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Transport Inequalities for Log-concave
Measures, Quantitative Forms, and
Applications

Dario Cordero-Erausquin

Abstract. We review some simple techniques based onmonotonemass transport that allow us to ob-
tain transport-type inequalities for any log-concave probabilitymeasures, and formore generalmea-
sures aswell. We discuss quantitative forms of these inequalities, with application to the Brascamp–
Lieb variance inequality.

1 Introduction

_roughout the paper we work, when needed, with some ûxed scalar product ⋅ and
Euclidean norm ∣ ⋅ ∣ on Rn . Although our main motivation is to analyse log-concave
densities,meaning densities of the form e−V withV convex, our results apply tomore
general situations, regardless of the convexity of the potential V . We can o�en work
with a locally Lipschitz function V ∶Rn

→ R with themild assumption that

(1.1) ∫ (1 + ∣x∣2 + ∣∇V(x)∣2)e−V(x) dx < +∞.

Actually, when V is convex, we don’t need these assumptions, but not much is lost by
imposing it. Given such V , we introduce the probability measure µV deûned by

dµV(x) ∶=
e−V(x)

∫ e−V
dx .

Note that the density is by assumption everywhere strictly positive.
Following Kantorovich’s idea, given a function c∶Rn

× Rn
→ R (one interprets

c(x , y) as the cost ofmoving a unit mass from x to y or of bringing back a unit mass
from y to x), we can deûne a transportation cost Wc between two Borel probability
measures µ and ν on Rn by

Wc(µ, ν) ∶=Wc(x ,y)(µ, ν) ∶= inf
π ∬Rn×Rn

c(x , y) dπ(x , y)

where the inûmum is taken over all probabilitymeasures π onRn
×Rn projecting on µ

and ν, respectively. From the deûnition ofWc(µ, ν) and Fubini’s theorem,we see that
it suõces to show that the cost iswell deûned on (Rn

∖X)×Rn only,where µ(X) = 0.
Under very mild hypotheses on c, one can prove that there exists a coupling π that is
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optimal, that is, which achieves the inûmum above (see [32, Chapters 4 and 5]). _e
cost c(x , y) = ∣y − x∣p , p ∈ [1,+∞), is used for the deûnition of the Lp-Kantorovich–
Rubinstein (or Wassertein) distance

Wp(µ, ν) ∶= (W∣x−y∣p(µ, ν))
1/p

.

Recall that given two probability measures µ and ν on Rn , the relative entropy of
ν with respect to µ is deûned by

H(ν∥µ) ∶=
⎧
⎪⎪
⎨
⎪⎪
⎩

∫ f log( f ) dµ if dν(x) = f (x)dµ(x) with f log
+
( f ) ∈ L1

(µ),
+∞ otherwise.

Accordingly, we should only consider probability measures that have a density, in
short “absolutely continuous” probability measures. Recall also that the variance of a
function g ∈ L2

(µ) is deûned by

Varµ(g) ∶= ∫ ( g − ∫ g dµ)
2
dµ.

_e inequality in the next proposition appeared in [6] where it was derived in the
dual form (1.5) as a consequence of the Prékopa–Leindler inequality. By now it is
folklore in optimal mass transportation theory and known to most specialists. _e
investigation of equality cases seems to be new.

Proposition 1.1 Let V ∶Rn
→ R be a locally Lipschitz function satisfying (1.1). Deûne

for every y and almost every x in Rn the (asymmetric) cost
(1.2) cV(x , y) ∶= V(y) − V(x) −∇V(x) ⋅ (y − x).
_en for every (absolutely continuous) probability measure ν on Rn , we have
(1.3) WcV (µV , ν) ≤ H(ν∥µV).

Moreover, when V is convex, equality holds if and only if ν is a translate of µV .

Remark 1.2 Regarding the treatment of the equality case, we can prove a sharper
result. Namely, we will establish the following statement. Let V ∶Rn

→ R be locally
Lipschitz function satisfying (1.1), and assume that µV has a positive Cheeger constant
h(µV) > 0 (see deûnition below; this is the case when V is convex). _en there is
equality in the transport inequality (1.3) of Proposition 1.1 if and only if V is convex
and ν is a translate of µV .

_e fact that the convexity of V is necessary for equality cases is reminiscent of the
equality cases in the Brunn–Minkowski inequality.

When V is convex, it is possible to deûne the cost for every x (and not just for al-
most every x) by using the subgradient ∂V(x) at x of the convex functionV (see [29]
for background on subgradients):

∂V(x) ∶= {w ∈ Rn ;V(x + h) ≥ V(x) +w ⋅ h, ∀h ∈ Rn
}.

Indeed, the Proposition can then be statedwith the following cost cV in place of (1.2):

(1.4) ∀(x , y) ∈ Rn
×Rn , cV(x , y) ∶= sup

w∈∂V(x)
{V(y) − V(x) −w ⋅ (y − x)} .
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Recall that V is locally Lipschitz and so diòerentiable µ-almost-everywhere.
Note that when V is convex, we have cV(x , y) ≥ 0 with cV(x , x) = 0 in (1.2)

and (1.4); when V is strictly convex, cV(x , y) > 0 if x /= y.
Let usmention that by a simple and standard dualization procedure for transporta-

tion inequalities (see [21]), the statement of Proposition 1.1 is equivalent to the follow-
ing inûmal convolution inequality: for every (bounded) function g∶Rn

→ R,

(1.5) ∫ eQcV (g) dµV ≤ e∫ g dµV ,

where

(1.6) QcV (g)(y) ∶= inf
x

{ g(x) + cV(x , y)} .

We should alsomention that transportation cost inequalities of the form stated above
imply concentration of measure inequalities (for cV -neighborhoods); we refer the
reader to [21] for details.

_e interest of the statement in Proposition 1.1 resides in the fact that no uniform
convexity of V is needed. _is is reminiscent of the Brascamp–Lieb variance inequal-
ity [8] (anticipated in diòerent context by Hörmander), which states that for a C2

smooth convex function V ∶Rn
→ R with ∫ e−V < +∞, we have, for every locally

Lipschitz function g ∈ L2
(µV),

(1.7) VarµV (g) ≤ ∫ (D2V(x))−1
∇g(x) ⋅ ∇g(x) dµV(x).

Since the cost cV(x , y) in Proposition 1.1 behaves, when x and y are close to each
other, like 1

2D
2V(x)(y − x) ⋅ (y − x), it follows by a standard linearization argument

that Proposition 1.1 implies the Brascamp–Lieb inequality (1.7). We will recall the
argument later.
Another interesting feature of Proposition 1.1 is that it is an aõnely invariant state-

ment, in the sense that it does not depend on the Euclidean structure we put on
Rn . More precisely, we do not need a scalar product in the statement: the gradi-
ent w = ∇ f (s) (or a subgradient) comes from a linear form ℓ = d f (x) ∈ (Rn

)
∗,

and we can use ℓ(y − x) in place of w ⋅ (y − x). _is also re�ects in the fact that the
Brascamp–Lieb inequality (1.7) shares the same aõne invariance: if φ∶Rn

→ Rn is
an (invertible) aõne map, then the functions Vφ = V ○ φ−1 and gφ = g ○ φ−1 satisfy
VarµVφ

(gφ) = VarµV (g) and

∫ (D2Vφ(x))−1
∇gφ(x)⋅∇gφ(x) dµVφ(x) = ∫ (D2V(x))−1

∇g(x)⋅∇g(x) dµV(x).

Other consequences of Proposition 1.1 are Talagrand’s transportation inequalities
for Gaussian-likemeasures. Observe that for the standardGaussian measure γ, when
V(x) = ∣x∣2/2, we have

cV(x , y) = ∣y − x∣2/2
and the inequality becomes exactly Talagrand’s inequality [30]: for every probability
density ν on Rn ,

1
2
W2

2 (γ, ν) ≤ H(ν∥γ),
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with equality if and only if ν is a translate of γ. More generally, if V is C2 with D2V ≥

λ Id on Rn for some λ > 0, then by second-order Taylor expansion we see that the
cost satisûes

cV(x , y) ≥ λ∣y − x∣2/2,
and therefore we deduce that in this case, for every probability measure ν on Rn , we
have

(1.8)
λ
2
W2

2 (µV , ν) ≤ H(ν∥µV).

_is inequality appeared in [3, 6, 28]. We refer the reader to [18, 21] for background
and references on transportation inequalities.

_e proof of Proposition 1.1 is very short; it is aminor adaptation of the transporta-
tion proof of Talagrand’s inequality (1.8) given in [10]. With a little more eòort one
can actually prove a quantitative form of the inequality involving a remainder term.
To state the result, we need some notation. Given a probability measure µ on Rn , we
denote by h(µ) the best (i.e., largest) nonnegative constant for which the inequality

(1.9) h(µ)∫ ∣ g(x) − ∫ g dµ∣ dµ(x) ≤ ∫ ∣∇g∣ dµ

holds for every suõciently smooth g ∈ L1
(µ). _is constant, up to a factor 2, is also

known as the Cheeger isoperimetric constant.
When µ is log-concave, then it is known that h(µ) > 0, and h(µ)2 is actually

equivalent, up to an universal constant, to the spectral gap of the Laplacian associated
with µ (or equivalently the inverse of the Poincaré constant). More explicitly, if we
denote by λ(µ) the best nonnegative constant for which the inequality

λ(µ)∫ ∣ g(x) − ∫ g dµ∣
2
dµ(x) ≤ ∫ ∣∇g∣2 dµ

holds for every smooth enough g ∈ L2
(µ), then when µ is a log-concavemeasure on

Rn , we have

(1.10) c h(µ)2
≤ λ(µ) ≤ C h(µ)2

for some universal (numerical) constants c,C > 0, independent of µ and n; see [22,
25].

In the rest of the paper, we will adopt the lazy but convenient tradition from as-
ymptotic functional analysis to call “a numerical constant c” any positive constant
larger than 2 or smaller than 1/2 (c may even vary from line to line). So a numerical
constant refers to a universal constant (in particular, it does not depend on n, V , µ, ν,
etc.) whose exact value is irrelevant but who could a priori be computed explicitly.

_ere is another natural cost function associated with anymeasure having a posi-
tive Cheeger constant, namely the costmin(h(µ)2

∣y−x∣2 , h(µ)∣y−x∣) = N(h(µ)∣y−
x∣), where

∀t ≥ 0, N(t) ∶= min(t2 , t).

_is cost (in this formor in some equivalent form)has been studied by several authors
(see [18,21] for details).
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Since equality holds in Proposition 1.1 when ν is a translate of µ, it is natural, if
we want a remainder term, to minimize over translations, or equivalently, to impose
some centering.

_emain result of this note is the following theorem.

_eorem 1.3 (General transport inequality with a remainder term) Let V ∶Rn
→ R

be a locally Lipschitz function satisfying (1.1) and let cV be the cost deûned by (1.2).
Introduce the cost

c̃V(x , y) = cV(x , y) + cN(h(µV)∣y − x∣) ,
where c > 0 is an appropriate numerical constant.

_en for every probability measure ν on Rn such that ∫ x dν = ∫ x dµV we have
(1.11) Wc̃V (µV , ν) ≤ H(ν∥µV).

As a consequence, we have the quantitative version of Proposition 1.1 when ∫ x dν =

∫ x dµV :
(1.12) H(ν∥µV) ≥WcV (µV , ν) + cWN(h(µV)∣y−x ∣)(µV , ν),
and, in particular, we also have

(1.13) H(ν∥µV) ≥WcV (µV , ν) + cmin{h(µV)
2W2

1 (µV , ν), h(µV)W1(µV , ν)} .

Note that unlike the quantities H andWcV , the cost NN(h(µV)∣y−x ∣) is very much
dependent on the scalar product, which should therefore be chosen with care.

Let us explain how the consequences of (1.11) stated in the theorem are obtained.
_e ûrst one (1.12) follows from a general and straightforward principle: given two
costs c1 , c2,we always haveWc1+c2( ⋅ , ⋅ ) ≥Wc1( ⋅ , ⋅ )+Wc2( ⋅ , ⋅ ). _e “in particular”,
may seem more dubious. _e reason that (1.13) follows indeed from (1.12) is that, up
to numerical constants (see below) we can replace the function N(s) = min(s2 , s)
by a convex increasing function F(s), and then we can invoque Jensen’s inequality to
ensure that WF(∣y−x ∣)(ν, µ) ≥ F(W∣y−x ∣(µ, ν)).

Note, however, that the form(1.13) is strictlyweaker than the forms (1.11) and (1.12).
In particular,we shouldnote that the costN(h(µV)∣y−x∣) behaves like h(µV)

2
∣y−x∣2

when x and y are close to each other, and this behavior iswell adapted to linearization
procedures.

Let us describe some consequences of_eorem 1.3 in the case where V is convex.
Applied to Gaussian type measures, when cV(x , y) ≥ λ∣x − y∣2/2, it amounts to a
quantitative version of the transport inequality (1.8).

Proposition 1.4 (Gaussian type transportwith a remainder) Let V ∶Rn
→ R be a C2

convex function with D2V ≥ λ Id on Rn for some λ > 0 (we have mainly in mind the
Gaussian measure, for which λ = 1). _en for every probability measure ν on Rn such
that ∫ x dν = ∫ x dµV , we have

H(ν∥µV) −
λ
2
W2

2 (µV , ν) ≥ cWN(h(µV)∣y−x ∣)(µV , ν)(1.14)

≥ c̃min{h(µV)
2W2

1 (µV , ν), h(µV)W1(µV , ν)}
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for somenumerical constants c, c̃ > 0. One can also replace h(µV)
2 by λ, since h(µV)

2
≥

c′ λ for some numerical constant c′ > 0.

Next, linearization of the inequality (1.11) in _eorem 1.3 leads to a reinforced
Brascamp–Lieb inequality in the case of centered functions.

Proposition 1.5 LetV ∶Rn
→ R be a C2 convex functionwith ∫ e−V < +∞. For every

locally Lipschitz function g ∈ L2
(µV) with

∫ x( g(x) − ∫ g dµV) dµV(x) = 0,

we have

VarµV (g) ≤ ∫ [D2V + c h(µV)
2 Id ]

−1
∇g ⋅ ∇g dµV ,

for some numerical constant c > 0. We can replace h(µV)
2 by λ(µV), in view of (1.10).

One can derive a similar result using Hörmander’s L2-method (see e.g., [1]).
We should add, as is apparent from the proof, that the convexity of V is not really

needed in Propostion 1.5. _e correct assumption is that D2V + c h(µV)
2 Id is non-

negative. In particular, the result applies to perturbed log-concavemeasures, provided
h(µV) > 0.
Equality cases in the Brascamp–Lieb inequality (1.7) are given, exactly, by the func-

tions g of the form

(1.15) g(x) = ∇V(x) ⋅ u0 + c0

with u0 ∈ Rn and c0 ∈ R. In order to have a nice quantitative version, one would like
to get rid of the centering assumption and to measure, in some form, a “distance”

inf
u0 ,c0

d(g ,∇V ⋅ u0 + c0)

to the set of extremizers (1.15). Here is an attempt.

Proposition 1.6 (Brascamp–Lieb inequality with a remainder term) Let V ∶Rn
→ R

be a C2 convex function with ∫ e−V < +∞. _en for every locally Lipschitz function
g ∈ L2

(µV), if we denote

g0(x) ∶= g(x)−∇V(x)⋅u0−c0 , c0 ∶= ∫ g dµV and u0 ∶= ∫ y (g(y)−c0) dµV(y),

we have

∫ (D2V(x))−1
∇g(x) ⋅ ∇g(x) dµV(x) −VarµV (g) ≥

cλ(µV)∫ (D2V)
−1
(D2V + cλ(µV) Id)−1

∇g0 ⋅ ∇g0 dµV ,
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where c > 0 is a numerical constant. As a consequence, if we denote by λmax(x) the
largest eigenvalue of the nonnegative operator D2V(x), we have

∫ (D2V(x))−1
∇g(x) ⋅ ∇g(x) dµV(x) −VarµV (g) ≥

cλ(µV)

supx λmax(x) + cλ(µV)
∫ ∣g0∣2 dµV

and

∫ (D2V(x))−1
∇g(x) ⋅ ∇g(x) dµV(x) −VarµV (g) ≥

c̃ λ(µV)
2

∫ λmax(λmax + cλ(µV)) dµV
( ∫ ∣g0∣ dµV)

2
,

where c̃ > 0 is a numerical constant.

Let us recall that λ(µV) can be estimated by

λ(µV) ≥
c

∫ λ−1
min dµV

,

where λmin(x) denotes the lowest eigenvalue of the nonnegative operator D2V(x)
and c > 0 is a numerical constant (see [26,31]). _erefore, the constant in the previous
proposition (which is an increasing function of λ(µV)) can be lower bounded by
some integrals of λmin and λmax with respect to µV . For instance, using the previous
bound and the fact that (∫ λ−1

min dµV)
−1
≤ ∫ λmax dµV , we ûnd

c̃ λ(µV)
2

∫ λmax(λmax + cλ(µV)) dµV
≥

c
( ∫ λ−1

min dµV)
2
∫ λ2

max dµV

for some numerical constant c > 0. _ismight provide a computable constant beyond
the easy case where λ ≤ D2V ≤ R on Rn .

We conclude this introduction with some bibliographical comments. Part of this
note is rather elementary, andmany arguments are known to specialists inmass trans-
port, some having appeared implicitly or explicitly in recent or older works. For in-
stance, we already said that Proposition 1.1 was folklore in the theory, and while writ-
ing these noteswe heard about thework of Bolley,Gentil, andGuillin [7],which con-
tains an analogue, in a less straightforward form, of the inequality of Proposition 1.1
together with its connection to the Brascamp–Lieb inequality. If we go back in time,
the idea of using the remainder term in the transportation proof of [10] appears, in the
case of dimension one, in the paper by Barthe and Kolesnikov [2]. Similar arguments
in higher dimensions for unconditional measures were recently used in [20] and in a
form very close to the one used here in [11]. Mass transport arguments combinedwith
Poincaré inequalities (of a diòerent nature than the one we use) were put forward to
exhibit remainder terms in isoperimetric type inequalities in the far-reaching work
of Figalli, Maggi, and Pratelli, in particular in [15] for the case of log-concave mea-
sures (or rather convex sets). Our treatment is in part very close to the recentwork of
Fathi, Indrei, and Ledoux [14] where themass transport remainder term is combined
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with a Poincaré inequality in order to get a bound on the deûcit for Talagrand’s in-
equality (1.8) in the case of the Gaussian measure (they have also similar, but deeper,
arguments for the log-Sobolev inequality, a case that was also considered in [4]).

_e quantitative transport inequality obtained by Fathi, Indrei, and Ledoux [14]
for the standard Gaussian measure µ = γ on Rn (a case where λ(µ) = 1) is as follows:
for any probability measure ν with ∫ x dν(x) = ∫ x dγ(x) = 0,

H(ν∥γ) − 1
2
W2

2 (γ, ν) ≥ cmin (

W2
1,1(γ, ν)

n
,
W1,1(γ, ν)

√

n
) ,

where W1,1 ∶= W∥x−y∥1 with ∥x − y∥1 ∶= ∑
n
i=1 ∣x i − y i ∣. If we compare with inequal-

ity (1.14) in Proposition 1.4 above applied to the Gaussian measure µ = γ, we see that
our result is formally stronger, since

W1(µ, ν) ≥
W1,1(µ, ν)

√

n
.

Actually, our bound is signiûcantly better inmany cases, but both bounds are “equally
bad” when ν is a product of centered measures being at a “large” distance from the
one-dimensional Gaussian, since in this case one expects a remainder of order n and
both results give something of order

√

n (on the other hand, it is not clear to us that
this situation is themost relevant one).
As to quantative versions of the variance Brascamp–Lieb inequality, Hargé [19]

(by an L2-method) and recently Bolley, Gentil, and Guillin [7] (by linearization of a
transport inequality) obtained a remainder term which is, up to constants depending
on µV , of the form

( ∫ g V dµV − ∫ g dµV ∫ V dµV)
2
=∶ RV(g).

Note that, unlike the remainder term in Proposition 1.6, this term RV(g) does not
vanish only for extremizers. For instance, RV(g) is zero if V is even and g odd. Actu-
ally, the spacewhere RV vanishes is of co-dimension one in L2

(µV),whereas extrem-
izers (1.15) form a (n + 1) dimensional subspace. Of course, it could be that such type
of remainder is nonetheless sometimes better and more useful than the one we ob-
tained. Bolley, Gentil, and Guillin also derive, in the same work [7] but by a diòerent
method (namely by linearization of a functional Brunn-Minkowski inequality), a sec-
ond quantative formof the variance Brascamp–Lieb inequality with a remainder term
that vanishes exactly for the extremizers (1.15), as expected. _is remainder, however,
is not an L1 or L2 distance to the space of extremizers, and so the comparison with
the result of our Proposition 1.6 is not clear to us.

_e plan of the paper is as follows. In the next section we prove Proposition 1.1
and _eorem 1.3. For this we recall some tools from the Brenier-McCann mono-
tonemass transport theory, and prove a general lower bound for the remainder term
(Lemma 2.2) that might be of independent interest. _en we prove Propositions 1.5
and 1.6.
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2 Mass Transport, Minoration of the Remainder and Proofs of
Proposition 1.1 and Theorem 1.3

_e proofs of _eorems 1.1 and 1.3 use monotone transportation of measure in the
spirit of [10].

Given two probabilitymeasures µ and ν onRn with densities F andG, respectively,
we know fromBrenier [9] andMcCann [23] that there exists a convex functionψ such
that the map ∇ψ pushes forward µ onto ν. By the simple but useful weak-regularity
theory ofMcCann [24] we have, for µ-almost any x,

(2.1) F(x) = G(∇(ψ(x))detD2ψ(x).

Here, D2ψ(x) stands for the Hessian of the convex function ψ in the sense of Alek-
sandrov, that exists almost everywhere. _ere are several ways to use this equation
to prove our inequalities. One can use the McCann weak theory of change of vari-
ables [24], as in [10]. _e advantage is that it relies on simple arguments in convexity
and Lebesgue measure theory. Alternatively, one can use results on the regularity of
Monge-Ampère equation, in the spirit of those obtained by Caòarelli. _is relies on
more diõcult and deeper arguments. However, partial regularity results for solutions
ofMonge-Ampère have been simpliûed and extended recently, andwe shall favor this
point of view.

Let us assume that µ and ν are supported on the whole Rn , and that the densi-
ties are continuous and strictly positive (so locally bounded above and away from
zero). Since the support of the target measure is convex (here Rn), one can prove
that the convex function ψ solves theMonge-Ampère equation (2.1) also in the sense
of Aleksandrov (see the argument given in the proof of [16, _eorem 3.3], and by
the assumption above on the densities, the local regularity of [27], say, applies). In
particular, ψ is W2,1

loc (R
n
). To prove the transport inequality of Proposition 1.1 for

dµV = e−V(x)/∫ e−Vdx , we assume that dν = f (x) dµV(x). It is suõcient to prove
the inequalities in Proposition 1.1 and_eorem 1.3 in the case where f is continuous
and strictly positive onRn , so that the previous assumptions are satisûed. We can also
assume that ν has secondmoment.

We introduce the Brenier map T = ∇ψ between µV and ν. We have that ψ ∈

W2,1
loc (R

n
) and that almost everywhere

e−V(x) = f (T(x))e−V(T(x)) detD2ψ(x).

It is convenient to introduce the displacement ∇θ(x) = T(x) − x = ∇ψ(x) − x (i.e.,
θ(x) ∶= ψ(x) − ∣x∣2/2). If we take the log in the previous equation and introduce
cV(x , T(x)) = V(T(x)) − V(x) −∇V(x) ⋅ ∇θ(x), we ûnd

log( f (T(x))) − cV(x , T(x)) = ∇V(x) ⋅ ∇θ(x) − logdetD2ψ(x)
= ∇V ⋅ ∇θ − ∆θ + ∆θ − logdet(Id+D2θ).
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We integrate with respect to µV . Noticing that ∫ log( f ○ T)dµV = ∫ f log( f )dµV ,
we have

H(ν∥µV) − ∫ cV(x , T(x)) dµV =

∫ [∇V ⋅ ∇θ − ∆θ] dµV + ∫ [∆θ − logdet(Id+D2θ)] dµV .

_e ûrst term in the right-hand side vanishes a�er integration by parts, thanks to the
integrability assumptions we havemade. Let us justify this.

Fact 2.1 ∫ ∆θ e−V = ∫ ∇θ ⋅ ∇V e−V .

Proof Since ∫ ∣∇ψ∣α e−V = ∫ ∣y∣α dν(y) and ν as secondmoment, we have in view
of our assumptions that ∫ ∣∇θ∣2 e−V < +∞ and ∫ ∣∇θ∣ e−V < +∞. Let h be a C1

function on Rn , with values on [0, 1], that is compactly supported and is identically
one in a neighborhood of 0 ∈ Rn . Introduce the sequence hk(x) = h(x/k). We have
0 ≤ hk ≤ 1, hk(x) ↑ 1 for every x ∈ Rn and ∥∇hk∥∞ → 0 as k → +∞. We have

∫ hk∆θ e−V = −∫ ∇hk ⋅ ∇θ e−V + ∫ hk∇θ ⋅ ∇V e−V .

For the le�-hand side, we wan write

∫ hk∆θ e−V = ∫ hk∆ψ e−V − n∫ hk e−V

and each term converges using the monotone convergence theorem (since ∆ψ ≥ 0),
giving ∫ ∆ψ e−V − n ∫ e−V = ∫ (∆ψ − n) e−V = ∫ ∆θ e−V . _e ûrst term in the right-
hand side tends to zero, since it is bounded by ∥∇hk∥∞ ∫ ∣∇θ∣ e−V . For the last term,
we conclude by using the dominated convergence theorem, since

2∫ ∣∇θ ⋅ ∇V ∣ e−V ≤ ∫ ∣∇θ∣2 e−V + ∫ ∣∇V ∣
2 e−V < +∞.

So we have arrived at the elementary formula

H(ν∥µV) = ∫ cV(x , T(x)) dµV(x) + ∫ [∆θ − logdet(Id+D2θ)] dµV(2.2)

= ∫ cV(x , T(x)) dµV(x) + ∫ [ trD2θ − tr(log(Id+D2θ))] dµV

= ∫ cV(x , T(x)) dµV(x) + ∫ tr(F(D2θ)) dµV ,

where F∶ [−1,+∞[→ [0,+∞[ stands for the convex (increasing on R+) function de-
ûned by

F(t) ∶= t − log(1 + t), t ∈ R+ .

Since by deûnition ∫ cV(x , T(x)) dµV(x) ≥ WcV (µV , ν) and F ≥ 0, we have
proved, in particular, the inequality in Proposition 1.1.

_e treatment of the cases of equality in Proposition 1.1 requires a bit of extrawork
(in particular since T was not a priori the cV -optimal map); we postpone it to the end
of this section and go on with the proof of_eorem 1.3.

In order to prove _eorem 1.3, we have to play a bit with the second term in the
right-hand side of (2.2), as was done in the works wementioned in the introduction.
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Indeed, a “remainder” term of this form appears in several mass transport proofs (for
instance [2, 11, 14, 15,20]), sometimes in equivalent forms such as

∑( ∣s i ∣ +
1

1 + ∣s i ∣
− 1) or ∑

s2i
1 + ∣s i ∣

(here s i refer to the eigenvalues of D2θ). Anyway, the crucial property of the these
functions and of the convex function t − log(1+ t) is that it behaves like t2 for t close
to zero, and like t for t large. More precisely, we have, for every t ∈] − 1,+∞[, that
F(t) ≥ F(∣t∣) and that for every s ≥ 0,

(2.3)
1
4
min(s2 , s) ≤ F(s) ≤ min(s2 , s).

But we ûnd it more convenient to work with the convex function F(∣t∣) rather than
with N(∣t∣) = min(t2 , ∣t∣).

_e treatment of the remainder term is stated in the next, central, lemma, which
is of independent interest.

Lemma 2.2 Let µ be a probability mesure on Rn absolutely continuous with respect
to the Lebesgue measure and θ ∈ W2,1

loc (R
n
) with D2θ ≥ − Id almost everywhere. We

assume that ∣∇θ∣ ∈ L1
(µ) with ∫ ∇θ dµ = 0. _en

(2.4) ∫ tr(F(D2θ)) dµ ≥ c∫ F(h(µ)∣∇θ∣) dµ

for some numerical constant c > 0.

Note that our assumption ∫ x dµV = ∫ x dν can be rewritten as ∫ ∇θ dµV = 0, so
ifwe use (2.2) and the previous lemmawith µ = µV and θ our displacement function,
we ûnd

H(ν∥µV) ≥ ∫ c̃V(x , T(x)) dµV ≥ W̃cV (µV , ν),

as claimed in _eorem 1.3.
So it only remains to prove Lemma 2.2.
Denote by σ the uniform probabilitymeasure on Sn−1. Recall that for every vector

X ∈ Rn , we have

n∫
Sn−1

(X ⋅ u)2 dσ(u) = ∣X∣
2

and that

(2.5) c∣X∣ ≤

√

n∫
Sn−1

∣X ⋅ u∣ dσ(u) ≤ ∣X∣

for some numerical constant c > 0.
We will use the following fact, the proof of which is postponed below.

Fact 2.3 Let A be a symmetricmatrix with eigenvalues > −1. _en

tr(F(A)) ≥ 1
8 ∫Sn−1

F(

√

n∣Au∣) dσ(u).
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We will combine this with the following isoperimetric type inequality. It is due to
Bobkov and Houdré [5], where it is stated with the median. We will include a proof
below for completeness.

Fact 2.4 (Bobkov–Houdré) Let µ be a probabilitymeasure onRn . For every regular
enough f ∶Rn

→ R we have

(2.6) ∫ F( ∣ f − ∫ f dµ∣ ) dµ ≤ c∫ F(
1

h(µ)
∣∇ f ∣) dµ

for some numerical constant c > 0 ( for instance, c = 3 × 43 works).

With these two facts in hand, we can now ûnish the proof of (2.4). We have, by
Fact 2.3 and Fubini’s theorem, that

(2.7) ∫ tr(F(D2θ)) dµ ≥
1
8 ∫Sn−1∫

F(

√

n∣D2θu∣) dµ dσ(u).

For any ûxed vector u ∈ Sn−1, we have that the function g(x) = h(µ)
√

n∇θ(x) ⋅u
is W 1,1

loc(R
n
) with derivative ∇g(x) = h(µ)

√

n (D2θ(x))u, and ∫ g dµV = 0. Apply-
ing Fact 2.4, we have that

∫ F(

√

n∣(D2θ)u∣) dµ ≥
1

3 × 43 ∫ F(h(µ)
√

n ∣∇θ ⋅ u∣) dµ.

Back to (2.7), integrating the previous inequality with respect to dσ(u), using that F
is convex and (2.5), we ûnd

∫ tr(F(D2θ)) dµ ≥
1

3 × 43
× 8 ∫

F(h(µ)
√

n∫
Sn−1

∣∇θ ⋅ u∣ dσ(u))dµ

≥ c∫ F(h(µ)∣∇θ∣) dµ.

_is completes the proof of Lemma 2.2, modulo the two facts above that we now
prove.

Proof of Fact 2.3 Let usûrst collect some straightforwardproperties ofF, or equiva-
lently, in view of (2.3), ofmin(s2 , ∣s∣). _ese functions commutewith power functions.
In particular, we shall use that

(2.8) ∀s ≥ 0, F(

√

s) ≤
√

F(s) ≤ 2F(

√

s).
Note that F(2s) ≤ 4F(s). Observe also that for a ûnite family s1 , . . . , sk ≥ 0, we have

(2.9) ∑

i≤k
F(s i) ≥

1
4
F(

√

∑

i≤k
s2i ) .

Indeed, if we denote by smax the largest number, we see using (2.3) that

∑

i≤k
F(s i) ≥

1
4
∑

i≤k
min(s i , s2i ) ≥

1
4
min(smax , s2max)∑

i≤k
(

s i
smax

)

2
.

_en distinguishing between smax ≤ 1, and smax ≥ 1, a case for which we replace it by
using smax ≤

√

∑i≤k s2i , we ûnd

∑

i≤k
F(s i) ≥

1
4
min (∑

i≤k
s2i ,

√

∑

i≤k
s2i ) ≥

1
4
F(

√

∑

i≤k
s2i ) .
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Let us mention that inequality (2.9) will be the one responsible for the loss of a factor
√

n in the case of product measures.
Back to the proof of Fact 2.4, let usnotice thatF(A) ≥ F(∣A∣), sinceF(s i) ≥ F(∣s i ∣)

for any eigenvalue s i of A. Denote

H ∶= ∣A∣ =
√

A∗A;

it is a nonnegative symmetric matrix. Let (e1 , . . . , en) be an orthonormal basis of
eigenvectors of A. _en

tr(F(H)) =∑

i≤n
∣F(H)e i ∣ =∑

i≤n
F(∣He i ∣) ≥

1
2
∑

i≤n

√

F(∣He i ∣2),

where we used (2.8). Let us mention in passing that using the convexity of F, we can
establish more generally that for for any u ∈ Sn−1 we have ∣F(H)u∣ ≥ 1

2

√

F(∣Hv∣2).
From this, using the fact that

√

F is concave on R+, then (2.8) again, and û-
nally (2.9), we ûnd that

tr(F(H)) ≥
1
2
∑

i≤n

√

F( ∣He i ∣2) =
1
2
∑

i≤n

√

F(n∫
Sn−1

(He i ⋅ u)2 dσ(u))

≥
1
2 ∫Sn−1

∑

i≤n

√

F(n(He i ⋅ u)2
) dσ(u) ≥ 1

2 ∫Sn−1
∑

i≤n
F(

√

n∣He i ⋅ u∣) dσ(u)

≥
1
8 ∫Sn−1

F(

√

n
√

∑

i≤n
∣He i ⋅ u∣2) dσ(u) =

1
8 ∫Sn−1

F(

√

n∣Hu∣) dσ(u).

To conclude, use that ∣Hu∣2 = H2u ⋅ u = A2u ⋅ u = ∣Au∣2.

Proof of Fact 2.4 By scaling the metric, we can assume that h(µ) = 1. More pre-
cisely, we can change the scalar produce x ⋅ y into h(µ)−1x ⋅ y, which changes the
gradient accordingly in (1.9) and (2.6).
Denote by m a µ-median of f . By a standard argument, it is enough to prove that

4∫ F( ∣ f −m∣) dµ ≤ 3 × 42
∫ F(∣∇ f ∣) dµ.

Indeed, since F(2t) ≤ 4F(t) and since F is convex increasing onR+, we have for any
function g with µ-median mg :

∫ F( ∣ g − ∫ g dµ∣ ) dµ ≤ 2∫ F(∣g −mg ∣) dµ + 2F( ∣ ∫(g −mg) dµ∣ )

≤ 4∫ F(∣g −mg ∣) dµ.

_e same kind of argument shows that one can use amedian mg instead of themean,
in the deûnition (1.9). Indeed, for any g ∈ L1

(µ) with median mg , we have

∫ ∣g −mg ∣ dµ ≤ ∫ ∣ g − ∫ g dµ∣ dµ + ∣ ∫ g dµ −mg ∣ .

We can assume that mg ≥ ∫ g dµ (otherwise use −g), and by the deûnition of mg and
by Markov’s inequality we have
1
2
≤ µ({g ≥ mg}) ≤ µ({∣g−∫ g dµ∣ ≥ mg−∫ g dµ}) ≤

1
mg − ∫ g dµ ∫

∣ g−∫ g dµ∣ dµ,
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and so ∣mg − ∫ g dµ∣ ≤ 2 ∫ ∣ g − ∫ g dµ∣ dµ. _erefore, we have

∫ ∣g −mg ∣ dµ ≤ 3∫ ∣ g − ∫ g dµ∣ dµ ≤ 3∫ ∣∇g∣ dµ.

Given our f with µ-median m, let us introduce the (continuous) function g such
that

g(x) =
⎧
⎪⎪
⎨
⎪⎪
⎩

F(∣ f (x) −m∣) if f (x) ≥ m,
−F( ∣ f (x) −m∣) if f (x) < m.

Since F ≥ 0, the function g has zero µ-median. _erefore,

(2.10) ∫ F(∣ f −m∣) dµ = ∫ ∣g∣ dµ ≤ 3∫ ∣∇g∣ dµ.

We will now use an argument inspired by [20]. Let us observe that for every s ∈ R+,
t ∈ [0, 1] (this is the only good choice to estimate the Legendre transform of F), we
have

st ≤ 4F(s) + 1
16

t2 .

Indeed, for s ≥ 1 the inequality is obvious, since 4F(s) ≥ s ≥ st, and for s < 1, use that
4F(s) ≥ s2 to complete the square. Since F′ ∈ [0, 1] on R+, we have

∫ ∣∇g∣ dµ = ∫ F′(∣ f −m∣) ∣∇ f ∣ dµ ≤ 4∫ F(∣∇ f ∣) dµ + 1
16 ∫

F′(∣ f −m∣)
2 dµ

≤ 4∫ F(∣∇ f ∣) dµ + 1
4 ∫

F(∣ f −m∣) dµ,

where the second inequality follows from F′(s)2
≤ 4F(s) for every s ∈ R+ (this can

be seen, for instance, by computing (4F − F′2)′(s) = 2s(1 + 2s + 2s2)/(1 + s)3
≥ 0).

Plugging this into (2.10), we ûnd

1
4 ∫

F(∣ f −m∣) dµ ≤ 3 × 4∫ F(∣∇ f ∣) dµ,

which gives the desired inequality.

_is completes the proof of Lemma 2.2 and _eorem 1.3. It only remains to treat
the cases of equality in Proposition 1.1.

Determination of equality cases in Proposition 1.1 _e idea is that if equality holds
in Proposition 1.1, and if ν and µV have the same barycenter (a situation that can
be imposed by translating ν, provided we know that translation preserves equality
cases), thenwe can apply_eorem1.3 and conclude thatW1(µV , ν) = 0,which implies
ν = µV . Oddly enough, the converse also requires somework; even the fact that there
is equality when ν = µV is not straightforward, and actually requires the convexity of
V .

We will prove the stronger result of Remark 1.2. Given a vector u ∈ Rn , let us
denote by Tuν the translation by u of the probability ν; if dν(x) = F(x) dx , then
dTuν(x) = F(x − u) dx. _e following lemma is essential as it establishes the trans-
lation invariance of the inequality under study.
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Lemma 2.5 (Translation invariance) With the notation of Proposition 1.1, we have,
for any probability ν and any vector u ∈ Rn , that

H(Tuν∥µV) −WcV (µV , Tuν) = H(ν∥µV) −WcV (µV , ν).

Proof To simplify the notation,we can assume that ∫ e−V = 1, and also that dν(x) =
f (x)dµV(x) = f (x)e−V(x)dx. To treat the transportation term, we will need the
following observation.

Fact 2.6 Given u ∈ Rn , introduce ũ = (0, u) ∈ R2n . Let µ and ν be two probability
measures onRn and let cV be the cost from Proposition 1.1. If π is a cV -optimal coupling
for (µ, ν), then Tũπ is a cV -optimal coupling for (µ, Tuν).

Let us prove this fact. _e coupling condition is clear, so we only need to check
that Tũπ is cV -optimal when π is. Equivalently, by the characterization of optimality
in terms of cyclical monotony (see [32, Chapter 5]), it suõces to check that the sup-
port of Tũπ is cV -cyclically monotone when the support of π is cV -cyclically mono-
tone. Let (x1 , y1), . . . , (xk , yk) be arbitrary points of R2n , with the convention that
(xk+1 , yk+1) ∶= (x1 , y1). We have

k
∑

i=1
cV(x i , y i+1 + u) −

k
∑

i=1
cV(x i , y i + u) = −

k
∑

i=1
∇V(x i) ⋅ (y i+1 − y i)

=

k
∑

i=1
cV(x i , y i+1) −

k
∑

i=1
cV(x i , y i),

which shows that, indeed, the support of Tũπ is cV -cyclicallymonotone if and only if
the support of π is cV -cyclically monotone.

With this fact in hand, let us ûnish the proof of Lemma 2.5. Let π be a cV -optimal
coupling for (µV , ν). _en by the previous Fact we have that

WcV (µV , Tuν) −WcV (µV , ν) =∬ [cV(x , y + u) − cV(x , y)] dπ(x)

= ∫ [V(y + u) − V(y)] dν(y),

where we used that ∬ ∇V(x) ⋅ u dπ(x , y) = ∫ ∇V(x) ⋅ u e−V(x) dx = 0.
_e entropic terms are easier to analyse. Since dTuν(x) = f (x − u)e−V(x−u) dx =

f (x − u)e−V(x−u)+V(x)dµV(x), we have
H(Tuν∥µV) −H(ν∥µV)

= ∫ [ log( f (x − u)) − V(x − u) + V(x)] f (x − u)e−V(x−u) dx

− ∫ log f (x) log( f (x))e−V(x) dx

= ∫ [ − V(x) + V(x + u)] dν(x).

By subtracting the previous two equations, we obtain the conclusion of Lemma 2.5.

Next, the role of the convexity of V can be summarized as follows.
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Lemma 2.7 Let V ∶Rn
→ R be a locally Lipschitz function satisfying (1.1) and let cV

be the cost given by (1.2), which iswell deûned for almost every x ∈ Rn . If there exists an
absolutely continuous probabilitymeasure µ with supportRn such thatWcV (µ, µ) = 0,
then V is convex on Rn . Conversely, if V is convex, then WcV (µ, µ) = 0 for every
absolutely continuous probability measure µ.

Proof Since c(x , x) = 0, if Wc(µ, µ) = 0, then it means that the image π of µ by
themap x → (x , x) is an optimal coupling, and therefore its support is cV -cyclically
monotone. By the assumption on µ, this implies that for (almost) all x , y ∈ Rn we
have cV(x , y) + cV(y, x) ≥ cV(x , x) + cV(y, y), which can be rewritten as

(2.11) (∇V(y) −∇V(x)) ⋅ (y − x) ≥ 0.

For a locally Lipschitz function (therefore also W 1,1
loc), this property implies that V is

convex. Indeed, we can consider Vє = V ∗ ηє where ηє(x) = є−nη(x/є) is an approx-
imation of the identity in Rn , with η compactly supported. _en the property (2.11)
passes to Vє ,which is now smooth, so that this property holds at every (x , y) and this
implies that Vє is convex on Rn , because it implies that the restriction of Vє to any
aõne line has a nondecreasing derivative. We conclude by using that Vє converges to
V , point-wise as є → 0.
Conversely, the fact that cV(x , x) = 0 implies that WcV (µ, µ) ≤ 0 for any abso-

lutely continuous probability measure µ. Since cV ≥ 0 when V is convex, we get in
this case that WcV (µ, µ) = 0. (One can also verify that when V is convex, the set
{(x , x); x ∈ Rn

} is cV -cyclically monotone.)

We now have all the ingredients for the study of equality cases. If there is equality
in (1.3) for some ν, then by Lemma 2.5 theremust be equality for any translatedmea-
sure Tuν, u ∈ Rn . But for u ∶= − ∫ x dν + ∫ x dµV , we have the centering condition
∫ x dTuν = ∫ x dµV(x), and sowemust have thatW1(µV , Tuν) = 0, that is, Tuν = µV
or equivalently ν = T−uµV . _is shows that for equality to hold, ν must be a translate
of µV . But this in turn implies, again by Lemma 2.5, that there is also equality for
ν = µV . Since H(µV∥µV) = 0, we must haveWcV (µV , µV) = 0. By Lemma 2.7, this
implies that V is convex.
Conversely, if V is convex, there is equality for ν = µ, because Lemma 2.7 ensures

thatWcV (µV , µV) = 0, and by Lemma 2.5we then also have equality for any translate
of µV .

3 Variance Brascamp–Lieb Inequalities

It is well known that linearization of transportation type inequalities give Poincaré
type inequalities. One o�en uses the dual inûmal convolution inequality (1.5) to per-
form the linearization, but one can do it also directly from the transportation in-
equality. _e procedure for linearizing the Wasserstein distance is standard, espe-
cially in the framework of the so-called “Otto calculus” (see, for instance, [28]). It is
also known that only the local behavior of the cost matters for linearizing a transport
inequality (see, for instance, [18, Section 8.3]. However we did not ûnd a reference
for the precise situation studied here, and so we include the following statement for
completeness.
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Lemma 3.1 Let c∶Rn
×Rn

→ R+ be a function such that c(y, y) = 0 and c(x , y) ≥
δ0∣x − y∣2 for every x , y ∈ Rn , for some δ0 > 0. Assume furthermore that for every y
there exists a nonnegative symmetric operator Hy for which

c(y + h, y) = 1
2
Hyh ⋅ h + ∣h∣2o(1)

uniformly in y on compact sets when h → 0.
_en if µ is a probabilitymeasure onRn and g is a C1 compactly supported function

with ∫ g dµ = 0, we have

lim inf
ε→0

1
ε2
Wc(µ, (1 + εg) dµ) ≥

1
2

( ∫ g f dµ) 2

∫ H−1
∇ f ⋅ ∇ f dµ

for any C1 compactly supported function f .

Proof Given a (bounded) function F on Rn , we introduce its inûmal convolu-
tion (1.6) associated with our cost c, which satisûes: for every (x , y) ∈ Rn

× Rn ,
Qc(F)(y) − F(x) ≤ c(x , y). It then follows from the deûnition ofWc that

Wc(µ, ν) ≥ ∫ Qc(F) dν − ∫ F dµ.

In our situationwhere ν = (1+εg) dµ (ε small enough and later tending to 0),we pick
F = ε f with f of class C1 compactly supported and ∫ f dµ = 0. Let us write

Qc(ε f )(y) = inf
x

{ ε f (x) + c(x , y)} = inf
h

{ ε f (y + h) + c(y + h, y)} .

For any given y, let hε = hε ,y be a point where this inûmum is achieved. Since the
function f is Lipschitz, of constant M > 0 say, we have by our assumption on the cost
that

ε f (y) − εM∣hε ∣ + δ0∣hε ∣2 ≤ ε f (y + hε) + c(y + hε , y) ≤ ε f (y)
so that

∣hε ∣ ≤
M
δ0
ε.

In other words, hε tends to zero like ε uniformly in y. Also, since f is continuous
compactly supported, we can ûnd (because the cost is nonnegative and large when
points are far-apart) a bounded open set Ω,which contains the support of f such that
Qc(ε f )(y) ≥ 0 for every y ∈ Rn

∖Ω. Consequently, we have

Wc(µ, (1 + εg) dµ) ≥ ∫ Qc(ε f ) (1 + εg) dµ ≥ ∫
Ω
Qc(ε f ) (1 + εg) dµ.

We have, uniformly for y in the bounded set Ω,

Qc(ε f )(y) = ε f (y + hε) + c(y + hε , y) = ε f (y) + ε∇ f (y) ⋅ hε +
1
2
Hyhε ⋅ hε + o(ε2),

and so

Qc(ε f )(y) ≥ ε f (y) − ε2
1
2
H−1

y ∇ f (y) ⋅ ∇ f (y) + o(ε2).
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A�er multiplying by (1 + εg), we can integrate on Ω using that the o(ε2) is uniform
in y:

1
ε2
Wc(µ, (1 + εg) dµ) ≥ ∫

Ω
f g dµ − 1

2 ∫Ω
H−1

y ∇ f ⋅ ∇ f dµ + o(1).

_is implies, using that Ω contains the support of f , that

lim inf
ε→0

1
ε2
Wc(µ, (1 + εg) dµ) ≥ ∫ f g dµ − 1

2 ∫
H−1

y ∇ f ⋅ ∇ f dµ.

_e result follows by homogeneity (replacing f by λ f and optimizing).

_e linearization given in Lemma 3.1 shows that the Brascamp–Lieb inequality
follows immediately from Proposition 1.1 for ν = (1 + εg)dµV with ∫ gdµV = 0,
when ε → 0. Indeed, without loss of generality, we can assume that D2V ≥ 2δ0 (by
adding a small δ0∣x∣2 and latermaking δ0 → 0) so that the cost veriûes also cV(x , y) ≥
δ0∣x − y∣2. Moreover, if V is C2, we see from the deûnition (1.2) of the cost that, when
h → 0,

cV(y + h, y) − 1
2
D2V(y)h ⋅ h =

∫

1

0
[D2V(y + (1 − t)h) − D2V(y)]h ⋅ h (1 − t) dt = ∣h∣2o(1),

where the o(1) is uniform in y on compact sets, since D2V is uniformly continuous
on compact sets. On the other hand, if g is a C1 compactly supported function with
∫ g dµV = 0, we have

H((1 + εg)dµV ∣µV) =
1
2
ε2 ∫ g2 dµV + o(ε2).

So we ûnd, by applying Proposition 1.1 with ν = (1+ εg)dµV and Lemma 3.1 with the
choice f = g (which is the optimal one in the present situation), at the limit, that

1
2

( ∫ g2 dµV)
2

∫ (D2V(x))−1
∇g ⋅ ∇g dµV

≤
1
2 ∫

g2 dµV ,

which is the Brascamp–Lieb inequality (1.7).
Let us apply the same procedure with inequality (1.11) in _eorem 1.3, the crucial

point being that N(h(µV) ∣(y + h) − y∣) behaves like h(µV)
2
∣h∣2 for h small. So the

cost satisûes, for h → 0,

c̃V(y + h, y) = cV(y + h, y) + cN(h(µV) ∣h∣) = cV(y + h, y) + c h(µV)
2
∣h∣2 + o(h2

)

=
1
2
[D2V(y)h ⋅ h + 2c h(µV)

2 Id ]h ⋅ h + o(h2
),

where c is a numerical constant. _e same argument as before for ν = (1 + εg)dµV
shows that if g is a C1 compactly supported function with ∫ g dµV = 0 and

∫ xg(x) dµV(x) = 0,

we have
∫ g2 dµV ≤ ∫ (D2V + c h(µV)

2 Id)−1
∇g ⋅ ∇g dµV ,

as claimed in Proposition 1.5.
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Finally, let us derive Proposition 1.6. With the notation of the proposition, for
given g, denote g0 ∶= g − ∇V ⋅ u0 − c0. It is readily checked by elementary calculus
that for every vector u0 and constant c0 (so not only for the ones we have picked), if
g = g0 +∇V ⋅ u0 + c0,

A ∶= ∫ (D2V(x))−1
∇g(x) ⋅ ∇g(x) dµV(x) −VarµV (g)

= ∫ (D2V(x))−1
∇g0(x) ⋅ ∇g0(x) dµV(x) −VarµV (g0).

Next, for our choice of u0 and c0 observe that ∫ g0 dµV = 0 and

∫ x g0(x) dµ(x) = 0,

since, in the standard basis, writing x j = x ⋅ e j for j = 1, . . . , n, we have

∫ x j∇V(x) ⋅ u0 dµV(x) = ∫ e j ⋅ u0 dµV = e j ⋅ u0 = ∫ x j(g(x) − c0) dµV(x).

So by Proposition 1.5, we ûnd

A ≥ ∫ (D2V)
−1
∇g0 ⋅ ∇g0 dµV − ∫ (D2V + cλ(µV) Id)−1

∇g0 ⋅ ∇g0 dµV

= cλ(µV)∫ (D2V)
−1
(D2V + cλ(µV) Id)−1

∇g0 ⋅ ∇g0 dµV .

From this bound, we can proceed in two diòerent ways. First, we can use a uniform
lower bound and combine it with the Brascamp–Lieb inequality

A ≥
cλ(µV)

supx λmax(x) + cλ(µV)
∫ (D2V)

−1
∇g0 ⋅ ∇g0 dµV

≥
cλ(µV)

supx λmax(x) + cλ(µV)
∫ ∣g0∣2 dµV .

Otherwise, using again that D2V ≤ λmax Id, we can use Hölder’s inequality, to arrive
at

A ≥

( ∫ ∣∇g0∣ dµV)
2

∫ λmax(λmax + cλ(µV)) dµV
.

But (1.10) implies that ∫ ∣∇g0∣ dµV ≥ c
√

λ(µV) ∫ ∣g0∣ dµV for some numerical con-
stant c > 0. _is ends the proof of Proposition 1.6.
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