or its angles are not concave, let q0 be the 

vertex of R(uo). If t(q0, a*i), t(qo, a*2) are proper segments on the legs of the 
angle at q0, let (ço^A*), i = 1, 2, with h = qQai< p(ç0, «). 

Consider the curve Rf originating from R(u0) by replacing t(ai, qo) U t(qo, a2) 
by t(ai, a2). The distance of R' from P is at most uo+ h. Therefore \(u0-\- h) 
^ X' = length of R' and 

(24) X(wo) - Hu0+ h) ^ X(«0) - X' = 2A — aia2 = 2/^(1 — a\a2/2h), 
and (23a) and (24) yield 

Ô(e) ̂  1 — aia2(aiq0+ qoa^'1; 
hence j<Xig0̂ 2| ^ 7r — e by the definition of 5(e). 

From (22) and (23) we find 
(25) A sphere with three holes and uniform angular metric cannot have non-
negative curvature. 

Other well-known theorems can be proved under these general conditions. 
We mention only one example from Hadamard's theory (see [6]) : 
(26) On a G-surface M with negative curvature a class of freely homotopic 
curves contains at most one closed geodesic. 

The universal covering space of a G-surface M is again a G-surface M' (see 
[2, Sec. 13]). An angular metric on M induces an angular metric on M'. If 
M has negative curvature, then M' has negative curvature with respect to 
this induced metric. 
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If M contained two freely homotopic closed geodesies 81 and g2, draw a 
segment t from a point pi of gi to a point p2 of g2. The figure consisting of 
fli, g2 and t is image of a quadrangle in M' whose angle sum is 2ir. Because 
of the additivity of the excess M' must contain arbitrarily small non-degenerate 
triangles with non-negative excess, but then M would contain such triangles. 

6. The integral curvature of non-compact surfaces. A polygonal region G 
is the closure of an open set on M whose boundary B (if any) is locally a simple 
geodesic polygon. That means: if p is any point on B then a geodesic triangle 
abc exists which contains p in its interior I and such that the intersection of B 
with the closure of I decomposes I and consists of two segments t(p, x), t(p, y). 

For compact G the integral curvature C(G) was defined in Sec. 3. For 

general G we proceed as follows: Let GiC G2C • • . be a sequence of compact 

polygonal regions with U G* = G and the further property that a sequence of 

points PieGni+l— Gni, where {»»•} is any increasing sequence of positive in­

tegers, has no accumulation point. If lim C(Gn) exists ( ± œ admitted) it is 

independent of the particular sequence {Gn} and is called the integral curvature 

oîG. 
The condition that [Pi\ has no accumulation point implies for compact G 

that Gn- G for large n, so that the present definition of C(G) agrees with the 
previous one. It is necessary to add some such condition because G = UG y 

implies C(G) = lim C(GV) in general only if C(G) can be extended to a com­
pletely additive set function (compare Sec. 7). 

If i f is a G-surface of finite connectivity and the tubes 7\- are defined as in 
the beginning of Sec. 5 and H is the compact domain on M bounded by the 7\-, 
then X(H) is independent of the choice of the 7\- and —X(H) is called the 
characteristic —X(M) of M. 

If C(M) exists, it may be evaluated as follows: Let T/1 be a sequence of 
subtubes of 7\- with !T»nC 7\-n-1 and O 7 \ n = 0. If Hn denotes the compact 

n 
domain on M bounded by 7\-n, . . . , Tkn then 

C(M)= lim C(Hn). 
Since any tube, in particular Tin, contains a subtube bounded by a polygon 
R(u) as constructed in (16), it follows from (11) that 
(27) C(M) ^ 2TTX(M) + &7T, 

provided C(M) exists. The discussion preceding (22) yields 

(28) C(M) ^ 2TTX(M) if M has no expanding tubes. 
An application of (27) is 

(29) A non-compact surface with non-negative, but not identically vanishing curva­
ture is homeomorphic to a plane. 

For there is a triangle on M with positive excess. This triangle contains 
then a triangle abc with positive excess which is so small that the images of 
abc on the universal covering surface M' of M are disjoint. If M were not a 
plane M' would have infinitely many sheets, and in each a copy of abc. The 

https://doi.org/10.4153/CJM-1949-024-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1949-024-7


ANGULAR MEASURE AND INTEGRAL CURVATURE 293 

integral curvature of M', which exists because M' has non-negative curvature, 
is therefore co. But this contradicts (27). 

Finer results than (27) can be obtained if the angular metric on M is uniform : 
(30) If M has an integral curvature and a uniform angular metric then 

C(M)^ 2wX(M). 

The equality sign holds if M possesses no expanding tubes. 
For if the previous notations are used, then Tin carries a polygon Rin(ui) 

with the properties described in (23). If Hn is the compact domain bounded 
by the Rin(uin) then by (11) 

C(Hn)^ 2<irX(M)+k'e. 
The remark about the equality sign follows from (28). 

Theorem (23) yields also 
(31) If the tube T with boundary P has an integral curvature and a uniform ang­
ular metric then 

C{T)^ _ 2 ( T - a O , 
where ai are the angles of P measured in T., 

If C(T) exists, then every subtube of T has an integral curvature. If T is 
contracting or bulging, then it contains T(u) bounded by an R{u) which has 
one vertex q with a convex angle in T or is a closed geodesic. (31) yields then 
C(T(u))^0. Therefore 
(32) A tube with positive curvature and a uniform angular metric is expanding. 

Cohn-Vossen proves this for tubes with non-negative curvature, but the 
Riemannian character of his metric is essential for this refinement. 

We next prove a theorem which is similar to (31) and is found in the paper 
[5] of Cohn-Vossen. 

00 

(33) On M let Q be an open Jordan curve of the form U t{a,i, at*+i), a»?* a l + i , 
,• = - 0 0 

and such that only a finite number of its angles are not straight. Assume, more­
over, that Q bounds on M a domain G homeomorphic to a half plane, and that each 
subarc of Q is a shortest connection of its endpoints in G. If ai, . . . , an are the 
angles at the proper vertices of Q in G and G has a uniform angular metric and an 
integral curvature, then 

C(G)^ - £ (T-a<). 

Proof. Let G' be any simply connected domain in G bounded by a subarc 
Q' of Q which contains all n vertices of Q and a simple geodesic polygon Q" in 
G connecting the two endpoints of Q'. Let peQ' and let qi(t), q%(t) be the two 
points of Q for which the subarcs from p to qi{t) of Q have length t. For a 
proper choice of t' the points qi{t) will lie on Q — Qr for / ^ /'. Let p(t) be a 
shortest connection of length X(/) of qi(t) and q2(t) in (G — G') U Q". By the 
minimum property of Q 
(34) X(/) ^ 2t. 

As in the proof of (16) it is seen that p{f) is a simple geodesic polygon whose 
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proper vertices, if any, coincide with vertices of Q" and such that the corres­
ponding angles are convex if measured in the domain G{t) bounded by p{t) and 
the subarc from qi(t) to g2(J) of Q. By (11) 

C(G(t))^ 2TT - ( T - J 8 I ( / ) - ( T - ft(*))- 2(TT - a,), 

where &(/) is the angle of p(t) and Q at qi measured in G(t). Due to the arbi­
trariness of G' the theorem is proved if a Jo ̂  J' exists for which &(*o) ^ €. Let 
& = 25(e), where 5(e) is the function entering the definition of a uniform angular 
metric. Then because of (34) 

(35) X(/) - 2/ + kt -> oo, for J -> oo. 

The triangle inequality implies that \(t) is continuous, therefore the left side 
of (35) reaches a minimum at some value t^ tf. Then 

A(/o+ A ) - 2(/0+ A)+ &(*o+ A ) - X(J0)+ 2 /o- &o£ 0, for A > 0, or 
(36) \(t0+ h) - X(/0) Ï A(2 - k), for À > 0. 

On the other hand if a\-, a'7»-, a'»C />(*o), a7/»C (?(*o), lie on the legs of the angle 
in (G — G(to))Up(h) at qi{h) (that means |a\-#(/0)a"»| = 7r — 0*(/o)) and 
satisfy the relations 

a'iqi(to)= a"iqi(to)= h < min p(g<(*o), «) 
1. 2 

then £(/o+ A) is at most as long as the polygon originating from p(t0) by re­
placing t(g»(/o), #'*) by t(a'», a"»)- Therefore 

X(/0+ A)^ X(/o)+ (a'ia"i- h) + ( a ' f a " t - A) 
which yields together with (36) 

A(2 - jfe)^ a'ia"i- h + a\a'\- h, or 

(1 - a\a"i/2h) + (1 - a'2a"2/2h) < */2 = 0(e). 

Since 1 - at
ia"i/2h £ 0 it follows that 1 - afia"i/2h ^ 0(e) and from the 

definition of 5(e) that 

• *" — 0*(*o) = |a\-g»(*o)a"*| ^ TT — e q.e.d. 

If in addition to the assumptions of (33) Q is a straight line (see [3, p. 232]) 
then there are no corners, hence C(G) ^ 0. Therefore 
(37) A plane with positive curvature does not contain a straight line. 

If the assumption that every subarc of Q is a shortest connection in G is 
omitted, Cohn-Vossen proves that 

(38) C(G) ^ TT - 2(TT - a i ) . 

In general spaces the inequality C{G) ^ 2ir — 2(7r — a,-) is trivial, but the 
refinement from 2^ to ir rests on the fact that in Riemannian geometry perpen­
dicular directions form the angle ir/2. This fact has no analogue in general 
Finsler spaces, no matter how the angular metric is defined, because perpen­
dicularity is not symmetric. Consequently there is no reason to believe that 
(38) holds with a suitable definition of angular measure, unless perpendicularity 
is symmetric, although the author did not try to construct an example because 
this would obviously be very laborious. 
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We conclude the analysis of the validity of Riemannian methods in general 
spjices, which could be continued almost ad libitum, by mentioning that the 
proofs of the following two interesting results of Cohn-Vossen [5] hold without 
any change: 

Let M be a plane with positive curvature and uniform angular metric. Then 
every point of M lies on at least one geodesic without multiple points. If a geodesic 
g has multiple points, then it contains exactly one 1-gon P, moreover g — P lies 
in the exterior of P and consists of two branches without multiple points (but the 
two branches may intersect each other). 

7. The integral curvature as set function. On a surface M with a system 5 
of geodesies and an angular metric as defined in Sec. 3, let Fo be the collection 
of the following sets: the empty set, the points, the segments without end-
points (1-cells), the interiors of the non-degenerate triangles (2-cells). The 
excess is called completely additive if for any representation of a 2-cell abc as 
union of a countable number of disjoint 2-cells avbvcv and points and 1-cells on 
the boundaries of the avbvcv 

e(abc) = YL*(avbvCv). 

The unions a of a finite number of disjoint elements in Fo form a field Fi. 
If avbvcv are the two cells of a given set atFi we put 

C(<r) = 2e(a9bpcp). 

If C(o) is bounded on every bounded subset of M and the excess is completely 
additive, then C(a) can be extended to a completely additive set function on the 
cr-field F of all Borel sets on M. Moreover the extended set function is bounded 
on every bounded subset of M with the same bounds as the old function.9 

Let a measure m be defined on M for which segments have measure 0, and 
such that every bounded measurable set on M has finite measure. We are 
going to prove the theorem 
(39) If for every bounded set B on M a number 0(5) exists such that for any 2-cell 
abc in 5 

\e(abc)\ ^ p(B)m(abc) 

then e is completely additive, C(a) is bounded on every bounded subset of M and 
absolutely continuous on F with respect to m. 

Proof. Let <r be a set in F\ which lies in the given set 5 and avbvcv the 2-cells 
of a. Then 

C(<T) ̂  j\t{a9b9c9)\ < 0(5) .2m(a9b9c9) ^ 0(5)m(<r) ^ 0(5)m(5), 

so that C(a) is bounded in 5 for aeFi. 
If abc is the union of the disjoint 2-cells avbvcv, v — 1 , 2 , . . . and points and 

9The arguments which lead to these conclusions are implicitly contained in many modern 
treatments of set functions. For those who are able to read Danish an unusually clear expo­
sition is available in Jessen [7, part 3] which also determined the present formulation. 
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1-cells 8i on the boundaries of the avbvcv1 then m(abc) = 2m(av&„c„) because 
m(8i) = 0. For a given e > 0 we can therefore find an n(e) such that 

m(abc) — X m(avbvcv) < e/fi(abc). 

Then a&c — ^ a ^ / , is the sum of a finite number of 2-cells a'ib'ic'i, 
v=l 

i = 1 , . . . , m and a finite number of points and 1-cells. Therefore 
m m n(e) 

X) ^(a'ib'ic'i) ^ ft(abc) Y, m{a'ib
,iC,

l) = P(abc)m(abc — ]£ avbvcv) ^ € 
* = 1 * = 1 p = l 

CO 

which shows that e(abc) = J^ e(avbvcv) or that e is completely additive. 

By the preceding remarks and the first part of this proof C(<r)y aeFu can be 
extended to a completely additive function on F with the same bounds. It 
then follows that 

|C(cr)| ^ j8(B)m(cr) for <reF and <rCB. 
Therefore m(o) = 0 implies C(a) = 0 so that C(d) is absolutely continuous. 

Under the hypotheses of the theorem, C(a) is therefore the indefinite integral 
/a f(P) of a function f(p) with respect to the measure m. This does not yet 
assign a definite value' to f(p) at any given point since f(p) can be changed at 
will in a set of measure 0. This indefiniteness can be eliminated if sufficient 
restrictions on the angular metric and on the measure guarantee that there 
is at least (and then exactly) one continuous/(£). But it seems more worth­
while to discuss these questions in connection with a specific angular measure 
in a Finsler space. 
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