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Abstract

In previous work by Di Martino, Tamburini and Zalesski
[Comm. Algebra 28 (2000) 5383-5404] it is shown that cer-
tain low-dimensional classical groups over finite fields are not
Hurwitz. In this paper the list is extended by adding the spe-
cial linear and special unitary groups in dimensions 8,9,11,13.
We also show that all groups Sp(n,q) are not Hurwitz for ¢
even and n = 6,8,12,16. In the range 11 < n < 32 many
of these groups are shown to be non-Hurwitz. In addition,
we observe that PSp(6,3), PQ*(8,3%), PQ*(10,q), Q(11,3%),
OF(14,3%), QF(16,7%), Q(n,7*) for n = 9,11,13, PSp(8, 7F)

are not Hurwitz.

1. Introduction

A finite group H # 1 is called Hurwitz if it is generated by two elements X,Y
satisfying the conditions X2 = Y3 = (XY)7 = 1. A long-standing problem is that
of classifying simple Hurwitz groups. The problem has been solved for alternating
groups by Conder [4], and for sporadic groups by several authors with the latest
result by Wilson [27]. It remains open for groups of Lie type and for classical groups.
Quite a lot is known. Groups 2Dy(q) for (¢,3) = 1, 2Ga(q), G2(q) are Hurwitz with
few exceptions, groups 3D, (3%) are not Hurwitz; see Jones [10] and Malle [15, 16].
Classical groups of large rank are Hurwitz; see [12], [13] and [26]. However many
classical groups of small rank are not Hurwitz [6]. The current state of the problem
and its history is discussed in a survey of Tamburini and Vsemirnov [23]. Formally,
the problems of determining all Hurwitz groups and all non-Hurwitz groups are
equivalent. However, proving that a given group is Hurwitz or non-Hurwitz requires
very different technique. In this paper we focus on proving that certain groups are
not Hurwitz.

We show that Sp(6,¢q), Sp(8,q), Sp(10,q), Sp(12,¢) and Sp(16,¢) with ¢ even
are not Hurwitz groups. In addition, groups PSp(6,3), PQ*(8,3%), PQ*(10,q),
Q(11,3%), Q*(14,3%), QT (16,7%), Q(n, 7%) for n = 9,11, 13, PSp(8, 7¥) are not Hur-
witz. We extend the results of [6] by proving that groups SL(n, q) and SU(n, q) are
not Hurwitz for n = 8,9, 11, 13. If n is coprime to ¢—1 then SL(n, ¢) is simple. Simi-
larly, SU(n, ¢) is simple if n is coprime to g+ 1. Therefore, these results contribute to
the above problem. In addition, we show that for n € {12, 14,15, 16,17, 18,19, 22, 23,
24,25,31} there are infinitely many values of ¢ such that SL(n,q) is not Hurwitz
and there are infinitely many values of ¢ such that SU(n,q) is not Hurwitz; see
Table 1.
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THEOREM 1.1. (1) Groups SL(n,q) and SU(n,q) are not Hurwitz if n < 14 and

n # 12 except for SL(2,8) and SL(3,2). In addition, groups SL(n,q) and SU(n, q)

are not Hurwitz if ¢ = 0(mod 3) and n = 14 and ¢ = 0(mod 7) and n = 12,17,18.
(2) Groups Sp(n,q) with q even are not Hurwitz if n = 6,8,10,12 and n = 16.

Let Hos7 be the group defined by two generators z,y subject to relations 2 =
y3 = (2y)". Theorem 1.1 follows from our more general results on representations
of Hagz7. The first is the following (where o denotes a central product).

THEOREM 1.2. Let F' be an algebraically closed field of characteristic p > 0 and
set H = Hasy. Let ¢ : H — GL(n, F) be an irreducible representation such that
G = ¢(H) preserves no symmetric bilinear form on V.= F™. Define p = p if
(7,p° —p) # 1 and p = p*® otherwise.
(A) Suppose that p # 2,3,7. Then one of the following holds:

(A1) n > 13 orn = 12;

(A2) n =3 and G = SL(3,2);
(A3) n =8 and G = SL(2,7) o SL(2,p);
(A4) n =9 and G = SL(3,2) x PSL(2,D);
(A5) n =13 and G = PSL(2, 27).

(B) Suppose that p = 2. Then one of the following holds:
B1) n > 13 orn = 12;
2) n=3 and G = SL(3,2);
3) n =06 and G =2 SL(3,2) x SL(2, 8);
4) n =13 and G =2 PSL(2,27).
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(
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(C) Suppose that p = 3. Then one of the following holds:
(C1) n>14 orn=12;
(C2) n =3 and G = SL(3,2);
(C3) n =28 and G = SL(2,7) o SL(2, 27);
(C4) n=9 and G = SL(3,2) x PSL(2, 27).

(D) Suppose that p =T7. Then one of the following holds:
(D1) n > 13 and n # 17,18;
(D2) n =13 and G = PSL(2, 27).

In particular, for 3 < n < 12 and n = 13 neither SL(n, ¢) nor SU(n, q) is Hurwitz.
If n < 7 or n = 10, these results are not new; see [3], [6] and [23].

In the next theorem we assume n > 13 as the cases n < 13, n # 12 are considered
in Theorem 1.2, and for n = 12 our computations do not extend the results of [6].

THEOREM 1.3. Assume that n > 13. Then for the values of (n,q) given in Tables
1 and 2 groups SL(n,q) and SU(n,q) are not Hurwitz.

More generally, let p : Hagr — GL(n,q) (respectively, Hozy — U(n,q)) be an
absolutely irreducible representation and G := p(H). If (n,q) appears at the 2nd

column of Table 1 or the 3rd column of Table 2, then G preserves a symmetric
bilinear form.
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THEOREM 1.4. Let H = Hasr and ¢ : H — Sp(n,q) be an absolutely irreducible
representation.

(1) If p # 2 then n > 20 and n # 22. In addition, if ¢ #Z 0,£1(mod7) then
n # 24.

(2) Let p =2 and 6 < n < 18. Then n # 10. If n € {8,12,16} then ¢(H)
preserves a quadratic form. In particular, groups Sp(n,q) with q even and n =
8,10,12,16 are not Hurwitz.

(3) Groups Sp(6,q) and QF(10,q) are not Hurwitz for q even.

(4) Assume p = 2 and ¢ Z 1(mod 7). Then n # 12,16, in particular, groups
QT (12,q) and QF(16,q) are not Hurwitz. If n = 18,24 then ¢(H) preserves a
quadratic form. In particular, groups Sp(18,q), Sp(24,q) are not Hurwitz.

THEOREM 1.5. Let p # 2, H = Hozy and ¢ : H — O(n,F) be an irreducible
representation. Then n # 10. In addition, if p = 3 then n # 8,11,14,17 and if
p="7T thenn #9,11,13,16,18. In particular, the corresponding groups Q(n,q) and
QF(n,q) are not Hurwitz.

Theorem 1.5 for p = 3 implies that groups 3D, (3%) are not Hurwitz which
provides a new proof of this fact known from Malle [16].

COROLLARY 1.6. All groups PSp(8,7%), PQ*(8,3%) and PQ*(10,q) are not Hur-
witz.

THEOREM 1.7. Let p # 2,7, H = Hasy and ¢ : H — O(n,q) be an absolutely
irreducible representation.

(1) If ¢ # £1(mod7) then n # 9,11,16,17,18,24. In particular, for these
q groups (n,q) are not Hurwitz for n = 9,11,17 as well as QF(n,q) for n =
16,18, 24.

(2) If g = 0 (mod 3) and q # 3%F then n # 16,18, 23,24. In particular, for these q
groups Q(n, q) forn = 9,11,23 are not Hurwitz as well as Q* (16, q) and Q*(24, q).

Observe that the occurrence of certain values of n in the boxes of Tables 1
and 2 is a consequence of results obtained in [6], especially, the boxes with ¢ =
—1 (mod 3) at the SL(n, ¢)-column and with ¢ = 1 (mod 3) at the SU(n, ¢)-column.
Our computations have been performed independently and therefore confirm the
results of [6]. The case n = 12 known from [6] is included into the tables for reader’s
convenience.

We expect that our results concerning groups SL(n,q), SU(n,q) and Sp(n,q)
are close to being final (but not for the simple quotients of these groups). Ac-
cording to Table 1 the maximum value of n for which some group SL(n,q) or
SU(n,q) is not Hurwitz equals 31 (and equals 38 for SU(n,q) with ¢ even). In
the opposite direction, in [26] it is shown that all groups SL(n,q) are Hurwitz for
n = 49,57,63,64,70,77,85 and many other with n > 90; see also [28]. This is an
additional evidence that small n, say for n < 39, cannot be treated uniformly.

Let Z denote the ring of integers. Lucchini, Tamburini and Wilson [12] prove
that all groups SL(n,Z) with n > 287 are quotients of Has7. Vsemirnov [26] and
Yongzhong Sun [28] extend this result for many other values of n > 48. We have
the following result:

THEOREM 1.8. Groups G = SL(n,Z) are not (2,3,7)-generated for n € {22,23,
24,25, 26,29, 30,31, 32,37, 38} and n < 20.
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Table 1: Values of n > 11, n # 13 for which SL(n, q), SU(n,q) or Sp(n,q)
with q odd are not Hurwitz.

q SL(n, q) SU(n, q) Sp(n, q)
n > 18,
n # 22
g =1 (mod21) < 19,22
¢ = —1(mod21) <19, 22
¢=2,—10(mod21) | < 19,23 12,16,17,18,23,24 24
q¢=—2,10(mod 21) | 12,16,17,18,23,24 | < 19,23 24
¢=4,-5(mod21) | 12,23 < 19,22,23,24,25,31 | 24
q=—4,5(mod21) | < 19,22,23,24, 12, 23 24
25,31
q = 8 (mod 21) 14 12,16, 17, 18
¢ = —8(mod 21) 12,16,17,18 14
q = 35% 14 < 19,22
q = 30F+3 < 19,22 14
q = 30FFT < 19,22,23,24, <16, 23, 25 24
25,31
q = 36FE2 < 16,23,25 <19,22,23,24,25,31 | 24
q¢=0(mod7) <12,17,18 < 19,22

Table 2: Values of n > 11, n # 13 for which SL(n, q), SU(n,q) or Sp(n, q)
with q even are not Hurwitz.

q SL(n, q) SU(n, q) Sp(n, q)

20% < 20,22,23 12, 16

20RET T <17,19,22,23,24,25 | 16,17,18,19,23,24, 31 12, 16, 18, 24

20FE2 116,17, 19, 22, 23 < 20,22,23,24, 25,26, 30, 12, 16, 18, 24
31, 32, 38

20FF3 1 14 16, 17, 18,19,23,24 12, 16

As in [6], our method is based on a theorem of Scott [19, page 491] (see Theo-
rem 2.1 below). Scott himself pointed out that his result can be used for showing
that certain linear groups are not Hurwitz (he provided examples of SL(6,3) and
SL(9,3)). In a more systematic way Theorem 2.1 was used in Tamburini and Vas-
sallo [22] and in Di Martino, Tamburini and Zalesski [6]. In particular, it was shown
in [6] that the groups SL(n,q) and SU(n,q) with n = 5,6,7,10 are not Hurwitz;
however, the potential of Scott’s theorem was not used in full. In this paper we
examine further values of n.

Our method can be outlined as follows. To show that some group H which
contains non-central elements of order 2, 3,7 is not Hurwitz, one could first realize
H as an irreducible matrix group over some algebraically closed field F' obtaining an
FH-module M, say. If H is Hurwitz with Hurwitz generators X,Y’, Scott’s formula
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in Theorem 2.1 provides an essential restriction to the shape of the Jordan normal
form of matrices corresponding to X,Y and XY. Usually, one chooses M to be
a non-trivial module of minimum dimension. However, applying Scott’s theorem
solely to M does not lead to major progress. Other useful modules to be examined
are the adjoint module Hom(M, M) and the symmetric square of M. These have
been used in Di Martino, Tamburini and Zalesski [6] to show that the groups
SL(n,q) and SU(n,q) are not Hurwitz for n = 5,6,7,10. We observe here that,
instead of dealing with an individual finite group H, it is beneficial to deal with
representations of the infinite group Hos7 defined by two generators x,y subject to
relations 22 = y® = (zy)7. If H is Hurwitz, there is a surjective homomorphism
Hs37 — H so every FH-module can be viewed as an F'Hosr-module. The original
question of whether H = SL(n,q) or SU(n,q) is Hurwitz can be replaced by the
question on the existence of an irreducible representation ¢ : Hog7 — GL(n, F') such
that ¢(Has7) does not preserve a symmetric non-degenerate bilinear form, where F
contains the field of g elements. (If ¢ is odd, this is equivalent to saying that H is not
a subgroup of an orthogonal group.) Scott’s formula applies equally to ¢(Hag7) but
now we have a larger store of modules. For instance there is an irreducible F' Hyg7-
module L of dimension 3 while there is no irreducible 3-dimensional SL(n, ¢)-module
for n > 3. This allows us to apply Scott’s formula to F Hozz-module Hom(M, L).
Surprisingly, this eliminates certain options for the conjugacy class choice for the
Hurwitz generators in H = SL(n,q) and H = SU(n,q) with n = 8,9,11,13, and
leads to the conclusion that these H are not Hurwitz.

Let H be as above and Z(H) the center of H. It has to be noticed that the
group H/Z(H) can be Hurwitz but H itself is not. Therefore, one is faced with the
problem of deciding which projective groups PSL(n, q) and PSU(n, q) are Hurwitz
provided H = SL(n,q) and SU(n, q) are not Hurwitz. This happens for n = 2 as
no SL(2, q) with ¢ odd is Hurwitz. Another series of examples is discovered in [25]
for n = 5. Further results on PSL(n,¢) and PSU(n, q) for n < 7 are obtained in a
recent paper [24] (which also contains a few auxiliary facts recorded in Section 2
below).

In Section 2 we describe the method in detail. In Section 3 we list a few irreducible
F Hos7-modules that are particularly useful in our analysis.

In Section 4 we discuss tests for an irreducible F Hyz7-module V' arising in ap-
plying Scott’s theorem to the adjoint module V' ® V as well as to the symmetric
and exterior square of V' (which are submodules of V @ V).

Section 5 contains proofs of the theorems stated in the introduction.

Notation. F always denotes an algebraically closed field of characteristic p > 0.
We denote by M (n, F') the vector space of (n X n)-matrices over F and by GL(n, F')
the group of all non-degenerate matrices. SL(n, F') is the subgroup of GL(n, F') of
matrices of determinant 1. The identity (n x n)-matrix will be denoted by Id or
1,. We denote by S and E the subspaces of M (n, F') constituted by all symmetric
matrices and all alternating matrices, respectively; an alternating matrix is the
same as skew symmetric if p # 2 and as symmetric with zero diagonal if p = 2.
Let V' = F"™ denote the natural M (n, F')-module. We use the standard notation
for classical groups. If A € GL(V) is a subset then V4 denotes the subspace of
all vectors fixed by every element of A, and d* or d(} is the dimension of V4. We
also set C(A) = {M € M(n,F): Ma = aM for all a € A} and c¢{} = dim C(A).
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We use the symbol V for the dual GL(V)-module, and we set dit = dim V4. This
is also used in the representation context: if ¢ : G — GL(V) is a representation
of a group G and A C G then C(A) means C(¢(A)) and the symbols d?(4), di
and c(} carry the obvious meaning. If V' is an F'G-module then the FG-module
Hom(V,V) 2V ® V is called the adjoint module of V. The symmetric and exterior
square of V' is often denoted by S(V) and E(V).

For a matrix ¢t we denote by Jordt¢ the Jordan form of ¢. The Jordan block
of size r with eigenvalue 1 is denoted by J.. We set kJ, = diag(J,,...,Jr) (k
times). We often use friendly notation for Jord A for a unipotent matrix A, namely,
diag(k1J1, kaJo, ..., keJp) where k; is the multiplicity of J; occurring as a con-
stituent of Jord A. Say, diag(2J1,2J3,J4) means the block-diagonal matrix with
Jordan blocks 1,1, J3, Js, Jy at the diagonal. An element ¢t € GL(n, F') is called real
if it is conjugate in GL(n, F') to its inverse. Next we introduce a parametrization of
certain conjugacy classes of GL(n, F') in terms of multiplicity vectors. This is useful
for producing tables and performing computations.

Let A be a diagonalizable matrix such that A' = Id for some [. In this case we
have a natural ordering of the eigenvalues. If we fix a primitive I-root ¢ of 1, then
we order other [-roots as follows: 1 = €Y, ¢, e2,...,e'~1. Another choice of € means
the replacement € — €* where 4 is coprime to [, but we need € to be fixed. If F is
the field of complex numbers then we always fix € to be exp (27i/l) where i? = —1.
The Jordan normal form of A is determined by the string [mg, m, ..., m;_1] where
m; is the multiplicity of € as an eigenvalue of A and some m; may be equal to 0.
We call the string [mg, m1,...,my_1] the multiplicity vector of A.

If A is unipotent then Jord A is determined by the sizes of the Jordan blocks.
However, in some situations it is useful to parametrize unipotent matrices by
multiplicity vectors. To do this, set m; = dim(4 — 1d)'V — dim(A — Id)*+'V
where V' = F"™ is the natural space for A. Clearly, > m; = n. Observe that
mo = dim V — dim(A — Id)V and m; = rank(A — Id)? — rank(A — Id)*** for i > 0.
The string [mg, m1, ..., my—1] is called the multiplicity vector of A. One can check
that m; = Zé’:i-&-l k;. Observe that m; = 0 if 4 is greater than the degree of the
minimum polynomial of A. It is rather obvious that mg > mq > --- > my_1 if Ais
unipotent. One can observe that a unipotent matrix is determined by the very val-

ues {my, ..., m;_1} as their ordering is immaterial (in the sense that the values can
always be reordered to be non-increasing). This allows us to ignore the condition
mg = -+ = my_1 for the coordinates of the multiplicity vector of a unipotent ma-

trix. This will be used for uniformity purposes. For instance, the vector [1, 2] can be
used as a label of the similarity class of the matrix diag(1, —1, —1) if characteristic
p # 2 as well as of the matrix diag(Jy, J2) for p = 2.

The multiplicity vector of A is often denoted by m?. Given a string of matri-
ces Ay, ..., Ay we call [mA, ... mA*] the multiplicity vector of {Ay, ..., A}. For
practical purposes we need to distinguish the parts related to these A;. To make it
easier we usually express the above multiplicity vector as [m41]... [mA*].

If w = (ag,...,a;) and v = (bg,...,b;) are two vectors then the standard inner
product (u,v) is defined to be agbg + - - - + a;b;. We use this for multiplicity vectors.
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2. Some facts on representations

Some results in this section (in particular, Scott’s theorem, 2.1) do not require
F' to be algebraically closed. However, we prefer to hold this assumption as this is
sufficient for our exposition.

We start by stating a theorem of Scott [19]. Let G be any group and V' an FG-

module. We set df, = dim V¢ and d$ = dim VY. Clearly, V9 = V9. For geqd
set df, =n — df, and d} =n —df}. Let V denote the dual module for V.

THEOREM 2.1. (Scott [19, Theorem 1]) Let G be a group generated by elements
J1s---, 9k and set gg11 = g1 - gi. Let V be an FG-module. Then

hyv(gis- .o gk) = d + -+ dif +d —d —dg > 0. (1)

REMARK. This result is stated in [19] with gkjl in place of gx11. However, this is
immaterial as V9 = V9 .

_ It is convenient to us to deal with d{, in place of df,. As df, = n — d{, and
d$ =n — d$}, one can express (1) as

(k—Dn+df +dS —dff —---—dff —dJ* >0. (2)

We set dfG =: (k—1)n—dy} —---—d{¥ —dy}™" and we call dfG the defect of G on
V. The following lemma is obvious.

LEmMA 2.2. (1) dff > —dff —dS.
(2) If V= Vi ® Vs is a direct sum of FG-modules Vi, Va then dfS = df‘g’l + df‘g’;.
(3) Let V4 be a submodule of V and Vo = V/Vi. Then dfG > alf‘g1 —|—df€2. IfV is
the sum of the g;-eigenspaces for everyi=1,...,k+ 1 then dfG = df‘% + df‘g’;.

If k =2, (2) simplifies to
AP+ dfF +dff <n+df + dS. (3)

If V is a non-trivial irreducible G-module (or more generally, V¢ = 0 and VG = 0)
then (2) takes shape

di + -+ d¥ +dYyT < (k= 1)n, (4)

and (3) simplifies to
di} +d? +df <n. (5)

Formula (5) is very useful for deciding whether a particular group G is Hurwitz.
In practice, one starts with a G-module V' of minimal dimension greater than 1.
The efficiency of formula (5) is revealed in full when it applies to several G-modules.
For G being SL(n, q) or SU(n, ¢) the only useful modules turn out to be the natural
one, its symmetric square (the exterior square if p = 2) and the adjoint module.
Another practical way of using Scott’s formula is in applying it to tensor products.
In this case, we have to use the language of representation theory. In the remaining
part of this section we develop some machinery for doing this efficiently.

Let V,W be FG-modules. We set M = Homp(V,W). Recall that the G-action
which turns M into an FG-module is defined as follows. Let g € G, f € M and
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v € V. Define go f € Homp(V,W) by (go f)(v) = gf(g~1(v)). Clearly, go f is a
linear mapping. In addition, for g, h € G we have (gh o f)(v) = ghf(h g~ ')v) =
g((ho f)(g~ ) = (go (ho f))(v).

The following fact is well known. We provide a proof for readers’ convenience.

LEMMA 2.3. Let V,W be FG-modules. Then
dim Hompg(1g, Homp(V, W)) = dim Hompg (V, W).

Proof. Let f € Homp(V,W) and g € G. The mapping sending g € G to the linear
transformation f — g o f is a representation of G. Next, g o f = f means that
gf(g7 (v)) = f(v) for all v € V, so f(g7*(v)) = g~ (f(v)) for all v € V. If this
is true for all g € G, then f is a FFG-module homomorphism. It follows that the
subspace X of G-fixed points on Hompg(V, W) is isomorphic (as a vector space) to
Hompqg(V,W). Clearly, the dimension of X is equal to that of Hompg(1lg, X) and
we are done. O

COROLLARY 2.4. If VW are some FG-modules then Homp(V, W) has no G-fized
point if and only if no quotient module of V' is isomorphic to a non-zero submodule
of W. In particular, this happens if V- and W are irreducible and V' is not isomorphic
to W.

Now we state the following special case of Theorem 2.1 which is particularly
useful for what follows.

PROPOSITION 2.5. Let G = (q1,...,9k) and gx+1 = g1+ gk. Let VW be some
FG-modules and M = Homp(V,W). Set d3; = dim M9 fori=1,...,k+1. Then

A9+ -+ dY + d95 < (k — 1)(dim V)(dim W)
+dim Hompg(V, W) + dim Hompg(W, V).  (6)

If V and W are irreducible and V' is not isomorphic to W then the right-hand side
is (k — 1)(dim V) (dim W).

Proof. The first claim follows from Theorem 2.1 and the second one follows from
Corollary 2.4. [

The case where M = Hom(V,V) = End V is of particular interest. Let A\ : G —
GL(V) be the representation associated with V. As End V' can be identified with
the vector space M (n, F) of all (n x n)-matrices over F, the G-action defined above
can be expressed as gox = grg ! for g € G, v € M(n,F). Then dj, is exactly
the dimension of the vector space C(g) of matrices commuting with A(G). We set
¢}, = d . and similarly denote by c§/ the dimension of the vector space of

matrices commuting elementwise with A\(G). It follows from (6) that
bR < (k- 1)n? 4 2c8. (7)

LEMMA 2.6. IfV is irreducible then

Pt el < (k- 1)n? 2. (8)
Proof. By Schur’s lemma, ¢ = 1 = cg so the result follows from the above. O

https://doi.org/10.1112/51461157000001303 Published online by Ca@®ridge University Press


https://doi.org/10.1112/S1461157000001303

NON-HURWITZ GROUPS

For k = 2, (8) simplifies to
P+ e+ el <n®+2. (9)

We illustrate the use of the Scott’s theorem by providing a new proof of the
following classical fact.

LEMMA 2.7. Let G = (A, B) C GL(n, F) be an irreducible subgroup. Suppose that
the minimum polynomials of A, B are of degree 2. Then n = 2.

Proof. The multiplicity vectors for A and B are of shape [a,n — al, [b,n — b] for
some integers a,b > 0, respectively. So c¢it = a? + (n — a)? > n?/2 and c& > n?/2.
Hence cé + 05 > n?. By formula (9) c{}B < 2. This implies n < 2 as ¢{, > n for

any (n x m)-matrix g. O

DEFINITION 2.8. Let G = {g1,...,9x) and set gx+1 = g1 - - - gk Let L be a field and
A : G — GL(n, F) an absolutely irreducible representation. The value

ri(\) =: (k — 1)712 +9- c{\/(gl) o c{\/(gk) B Ci‘/(gk-%—l)
is called the rigidity index of A. If ri(A) = 0, one says that A is rigid.
So a representation A is rigid if it is irreducible and ri(A) = 0.

The following result (which motivates the term ‘rigid’) goes back to P. Deligne
(see Simpson [17]).

THEOREM 2.9. Let G = {g1,...,9k) and gr+1 = g1~ gr- Let \, p: G — GL(n, F)
be representations such that matriz A(g;) is similar to u(g;) for everyi =1,... k+1.
(1) Suppose that X is rigid. Then u is equivalent to \. (Equivalently, if X and p
are non-equivalent then X\ is not rigid.)
(2) Suppose that X\ is not rigid. Then there exists a representation v : G —
GL(n, F) not equivalent to A such that matrices X(g;) and v(g;) are similar for
everyi=1,...,k+ 1.

Proof (see [21]). We reproduce the proof of (1) here as this emphasizes the role
played by Theorem 2.1. Suppose the contrary. Let V, W be the F'G-modules associ-
ated with A, u, respectively. As V and W are not isomorphic and V' is irreducible, the
right-hand side in (6) is (k—1)n?. As A(g;) is similar to u(g;) fori = 1,...,k+1, the
left hand sides in (6) and in (7) coincide. In addition, they are equal to (k—1)n?+2
as A is rigid. This is a contradiction. O
The following useful result is an immediate consequence of Theorem 2.9.
THEOREM 2.10. Let G = (g1,...,9x) and gx+1 = g1~ gk. Let L be a field and
let X\ : G — GL(n,L) be a rigid representation. Let o be an automorphism of L

extended to GL(n, L) by the standard way. If o preserves the similarity classes of
Ag1), -, Mgr+1) then X is equivalent to a.

This can be used as follows.

THEOREM 2.11. Let G = {¢1,...,9x) and gx+1 = g1 - gk Let L be a finite field
of characteristic p and let \ : G — GL(n, L) be an irreducible rigid representation.
Let K be a proper subfield of L such that every X(g;) fori=1,...,k+ 1 is similar
to a matriz in GL(n, K). Then X is equivalent to a representation into GL(n, K).
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Proof. Let « be a generator of the Galois group of L/K. Observe that « preserves
the similarity class of A(g;) for every i = 1,...,k + 1. Indeed, A(g;) is similar to a
matrix over K so « fixes a GL(n, L)-conjugate of A(g;) hence the similarity class.
By Theorem 2.10, A = a, that is, a(A(g)) = MA(g)M ~* for some M € GL(n, L)
and g € G. Tt follows that the trace t(g) of A(g) is fixed by « for all g € G. By
the Galois theory, t(g) € K for all ¢ € G. As ) is absolutely irreducible (by the
definition of rigidity), the enveloping algebra (A(G)) of G over K is simple and finite,
hence is isomorphic to a matrix algebra M (r, P) for some field P which contains
K (Wedderburn’s theorem). Here r = n as A(G) contains n? linear independent
matrices over L by Burnside’s theorem. As all traces t(g) belong to K, we have
that K = P. O

The following theorem is rather well known.

THEOREM 2.12. Let L and A be as in Theorem 2.11.

(1) Suppose that L has an automorphism of order 2 and let o be the automor-
phism of GL(n, L) extending it. Suppose that every A(g;) for i = 1,...,k+1 is
similar to o(Mg;")). Then X is equivalent to a representation into the unitary
group U(n, L).

(2) Suppose that \(g;) is similar to )\(gi_l) for every i = 1,...,k + 1, that is,
every A(g;) is real. Then \ is equivalent to a representation into either Sp(n, L) or
O(n,L).

Proof. For uniformity of the argument we declare o to be the trivial automor-
phism of GL(n, L) in case (2). For x € GL(n, L) set 2* = o((z7!))T and \*(g) =
a(Mg; )T for g € G. Then * is an involutory automorphism of GL(n, L). There-
fore, g — A*(g) is a representation of G and \** = A. By assumption, the matrices

A*(g;) and A(g;) are similar for every i = 1,...,k + 1 (as every matrix z is similar
to 7). As )\ is rigid, X is equivalent to A* by Theorem 2.9. So the result follows
from [11, Lemma 2.10.15]. O

Set R = M(n, F) and view R as a GL(n, F')-module under the congruence action
(the congruence action is defined by sending each M € R to gMg” for g € GL(n, F)
where g7 stands for the transpose of g). Let V be the natural GL(n, F)-module. We
denote by S = S(V) the GL(n, F))-module of all symmetric bilinear forms on V. It
becomes a GL(n, F')-module if one defines the action of g € GL(n, F) on f(z,y) € S
for z,y € V by (9f)(x,y) = f(g"z,g"y). (Here we use the transpose of g to have
S a left module.) Then S can be identified with the set of all symmetric matrices
viewed as a GL(n, F')-module under the congruence action. Similarly, denote by
E = E(V) the GL(n, F)-module of all alternating bilinear forms on V. If p # 2,
then E can be identified with the set of all skew symmetric matrices viewed as a
GL(n, F)-module under the congruence action. In addition, R = S@® E. If p = 2
then E can be identified with the set of all symmetric matrices with zero diagonal.
It is a classical fact that E is an irreducible GL(n, F')-module and, if p # 2, so
is S. If p = 2 then S/F is irreducible of dimension n and E is a unique minimal
submodule of S and of R. Recall that dim S = n(n+1)/2 and dim E = n(n—1)/2.
Observe that R = M (n, F') as a GL(n, F')-module under the congruence action is
isomorphic to Hom(V, V) = V ® V. Therefore, S is isomorphic to the symmetric
square of V' which is the subspace of V' ® V spanned by v ® v and v ® v/ + v’ ® v
for v,v' € V.
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LEMMA 2.13. Let G C GL(V) be a subgroup which preserves a non-degenerate
bilinear form f on V. Let W be a G-stable subspace of V. Then W = V/W+= (a
G-module isomorphism).

Proof. For u € V define a mapping a,, : V — F as o, (v) = f(u,v). Then oy, € V
and u — ay, is a G-module isomorphism V — V. Observe that the restriction o |w
of a,, to W belongs to W and the kernel of the linear mapping u — oy, |y is W,
(The kernel consists of u such that o, |w = 0, equivalently, f(u, W) = 0.) Hence
V/W+ =W as required. O

The following is well known.

LEMMA 2.14. (1) The dual E of E is isomorphic to E(V).
(2) If p # 2 then the dual S of S is isomorphic to S(V).
3) Ifp=2 then S R/E.

Proof. (1) Define a mapping a : R — R by a(M) = M — M7T for M € R. Then
the image of « belongs to E and the kernel of « coincides with S. (This is true
for p = 2 as well as for p # 2.) By a dimension reason, the image of « coincides
with E. As « is a GL(n, F')-module homomorphism, we have that £ = R/S. As
F is irreducible, so is E. Tt follows that E is a minimal submodule of the dual of
R; that is, of Hom(V,V) = V ® V. However, V ® V contains E(V) as a minimal
submodule. So the result follows.

(2) Similarly, define a mapping 3 : R — R by (M) = M + MT. Then the
image of 3 belongs to S. As p # 2, the kernel of 3 coincides with E. Now a similar
argument yields the result.

(3) Define a non-degenerate bilinear form on R by f(A, B) = Tr(AB) for A, B €
R where Tr stands for the trace of a matrix. The result follows by taking R for V' and
S for W in Lemma 2.13. Indeed, S ={Y e R: Y =Y T} and E={X+ X7 : X €
R}. Hence f(X + XT,Y) = Tr(XY) + Tr(XTY) =0 as Tr(XTY) = Tr(Y XT) =
Tr(XY)T. So f(E,S) = 0. As dim S + dim E = dim R, the result follows. O

REMARK. If p = 2 and n > 3 then S is not isomorphic to S(V). Indeed, in this
case S has an irreducible quotient module isomorphic to F so it has a submodule
of dimension n in contrast with S(V') which has a unique irreducible submodule of
dimension n(n — 1)/2.

LEMMA 2.15. Let G C GL(n, F) be an irreducible subgroup. Then dim S¢ < 1 and
dim B¢ < 1.

Proof. For i = 1,2 let I'; € S and gI';g7 = I; for all g€ G As G 1s irreducible,
each I'; is non-degenerate so Fl_lgfl =(¢") =Ty LgT5. Hence FQF centralizes

G. By Schur’s lemma, I‘gI‘fl is scalar, whence the result. The second claim follows
by the same argument for I'; € E. O

Let K denote the FFG-module of all quadratic forms on V.
LEMMA 2.16. Let n,q be even. Then K 2 R/E = S.
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Proof. Denote by T the subspace of upper triangular matrices in R. Then TNE = 0
and dim T+dim F = n?. Hence T®E = R. A quadratic form @ : F™ — F is defined
for (x1,...,2,)T € F™ by the formula:

2
E Qi + E QR TET]
i

k<l

where a;; € F. Denote by ¢(Q) the upper triangular matrix whose the (k, [)-entries
for k < I are ay. We call ¢(Q) the matrix of . Thus, @ — t(Q) is a bijection
t : K — T. Moreover, t is a vector space isomorphism. For g € GL(n, g) the action
of g on K is defined by (¢Q)(v) = Q(g*v) for v = (z1,...,2,)T € F™. Under this
action K becomes an GL(n, F')-module. To show that the GL(n, F')-modules K
and R/FE are isomorphic, we have to prove that ¢((g(Q)) + gt(Q)g” € E. It suffices
to prove this for Q = xx; with k& < [ as the mapping Q — t(g(Q)) + gt(Q)g”
is linear. Therefore, in this case g(Q)v = (g7 v)i(g%v), = (3, giri) (D2, 9j1%5) =
Zij gikgjizix;. Therefore, the (i, j)-entry of the matrix t(¢(Q)) is girgji + gjrga for
i < j and girgy for ¢ = j. On the other hand, ¢(Q) = Ej;, the matrix with (k,1)-
entry equal to 1 and 0 elsewhere. The (i, j)-entry of gEx g is gir.gji. Therefore, the
diagonal entries of t(g(Q)) and g7t(Q)g € E are the same, while the off-diagonal
entries differ by matrices from E. This proves that K =2 R/E and R/E = S by
Lemma 2.14(3). O

LEMMA 2.17. Let p =2 and let G be an irreducible subgroup of GL(n,q) where n,q
are even.

(1) dim K¢ < 1.

(2) If G preserves a symmetric bilinear form and preserves no quadratic form
then dim K€ = 0 and dim K€ =1 (equivalently, dim SG =0 and dim S = 1).

Proof. (1) Observe that K contains a submodule L formed by the squares of the
linear forms on V. Clearly, dim L = n and L is irreducible. So dim K/L = n(n—1)/2.
The kernel of the polarization mapping 7 (which sends every @ € K to the bilinear
form Q(u+v) 4+ Q(u) + Q(v) for u,v € V)) coincides with L. Therefore, K/L = E.
As L is irreducible, LN K% = 0. So dim K¢ = dim7(K ). As n(K%) C B¢ C §¢
and dim S¢ < 1 by Lemma 2.15, the result follows.

(2) Tt is obvious that dim K¢ = 0. As K = S, the assertion follows from Lemma
2.15. O

PROPOSITION 2.18. Let G = (g1,...,9%x) C GL(n, F) be an irreducible group and
set gk+1 = g1+ gk Let V.= F™ and let S be the set of all symmetric matrices
in M(n, F) viewed as an FG-module under the congruence action. For g € G set
d% = dim S9 and df§ = (k —1)dim S —d% —--- —dF*".

(1) dim B¢ = dim ES < 1. If p # 2 then dim S = (k — 1) dim S€ < 1; if p = 2
then S = 0 implies S¢ = 0.

(2) df§ > —2 and df§ > —2.

(3) If G preserves no symmetric bilinear form then dfg > 0; if p = 2 then,
additionally, df$ > 0. If p # 2 and G preserves no skew symmetric form then
dfg > 0.

(4) If p = 2 and G preserves a symmetric bilinear form but no quadratic form
then dim S¢ = 0 and dfg > —1.
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Proof. (1) As G is irreducible on V, it is irreducible on V. By Lemma 2.15,
dim E€ < 1 and dim S¢ < 1. By Lemma 2.14, dim E¢ < 1. If dim ES or dim E€
equals 1 then G preserves a symplectic form on V; hence V is a self-dual G-module.
Then dim E¢ = dim E¢ = 1. Let p # 2. The equality dim S = 1 means that G
preserves a symmetric bilinear form f on V. As G is irreducible, f is non-degenerate.
Let I' be the matrix of f relative to some basis so I is non-degenerate and gI'g” =T
for all g € G. Then I'"'gT" = (¢7)~! which implies that V is a selfdual FG-module,
that is, V & V. By Lemma 2.14, S = S so dim S¢ = 1. The proof of the converse
is similar. Let p = 2. It is well known that K¢ # 0 implies that S¢ # 0 (see also
the proof of Lemma 2.17(1)). As § = K by Lemma 2.16, the result follows.

(2) By formula (3) applied to S we have that df§ > — dim S¢ —dim S, and the
right-hand side is not less than —2 by Lemma 2.15, Lemma 2.14 (for p # 2) and
Lemma 2.17 (for p = 2). Similarly, — dim ES — dim E¢ > —2 by Lemmas 2.15 and
2.14.

(3) By formula (3) applied to S we have df§ +dim S +dim S¢ > 0. As S¢ =0,
by (1) we have S¢ = 0 and the result follows. If p = 2 then E C S so S¢ = 0
implies E¢ = 0. By Lemma 2.14, E = E(V) hence E¢ = 0, and (3) applied to E
yields the result.

(4) As § = K (Lemma 2.16), we have S¢ = K¢ = 0 and dim S¢ = 1. So the
result follows from Lemma 2.2. O

Verifying formulas for S from items (2), (3), (4) of Proposition 2.18 for a given
multiplicity vector is called the symmetric test, and verifying those for E is called
the exterior test. We refer to them as Ts and Ty, respectively. To be precise, if G
is irreducible then we have:
af§ > —2
df§ >0 if G preserves no non-degenerate symmetric bilinear form,
dfg > —1 if p=2 and G preserves a non-degenerate alternating

bilinear form, and no quadratic form.

Ts =

Similarly,

drg > -2
Ty = £z
{ dfg >0 if G preserves no skew symmetric bilinear form.

Additionally, verifying formula (8) is called the adjoint test which is refered to as
T4. Computational aspects of this matter for k = 2 are discussed in Section 4.

We shall regularly apply Theorem 2.1 to the FG-module M = Hom(V, W) where
V, W are irreducible FG-modules. Lemma 2.3 gives us the right-hand side values d$;
and d% for formulas (2), (4) and (5) above, that is, with M in place of V. Namely,
d§; = dim Hompg (V, W) and d% = dim Hom g (W, V), because M = Hom(W, V).
We next discuss some aspects of computing the left-hand side. Let ¢ € G with g' = 1
and let A, B be the matrices of the action of g in V, W, respectively. Suppose first
that A, B are diagonalizable with multiplicity vectors m? = [mg',m{,... ,m ]
and m®? = [m&,mP, ..., mP ||, respectively. Then, by the definition of the action of
gon M = Homp(V, W), the multiplicity d$, of eigenvalue 1 of the action of g on M
is Ei;é m#mP. This can be viewed as the inner product of the multiplicity vectors
if one regards them as elements of Q!. Therefore, if we denote by m{, and m{;, the
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multiplicity vectors m* and m® of g on V, W, respectively, then d4, = (m{,, mJ,)
where (, ) is used to denote the inner product.

Furthermore, we show that formula d, = (m{,, m{;,) holds when A, B are unipo-
tent matrices. Let s1 > --- > s and t; = --- > {; be the sizes of the blocks
in the Jordan form of A and B, respectively. Then df, = dim Homp g (V,W) =
Ei’j min{s;, t;}; see, for instance, Humphreys [9, Section 1.2]. One can show that
the right-hand side value is equal to the inner product (m{,,mf;,). To do this, one
can use diagrams Y (A) for the partitions dimV = s1 + -+ + s,. Young diagrams
look like

where the ith row consists of s; boxes. One observes that the coordinates of the
multiplicity vector m“ are exactly the lengths of the columns of Y (A). Next one
can use induction on k to establish the inner product formula.

IfV =W and m{, = [mf,...,m] ] is the multiplicity vector for g then ¢{, =
d9; = >",;(m?)? which is trivial for semisimple matrices but not obvious in general
(of course, this is well known; see for instance [9, Section 1.3]).

In fact, the inner product formula can be extended to arbitrary matrices. For
this, we introduce a notion of a multiplicity function in place of a multiplicity vector.
Let @ € F and A € EndV. Set m}(a) = dim(a - Id —A4)'V — dim(a - Id —A)*+1V
(here we set (a-1d —A)°V = V). Let ZT denote the set of all non-negative integers.
The function m#4 : F — Zt x --- x ZT defined by a — [mg(a),mi(c),..] is
called the multiplicity function for A. This is a generalization of the notion of
a multiplicity vector for unipotent matrices, and, in a sense, it also extends the
notion of a multiplicity vector introduced for semisimple matrices of finite order.
Clearly, m“(a) = 0 if a is not an eigenvalue of A. If A, B are square F-matrices
(not necessarily of the same size), we set (m#,m?) = Y _p(m?(a), mP(a)) =
> aer 2o mi(@)mP (). Obviously, this sum contains only finitely many non-zero
terms. If V' is a G-module, and A is the matrix of the action of ¢ € G on V, we
usually write m? for m*, which will not lead to any confusion as it corresponds to
the traditional convention.

The above argument for unipotent matrices works in the case where each A and
B has only one eigenvalue, common for A and B. As distinct eigenvalues do not
actually interfere, we have the following lemma.

LEMMA 2.19. Let M = Hom(V,W) and g € G. Then d3; = (m{,,m},).

To be more accurate, one can argue as follows. Set V, = {v e V: (A — «-
Id)"v = 0 for some r}. Then Homp g,y (V, W) = > o p Homp g (Va, We) so df, =
dim Homp g, (V, W) = 3° ¢ p dimHomp gy (Va, We) = >, (m7, (o), miy (@)).

IfV =W thencf =3 cp > (mi(a))? as ¢f, = dj, in this case. This yields the
following.

LEMMA 2.20. Let A : G — GL(n, F) be an irreducible representation. Then the
rigidity index is even.
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Proof. By Definition 2.8, ri (\) = —2n? —|—2—|—Zf+11(n —ci\/(q )) so it suffices to show
that n? — c’\v(g) is even for any g € G. Let [ml, . ml] be the multiplicity function

of g. Then my +---+m; =n and cj, Ma) m + e+ ml2 =n?— QZK]‘ mymyj. [
The following well known fact is used many times without a reference, especially
in the cases where ¢ is semisimple.

LEMMA 2.21. Let g € GL(n, F) and let k be the degree of the minimum polynomial
of g. Then ¢9 < n?/k.

Proof. Let m9(a) = [mg(«),...] be the multiplicity function of g. Then ¢ =
>aer 2i(mi(@))?. Observe that k is equal to the number of non-zero terms in
this sum. (Indeed, the minimum polynomial of g makes shape I, (z — a)*> where
ko is the maximum size of a Jordan block of g with eigenvalue «. In addition,
m;(a) = dim(a - Id —g)*V — dim(« - Id —g)**1V which is non-zero if and only if
i+ 1 < kq. So the claim follows.) Recall that ) > mi(a) = n. So the lemma
follows from the well known inequalities 5 22 > (z; + --- + x3)%/k for real
numbers x1,...,Tk. O

The notion of a multiplicity vector (function) can be extended to strings of
matrices. Say, if Ap,...,A; is a string of (n x n)-matrices over F, we define
the multiplicity vector (function) mAv-4x for the string to be [mA1, ... mA*].
If By,...,By is a string of (I x l)-matrices over F' with the same k, then we set
(mAvo Ak mBroBry = Zle(mA mPi). This can be used when V,W are G-
modules and Al, B are the matrices of the action of g; € G on V, W, respectively.
We also write m{; for méi in this and similar situations.

If V,W are irreducible and non-isomorphic then formula (6) can be expressed as

k+1
T Z(m?;, miy) < (k—1)(dim V)(dim W), (10)
i=1
and we often omit the superscript g1,...,gk+1. If V=2 W then

k+1 k+1

ZCV = Z m¥,mii) < (k—1)(dim V)2 + 2. (11)

Verifying formula (10) for some actual irreducible FG-module W and a virtual
irreducible FG-module V' with given multiplicity vector is called the tensor test.
This complements the adjoint test, symmetric test and exterior test for V' discussed
above. They are used as conditions of the non-existence of V' when we argue by the
way of contradiction. If formula (10) holds, we say that V passes the tensor test
with W, otherwise we say that V' fails the tensor test with W which means that
we have a contradiction, and hence V' does not exist. If V, W are not assumed to
be non-isomorphic then failing formula (10) means that V, W must be isomorphic.
One observes that this is exactly the argument establishing Theorem 2.9(1). Of
course if V' is an actual FG-module, it passes every test. As tests examine only
the multiplicity vector [mf},.. m{'/’““] failing the test means that there is no
irreducible F'G-module V' with thls multiplicity vector.
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ExXAMPLE. Let G = Hay37. Lemmas 3.7 (p # 2,7) and 3.8 (p # 2,3) produce
irreducible FG-modules W with multiplicity vector [4,2][2, 2,2][0,1,1,1,1,1,1] and
(3,4][1,3,3][1,1,1,1,1, 1, 1], respectively. It is easy to check that formula (10) yields
that 2d}, < dim V +d}’ and dim V' < df, +2d},. These complement Scott’s formula
(5) which says that d{, +d{, + dj’ < dimV.

Section 3 provides further examples of F'Hozz-modules, and the tables given in
Appendix B record more formulas, similar to those in the above example.

A multiplicity vector (function) is called basic if it is not the sum of the mul-
tiplicity vectors (functions) of actual representations of G. A representation (and
corresponding module) is called basic if its multiplicity vector (function) is basic.

Let U, V, W be irreducible FG-modules with multiplicity vectors (functions)
my, my, my, respectively. Suppose that my = my + myy. Obviously, if some
module N passes the tensor tests with V, W then it passes the test with U. There-
fore, such U is not useful for testing. Thus, the only representations useful for tensor
tests are basic. Obviously, if ¢ = p ® 7 is basic then p and 7 are basic. There is a
connection between basic and rigid representations:

LEMMA 2.22. (1) Ewvery rigid representation is basic.
(2) If a multiplicity vector is not basic, it has to pass every tensor test.

Proof. (1) Suppose that R is a rigid FG-module. By the way of contradiction,
let My,...,M; be non-zero irreducible FG-modules such that mp = > myy;.
Then (mpr,,mg) < (b — 1)(dim M;)(dim R) by formula (10). Hence (mp,mpg) <
(k —1)(dim R)(dim R) while the rigidity requires (mg, mg) = (k — 1)(dim R)? + 2.

(2) This is obvious. O

The tensor product of two representations p, 7 can be a rigid representation; see
Lemmas 3.12, 3.14 and 3.15 below. We show in Theorem 2.26 that if p ® 7 is rigid
then both p, 7 are rigid. For this we need a few preparatory observations.

Let C' = (g) be a cyclic group, let p : C' — GL(n, F) be a representation and
set m9 = mP9) for the multiplicity function of p(g). Let V be the natural module
for GL(n, F) and set H = Homp(V,V). If « is an eigenvalue of g on H, we set
Hy,={r€H:(g—a-1d)*x =0 for some k = k(z)}.

We denote by p9 the multiplicity function of g on Hom(V, V). Thus, p9(a) =
(@), uf(a),..] for a € F. Hence p§(1) = ¢9 is the dimension of the 1-eigenspace
of g on Hom(V, V).

LEMMA 2.23. Let o € F. Then pf (o) < pd(a) < pd(1) = 9.

Proof. The first inequality is well known. Express p(g) = DU where D is diag-
onalizable and U is a unipotent matrix such that DU = UD. Then H, is ex-
actly the a-eigenspace of D on H. Hence H, = @®gcpHom(Vg,Vag) is an FC-
module isomorphism (the sum is finite as V3 = 0 if 5 is not an eigenvalue of
D). Let m(B) = [mo(B), m1(B),...] denote the multiplicity vector of Uly,. By
Lemma 2.19, the dimension of the 1-eigenspace of U on Hom(Vg, V) is equal to
(m(B), m(afB)) so uf(a), the dimension of the 1-eigenspace of U on H,, is equal to
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>_; m;(B)m;(apB). Therefore, pg(1), the dimension of the 1-eigenspace of g on H,
is equal to > 5> m;(B)m;(aB). If a =1 then this is equal to 35 >~ (m; (8))2. So

1 (1) = pg (e Z Z m; (B Z Z m;(B)m;(a3)

:fZZmJ —m;(af))?
as 35 30, (m(8))° = 325 32 (mj (). O

Let 7 be another irreducible representation of C' realized in a module W.

LEMMA 2.24. Let V,W be FC-modules.

(1) FC-modules Homp(V@ W,V @ W) and Homp(V ® V) @ Homp (W, W)) are
isomorphic.

(2) Let p?, ™9 uP@79) denote the multiplicity functions of g on Hom(V, V),
Hom(W, W) and Hom(V @ W,V @ W), respectively. Then

pED D (1) =3 (0 (), 179 ().

«
Proof. The following F'C-modules are known to be isomorphic:

Hom(VeW,VeWw), (VeW)eV,W), (VaV)eWaW),

Hom(V,V) @ Hom(W, W), Hom(Hom(V, V'), Hom(W, W)),

where the latter isomorphism is due to the fact that Hom(W, W) is self-dual. This
implies that u{®79(1) = @9, where M = Hom(Hom(V, V), Hom(W, W)). B
Lemma 2.19, d5, = >__ (19(a), u™9(a)).

LEMMA 2.25. M(P®T)(g)( 1) < nQ/f(g)( 1).
Proof. By Lemmas 2.24 and 2.23
Mép@r)(g)(l) = Z(ug(a), 19 (@) < Zug(amg(m(l).

e [e3

As > p9(a) = n?, the lemma follows. O

THEOREM 2.26. Let p, T be non-equivalent irreducible representations of a group
G={q1,---,9k) and gp+1 = g1 - gk. Suppose that pQ 7 is rigid. Then p and T are
rigid.

Proof. Let n = dimp and n’ = dim 7. Then

k1
(k — 1)n? Zu(f@f)(gy < n? ZM (95)
by Lemma 2.25, whence n?((k — 1)(n')? — Z’;ill ug(gj)(l)) < —2. Therefore,
k41
(n')2(k = 1) =Y ug ™ (1) < 0.
j=1
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The left-hand side is even (Lemma 2.20), and is not less than —2 by Lemma 2.6 as
7 is irreducible. So the equality holds, which means that 7 is rigid. By symmetry,
S0 is p. O

LEMMA 2.27. Suppose that g € GL(n, F) preserves a non-degenerate bilinear form f.
(1) g is real; in addition, if n is odd and det g =1 then 1 is an eigenvalue of g.
(2) Suppose that g is semisimple; then n — d9 is even.

(3) Suppose that g is unipotent and Jord g = diag(k1J1, koo, ... kpJ.). If f is
alternating then k; are even for i odd; if p # 2 and f is symmetric then k; are even
for i even.

Proof. (1) Let X be the Gram matrix of f associated to the standard basis in F™,
and let g7 denote the transpose of g. Then g7 Xg = X. As X is non-degenerate,
it follows that g is similar to (¢g7)~1. It is well known that g and g7 are similar
matrices. Hence det(g —Id) = det(g~! — Id) = det(Id —g) det g~ ! as detg = 1. If n
is odd, det(g — Id) = 0 and the result follows.

(2) Set W = V9, that is, W is the 1-eigenspace for g and d9 = dim W. Then W
is non-degenerate, that is, W N W+ = 0 so g fixes no non-zero vector on W+. By
(1), dim W+ is even, whence the result.

(3) See [20, Chapter TV-E.2.10]. O

THEOREM 2.28. Let q be even, H = Hag7 and let ¢ : H — Sp(n, q) be an irreducible
representation. Then n # 10. If n = 8,12 or 16 then ¢(H) preserves a quadratic
form. In particular, groups Sp(8,q), Sp(10,q), Q*(10,q), Sp(12,q) and Sp(16, q)
with q even are not Hurwitz.

Proof. Suppose the contrary. By Lemma 2.27, elements ¢(y) and ¢(zy) are real.
Therefore, the multiplicity vector for ¢(x), ¢(y), ¢(xy) can be expressed as [a,n—a]
[n—2b,b,b] [mo, m1, ma, m3, ms, ma, my]. Recall that QdZ(I) =n(n+1)—2a(n—a)
whose minimum value is attained by a = n/2 and is equal to n(n + 2)/2. Similarly,
2d%5Y) = n(n+1)—2b(2n+1)+6b% and 2d2"™) = (n—2my —2my —2mg) (n—2m, —
2mgy — 2mg + 1) + 2m? + 2m3 + 2m2. One can check that the minimum values for
A2 and %Y are (12,6), (19,9), (26,12), (46,20) for n = 8,10, 12, 16, respectively.
It follows that that the minimum of clf‘s25 =dim S — dg(x) — da;(y) — dg(xy) is equal to
—2,-3,—2, -2, respectively. If n = 10 then dfs = —3 which violates Proposition
2.18(3). If n = 8,12, 16, this contradicts Proposition 2.18(3). O

Recall that Ji denotes the Jordan block of size k with eigenvalue 1.

LEMMA 2.29. Let [,m be integers such that 1 <1 < m < p. The Jordan form of
J; ® J, is described as follows.

(i) If L +m < p then Jord(J; ® Jy,) = diag(Jmt1-1, JTmt1-3, - - - » Jm—141);
(ii) If I + m > p and m < p then
Jord(J; @ Jy,) = diag(Jp, - - -, Jps Jop—m—i—1, J2p—1—m—3, - - - s J—141),
where J, is repeated m + [ — p times;
(iii) If m = p then Jord(J; ® J,) = diag(Jp, . .., Jp), where J,, is repeated | times.
Proof. See [7, Theorem VIII.2.7]. O
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3.  Exzamples of rigid representations

In this section we denote by H the group defined by two generators &,y subject
to relations * = [72,y] = y® = (Zy)” = 1. Then the mapping & — x, y — y extends
to a homomorphism H — Has7. The kernel of this homomorphism is Z(H) (it is
well known that Z(H) = 1).

As above, F' is an algebraically closed field of characteristic p. If p # 3 then we
fix a primitive 3-root w of 1, and if p # 7 then we fix some primitive 7-root € of 1.
Recall that p = p if (7,p% — p) # 1 and p = p® otherwise.

We shall often use the following fact without a reference.

LEMMA 3.1. (1) Group H (and Has7) coincides with its commutator subgroup. This
is also true for every Hurwitz group.

(2) If ¢ is a linear representation of H (or a Hurwitz group), then all matrices
in the image of ¢ have determinant 1.

LEMMA 3.2. Let G = (z,y) € GL(n, F) be irreducible and x* € Z(G), y* € Z(G).
Then the dimension of each eigenspace of y does not exceed n/2, while the dimension
of each eigenspace of x does not exceed 2n/3.

Proof. Let W be an eigenspace of . Then W NyW Ny?W = 0 as it is G-stable. It
follows that dim W < 2n/3. Similarly, if W is an eigenspace of y, then WNaW = 0,
hence dim W < n/2. O

LEMMA 3.3. (1) If p # 7 then there are exactly 3 equivalence classes of irreducible
representations H — GL(2, F).
(2) If p =T then all irreducible representations H — GL(2, F) are equivalent.
(~3) Let ¢ : H — GL(2,F) be an irreducible representation and p > 0. Then
¢(H) = SL(2,p).

Proof. Let p # 7. Let C1,C5, C: be the similarity classes of matrices diag(i, —i),
diag(w,w™!) and diag(e,e1), respectively. It is well known and can be easily ob-
served that there are matrices A € Cy, B € C5 such that AB € C.. Then the
mapping & — A, y € B extends to a homomorphism X\, : H — GL(2,F). By
Lemma 3.1, \. is irreducible. Obviously, A, is rigid so it is unique up to equivalence
(Theorem 2.9). In addition, As, A.z and A.s are pairwise non-equivalent as their
characters are distinct. Let A be an arbitrary irreducible representation of H in
GL(2,F). Then A\(H) € SL(2, F) by Lemma 3.1. Hence A(#y) belongs to C., C.»
or C.s, and A\(Z) € C1, AMy) € Co. By Theorem 2.9, A is equivalent to A, A2 or
Aes.

(2) In this case let C3 be the similarity class containing Jo. A similar argument
works. As there is a single similarity class of elements of order 7 in GL(2, F'), all
irreducible representations H— GL(2, F') are equivalent.

(3) By Theorem 2.11, A(H) is similar to a subgroup of SL(2,7). Using the clas-
sification of finite groups of (2 x 2)-matrices (consult, for instance [8]) one observes
that SL(2,P) contains no proper irreducible subgroups containing an element of
order 7. O

REMARKS. (1) Item (3) in Lemma 3.3 is a theorem of Macbeath [14].
(2) Below we hold symbols A., A\.2 and A.s to denote the representations in item
(1) of the lemma.
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LEMMA 3.4. Let G = SL(2,p™) and let p,, denote the natural F-representation of
G in the space of homogeneous polynomials in two variables of degree n — 1 (so
dim p,, = n). Assume 2 < n < p.

(1) pp is irreducible.

(2) pn(G) preserves a symmetric bilinear form if n is odd, otherwise it preserves
a skew symmetric bilinear form.

(3) Let v denote the Frobenius (or field) automorphism of SL(2,p™) obtained
Jrom the mappingy — yP fory € Fym. Let 1 < k < m. Then pi®7kpj 1s wrreducible.

Proof. This is well known. (1) and (3) is a particular case of Steinberg [18, Theorem
49]). As every element of SL(2, F') conjugate to its inverse, the characters of p,, and
of its dual coincide. Hence p,, is self-dual. As p,(Id) = Id for n odd, (3) follows
from [18, Lemma 79]. O

LEMMA 3.5. Let G = GL(2, F). Let p, denote the natural F-representation of G
in the space of homogeneous polynomials of degree n — 1 (so dim p,, = n). Assume
2<n<p.

(1) The representation py, is irreducible.

(2) Fori=1,2,3 let A\ be the representation H — GL(2, F) defined in Lemma
3.3. Then the representation py\ei : H — GL(n, F) is irreducible. If n < 6, it is
rigid.

(3) For p # 7 and for each n = 3,4,5 the representations ppAzi with i =1,2,3
are pairwise non-equivalent.

(4) If n is odd, ppA.i is trivial on T
Hjs7.

2 50 it can be viewed as a representation of

Proof. By Lemma 3.4(1), p,(SL(2,p)) is irreducible for n < p. This implies (1). As
Aot (H) = SL(2,7), (2) follows. Rigidity in (2) is a matter of a simple computation.
(3) is implied by the fact that the character values of Zy for ¢ = 1,2, 3 are distinct
for each n < 6. (4) is obvious. O

REMARK. p3 and ps can be viewed as representations of PSL(2, q).

LEMMA 3.6. (1) Let p # 7 and H = Has7. Then H has rigid representations ¢1, ¢a
of dimension 3 whose multiplicity vectors are

[1,2][1,1,1][0,1,1,0,1,0,0] and [1,2][1,1,1][0,0,0,1,0,1,1],
respectively, if p # 2; otherwise,

[2,1][1,1,1][0,1,1,0,1,0,0] and [2,1][1,1,1][0,0,0,1,0,1,1].

In addition, ¢;(H) = SL(3,2) = PSL(2,7) for i = 1,2 and ¢;(H) preserves no
symmetric bilinear form.

(2) Let p # 2,7. Then H has rigid representations 1,2 of dimension 4 with
multiplicity vectors

[0,2,0,2][2,1,1][1,1,1,0,1,0,0] and [0,2,0,2][2,1,1][1,0,0,1,0,1,1],

respectively. In addition, ¥;(H) = SL(2,7) for i = 1,2 and ;(H) preserves no
symmetric bilinear form.
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Proof. Let G = SL(2,7) and let a,b € G be such that a®> € Z(G) v* = 1 and
(ab)” = 1. Group G has irreducible representations ¢}, ¢4, of dimension 3, and 1},
¥4 in dimension 4 with the above multiplicity vectors for a, b, ab. This can be seen
by inspection of the Brauer character table (see [1] and [2]) unless a or b is of order
p. Let ¢1,02 and v, ¥y be the representatlons of H obtained from a surjective
homomorphism H — SL(2, 7). If p = 3 then ?® < 3 and ¥i® <6 fori=1,2
by formula (11). This implies that Jord ¢.(b) = J3 and Jord ¢;(b) = diag(Js, 1) for
i =1,2. The case p = 2 occurs only in (1), where diag(1, J3) is the only option for
Jordy’(a). So the lemma follows. O

REMARKS. (1) The case p = 7 is considered in Lemma 3.5.
(2) Recall that Jord ¢;(%) = diag(i, 4, —i, —i) where i> = —1 and the multiplicity
vector of 1;(Z) is [0,2,0, 2] according to our convention.

LEMMA 3.7. Let p # 2,7 and let H = Hozy. Then H has a rigid representation m
of degree 6 with multiplicity vector [4,2](2,2,2][0,1,1,1,1,1,1]. In addition, w(H)
preserves a symmetric bilinear form and w(H) = SL(3,2).

Proof. Let G = SL(3,2). If p # 2,7 then G has an irreducible representation
7 of degree 6 and 7(G) preserves a symmetric bilinear form; see [2]. As G is a
quotient group of H, 7 can be regarded as a representation of H. If p # 3 then
7 is not modular and the lemma follows by inspection of the character of 7 in
[1]. Let p = 3 and let S be a Sylow 3-subgroup of G. As |S| = 3, a complex
irreducible representation of degree 6 is of defect 0, hence it remains irreducible
under reduction modulo 3. The representation obtained is equivalent to 7 as 7 is
unique. The restriction to S of a modular representation of defect 0 is a direct sum
of the regular representation of S. This means that Jord 7(y) = diag(Js, J3), and
the result follows. O

LEMMA 3.8. Let p # 2 and let H = Hyzy. Then H has a rigid representation
0 of degree T with multiplicity vector [3,4][1,3,3][1,1,1,1,1,1,1] if p # 3, and
(3,4][3,3,1][1,1,1,1,1,1,1] for p = 3. In addition, o(H) preserves a symmetric
bilinear form and 6(H) = SL(2, 8).

Proof. Let G = SL(2,8). If p # 2,3 then G has an irreducible representation 6 of
degree 7 whose Brauer character value at elements of order 3 is equal to —2; see
[2]. As G is a quotient group of Hazr, 6 can be viewed as a representation of H. If
p # 3,7 then 6 is not modular so the lemma follows by inspection of the character
of 6 in [1]. Let p = 7 and let S be a Sylow 7-subgroup of G. As |S| = 7, all four
complex irreducible representations of degree 7 are of defect 0. Hence G has four
7-modular irreducible representations of defect 0. The restrictions to S of each of
them is the regular representation of S. It follows that Jord §(XY) = J7 and the
result follows.

Let p = 3. Sylow 3-subgroups of G are cyclic of order 9. Let ¢ € G be of
order 9. It follows from the theory of representations of groups with cyclic Sylow
p-subgroup [7, Ch. VII] that Jord 8(t) = Jz; see [29, Lemma 2.2]. Then Jord 6(t3) =
diag(Js, Jo, J2). As y is conjugate to t3 in G, the result follows.

The fact that 6 preserves a symmetric bilinear form is recorded in [2]. O

REMARK. The group G = SL(2,8) has no irreducible representation of dimension
7 in characteristic 2.
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LEMMA 3.9. Assume p # 3 and let H = Haz7. Then H has rigid representations
o1, o9 of degree 13 whose multiplicity vectors are [7,6][4,6,3][1,2,2,2,2,2,2]
and [7,6][4,3,6][1,2,2,2,2,2,2], respectively, for p # 7; if p = 7 then they are
[7,6][4,6,3][2,2,2,2,2,2,1] and [7,6][4,3,6][2,2,2,2,2,2,1]. In addition, o;(H) for
i = 1,2 preserves no symmetric bilinear form and o;(H) = PSL(2,27).

Proof. Let G = PSL(2,27). Let h : Ha37 — G be a surjective homomorphism
and let X = h(z), Y = h(y). Suppose first that F = C. Then G has two irre-
ducible representation o1, 09 of degree 13. Let x1, x2 be their characters. Reorder-
ing o1 and o3 if necessary, by [1] we observe that x1(X) =1, x1(XY) = —1 and
x1(Y) = 3(-1+3v=3) = 1+ 3w, x1(Y?) = 1+ 3w? where w = (-1 + /=3).
In addition, x2(Y™) = x1(Y?™) for m = 1,2 and the values of y» at X and XY
are the same. The eigenvalue multiplicities of of X, Y and XY can be obtained
from computations with the characters of cyclic groups (X), (Y), (XY), respec-
tively. This yields the result on multiplicity vectors. In fact, G has an irreducible
representation of dimension 13 in any characteristic not equal to 3 (see [2]), and the
Brauer character values on p’-elements of G coincide with the complex character
values. Therefore, the Jordan form of p’-elements and their multiplicity vectors are
the same as in the complex number case. Let p = 2. The multiplicity vector for X is
of shape [a, 13 —a] where a > 7. So ¢X = a®+(13—a)? > 85 with equality for a = 7,
and the value is greater for ¢ > 7. Then XY +6XY = X186 > 85486 = 132+2.
Scott’s formula implies that a = 7.

Let p = 7. Here ¢X +¢Y = 146 so Scott’s formula implies that ¢X¥ < 171 —146 =
25. As |XY]| = 7, the Jordan form of XY has no block of size greater than 7. If
the multiplicity vector of XY is [2,2,2,2,2,2,1] then ¢XY = 25 and for all other
multiplicity vectors this value is greater. Therefore, [2,2,2,2,2,2,1] is the only
option, and the rigidity follows. Clearly, Jord XY = diag(J7, Jg). O

LEMMA 3.10. Let Gy, Go be finite simple groups and X C G1XGa a proper subgroup.
Let m; : X — G; denote the natural projections. Suppose that m;(X) = G;. Then
X=2G1 =Gy and 7r27rf1 : Gy — Gs is an isomorphism o : G1 — Gs.

Proof. Set K; = kerm;. Clearly, K1 N Ko = 1 so m(K2) =& Ky. If Ko # 1 then
7m1(K3) is a non-trivial normal subgroup of G; = m1(X). Therefore, Ko = 1 or
m1(K2) = G1. In the latter case |X| = |G1| - |G2] so X = G1 x Ga. Therefore,
K5 = 1. Similarly, K1 = 1. So G; 2 Gy &£ X and 71,7y are isomorphisms. The
second claim of the lemma is trivial. O

LEMMA 3.11. For 1 < i < j < 3 let Aoi : Haygr — SL(2,p) be as in Lemma
3.3. Define \; : Hazy — PSL(2,p) to be \.: followed by the projection SL(2,p) —
PSL(2,p). In Lemma 3.10 specify G1 = G5 = PSL(2,p) where (p> —1,7) # 1 and
X = {(Xl(h),xj(h)) che H237}. Then X = Gy x Gs.

Proof. The lemma follows from Lemma 3.10 as soon as we show that 7 := \;\; Lis
not an isomorphism. Let C; be the conjugacy class in PSL(2, p) corresponding to the
matrices diag(e?,e7%) for 1 < i < 3. It is well known that every automorphism « of
PSL(2, p) is obtained from an inner automorphism of PGL(2, p). Hence « preserves
C; in contrast with 7. So the result follows. O
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LEMMA 3.12. Fori=1,2letp# 7 and let p > n; > 1 be integers. Set a1 = pp, Aes
and g = PpyAck where 1<j<k<3and A, A\x are as in Lemma 3.3. Then
0 = a1 ® as is an irreducible representation of H. In addition, if G = = [(H)
and G = G/Z(G) then G = PSL(2,p%) if p = p® and G = PSL(2,p) x PSL(2,p)
otherwise.

Proof. As a;(H)/Z(c;(H)) = PSL(2,p), one observes that 3(H)/Z(B(H)) is con-
tained in the direct product PSL(2,p) x PSL(2, ). Suppose first that p = p. Observe
that a;(H) can be viewed as p,, (G;) where G; = SL(2,p). Then S(H) is a homo-
morphic image of C; X G5 by Lemma 3.11. So (H) can be obtained as an external
tensor product of irreducible representations of GGy and Gs. It is well known that
such a representation is irreducible.

Let p = p3. Let v denote the Frobenius (or field) automorphism of SL(2,p?)
obtained from the mapping y — y? for y € Fjs. Then A = v*\.; for some a €
{1,2} so the kernels of these representations coincide. Hence (3 is a representation
of SL(2, p*) inflated to H. Tt is irreducible (see, for instance Steinberg [18, Theorem

49]) and B(H)/Z(B(H)) = PSL(2,p?). -

We say that G is a central product of groups G1,Gs if G = (G x G2)/Z where
7 is a subgroup of Z(G; x G2). Below, we use this term only if G is not a direct
product of non-trivial subgroups.

LEMMA 3.13. Assume p # 7 and let Ao, A2, and )\53 be representations of H
introduced in the proof of Lemma 3.3. For 1 < i < j < 3 set \jj = Aot @ M.
Then \;; are ordinary irreducible representations of Has7. They are rigid and non-
equivalent to each other, and each \;; preserves a symmetric bilinear form. In
addition, N\i;(H) = PSL(2,p®) if p = p® and \ijj = SL(2,p) o SL(2,p) (a central
product) otherwise.

Proof. Observe that \;;(Z%) = Id. Therefore \;; can be viewed as a representation of
Hys7. We show first that these representations are irreducible. Suppose the contrary.
It is easy to see that the eigenvalues of A;;(Zy) are gtii oL 1. Therefore, in view of
Lemma 3.1, A;; has no trivial composition factor. If p # 2, A;; has no composition
factor of dimension 2 as Ho37 has no irreducible representation of dimension 2; see
Lemma 3.3. Let p = 2. Observe that the Jordan form of y in each representation
is diag(1,1,w,w™1). If a, 3 are the composition factors then deta(y) = 1 and
det 5(y) = 1, hence either a(y) = Id or 3(y) = Id. This is impossible, by Lemma
3.1. As the characters of \;; are distinct, they are not equivalent. The multiplicity
vector v of A1z is [2,2][2,1,1][0,1,0,1,1,0,1] so the rigidity follows as (v,v) = 18.
Other cases are similar. Choosing a suitable basis in F'? one can assume that \.:
preserves a skew symmetric bilinear form with Gram matrix I' = ( % ;) provided
that p # 2. Then \.: ® A.; preserves a symmetric bilinear form with Gram matrix
I'eT. If p=2, replace —1 by 1 with the same conclusion.

The additional claim follows from Lemma 3.12. [

LEMMA 3.14. Let H = Hoyzy.
(1) Let p # 2,3,7. Then H has rigid F-representations vy, va, v3 of degree 8 with
multiplicity vectors
[4,4][2,3,3][0,2,1,1,1,1,2], [4,4][2,3,3][0,1,2,1,1,2,1],
[4,4][2,3,3][0,1,1,2,2,1,1],
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respectively. In addition, v;(H) preserves a symmetric bilinear form and v;(H) =
SL(2,p) if p # D and a central product SL(2,p) o SL(2,p) otherwise.

(2) Let p # 2,7. Then H has rigid F-representations 7;; (1 <i<3,j=1,2) of
degree 8 with multiplicity vectors

[4,4][2,3,3][1,2,1,2,0,1,1], [4,4][2,3,3][1,0,2,1,1,1,2],
[4,4]2,3,3][1,1,0,1,2,2,1], [4,4][2,3,3][1,1,1,0,2,1,2],
[4,4][2,3,3][1,2,1,1,1,2,0], [4,4][2,3,3][1,1,2,2,1,0,1].

(If p = 3, one has to replace [2,3,3] by [3,3,2].) In addition, ,;(H) = PSL(2,p)
0SL(2,7) (a central product) and 7;;(H) preserves no symmetric bilinear form.

(3) Let p = 2. Group H has rigid F-representations o;; (1 <1< 3,j =1,2) of
degree 6 with multiplicity vectors

3,3][2,2,2][1,1,1,2,0,1,0], [3,3][2,2,2][1,0,1,0,2,1,1],
3,3][2,2,2][1,0,1,1,1,0,2], [3,3][2,2,2][1,2,0,1,1,1,0],
3,3][2,2,2][1,1,0,0,1,2,1], [3,3][2,2,2][1,1,2,1,0,0,1].

In addition,o;;(H) = SL(2,8) x SL(3,2) and 0;;(H) preserves no non-zero bilinear
form.

Proof. (1) Set v; = psXi ® A; where 1 < ¢ < 3 and with j = ¢+ 1 (mod 3). Then
vi(Z (I~{ )) = Id so v; can be viewed as a representation of H. The multiplicity vector
of the representation v; is computed straightforward. The assertion on the structure
of v;(H) follows from Lemma 3.12. By Lemma 3.4, ps\;(H) and \;(H) preserves
a skew symmetric bilinear forms with matrices I'1, ', say. Then v; preserves a
symmetric bilinear forms with matrix 'y ® I's.

(2) Let Aoi (1 <i<3)and; (1 <j<2) berepresentations defined in Lemmas
3.3 and 3.6, respectively. Let G = SL(2,7) and Gy 22 SL(2,7). Then A\ (H) = G,
and 1; (fNI) = Gg. Set T = Ai ® 95 so dim7;; = 8. Then Tij(ﬁ) is contained in
a quotient group of G7 X Gs. In fact, A\, can be viewed as a representation of G
and 1; as a representation of G3. Therefore, Tij(l:l ) is contained in the external
tensor product ;i ® 1); viewed as a representation of Gy X Ga. This is well known
to be irreducible. The image G =: (A.i ® ¥;)(G1 x G2) is isomorphic to G 0 G2, a
central product of these groups, as the center of G is of order 2 and G has subgroups
isomorphic to G1 and Go.

As 7;;(%?) is the identity matrix, 7;; is actually a representation of Hasz. It is
not hard to observe that G; o Gy has no proper Hurwitz subgroup. So the claim
on images follows. The shape of the multiplicity vectors is the matter of a simple
computation unless p = 3. In this case Jord \;(y) = J2 and Jord ¢ (y) = diag(J1, J3).
Then Jord7;;(y) = diag(Js, Js,J2). This corresponds to the multiplicity vector
(3,3,2]. So the rigidity index of 7;; is equal to 0 (see Definition 2.8) hence 7;; is
rigid. Obviously, 7;; is not self-dual, hence 7;;(H) preserves no non-zero bilinear

form.
(3) Asin (2), set 0;; = Aoi ® ¢; where ¢; for 1 < j < 2 is introduced in Lemma
3.6. The same argument as in (2) yields the result. O
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LEMMA 3.15. Let p # 2,7. Then Hogz7 has rigid representations 0, (1 < m < 6) of
dimension 9 with multiplicity vectors

5,4][3,3,3][1,2,2,2,1,1,0], [5,4][3,3,3][1,1,2,1,2,0,2],
5,4]3,3,3][1,1,2,2,0,1,2], [5,4][3,3,3][1,2,0,2,1,2,1],

[5,4][3,3,3],1,2,1,0,2,2,1], [5,4][3,3,3],[1,0,1,1,2,2,2].

In addition, the image of each representation preserves no symmetric bilinear form
and it is isomorphic to PSL(2,p) x SL(3,2).

Proof. We set 1;; = p3A @ ¢; where ps).: for ¢ = 1,2,3 are as in Lemma 3.5
and ¢; for j = 1,2 are as in Lemma 3.6. Set G1 = PSL(2,p) and G2 = SL(3,2).
As psA.i(H) = G and ¢;(H) = Gg, we see that n,;(H) € Gy x Gs. In fact, we
have the equality here, as otherwise 7;;(H) would be a proper Hurwitz subgroup
of G1 x Ga. These are only G; and Gs; however, 7;;(H) is none of them.

If p # 3 then the shape of multiplicity vectors is the matter of elementary
computation. If p = 3 then the Jordan form of psA.i(y) is J5 as well as of ¢,(y).
Therefore, Jordn;;(y) = Jord(Js ® Js) which is known to be diag(Js, J3, J3). The
multiplicity vector for this matrix is [3,3,3]. So the rigidity index of 7;; is equal
to 0 (in the sense of Definition 2.8) hence 7;; is rigid. As n;; is irreducible and not
self-dual, 1;;(Has7 preserves no non-zero bilinear form. O

The results of this section are collected in Appendix A (Tables A-1, A-2, A-3,
A-4). They are used to produce Tables B-1, B-2, B-3, B-4 (Appendix B) as follows.
Let ¢ : Hazy — GL(n, F) be an irreducible representation realized in a module
V. Express the multiplicity vec- tor m" of ¢(z), é(y), ¢(zy) as [a,n — a],[n — b —
¢, b, c], [mg, m1, ma, mg, mg, ms, mg] where mgo—+- - -+mz = n. Let W be the module
associated with a representation constructed in the above lemmas, and let m" be
the corresponding multiplicity vector. Then we use formula (10) to produce the
entries of Tables B-1, etc.

EXAMPLE. Let W be the module associated with the representation in Lemma
3.6(1) for p # 2,7 so m" =[1,2][1,1,1][0,1,1,0,1,0,0]. Then formula (10) gives:

a+2n—a)+(n—b—c)+b+c+mi+ma+my<3n

which coincides with Ty in Table B-1 and T} in Table B-3. If p = 2 then mW =
[2,1][1,1,1] [0,1,1,0,1,0,0] which similarly gives 77 in Table B-2.

The condition in Tables B-1 to B-4 at the column headed ‘warning’ reminds
the reader to be careful when the multiplicity vector on test is of the dimension
indicated. One can use the test provided modules V and W are not isomorphic.
To illustrate this, we show that the alternating group Az is not Hurwitz. Indeed,
it has an irreducible complex representation of degree 6 and one can easily observe
that the multiplicity vector of a triple of elements of order 2,3,7 in A7 can only be
[4,2][2,2,2][0,1,1,1,1,1,1]. This contradicts T} which can be used for testing here
as the test has been obtained from a representation 6 with 0(Has7) = SL(3, 2).

We conclude this section by reminding the reader of some known examples of
Hurwitz matrix groups of small dimensions. In particular, groups of Lie type G2(q)
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are Hurwitz for every ¢ > 4 (Malle [15]) as well as their twisted versions 2G(q)
with ¢ = 3?"*! and m > 1 (Jones [10]). They have 7-dimensional irreducible
representations over the field of ¢ elements if ¢ is odd. If ¢ is even then G2(g) has
6-dimensional irreducible representations over the field of ¢ elements. In addition,
groups 2Dy(q) with ¢ # 4 and coprime to 3 are Hurwitz and they are realizable by
(8 x 8)-matrices over Fys (see [16]). The representations of Has; extending these
representations are not basic (see the definition prior to Lemma 2.22). Therefore,
they are useless for performing tensor tests. One can compute the multiplicity
vectors of the representations in question. These are (3, 3], [2,2,2], [0,1,1,1,1,1,1]
in dimension 6 with p = 2, [3,4], [3,2,2], [1,1,1,1,1,1,1] in dimension 7 and [4, 4],
2,3,3], [2,1,1,1,1,1,1] in dimension 8.

One can extract from [23] a list of sporadic simple groups known to be Hurwitz.
These are Ji, Jo, He, Ru, Cos, Fige, HN, Ly, Th, Jy, Fij,, and M.

4.  Relationship between df 4, dfs and dfg

Let H = Hasy and let ¢ : H — GL(n, F') be an irreducible representation. Set
G = ¢(H) and let V be the associated F H-module. Of course, V' can be viewed as
an F'G-module. Express the multiplicity vector of the triple ¢(x), ¢(y), ¢(zy) as
follows:

[CL,Tl - a]v [Tl —b— C,b,C], [m03m17m23m37m4;m57m6]~

As in Section 2, S denotes the set of symmetric matrices viewed as a GL(n, F)-
module via the congruence action M — gMg”T for M € S, g € GL(n, F'). Similarly,
FE is the set of skew symmetric matrices, if p # 2, and the set of symmetric matrices
with zero diagonal if p = 2. We denote by A and R the vector space M (n, F') viewed
as an F'G-module under the adjoint and the congruence action, respectively. In other
words, A~V ®V and R¥V ®V. We view S, E, A as H-modules obtained in the
obvious way from V', so dfg , df df!l are their defects defined prior to Lemma 2.2.

LEMMA 4.1.
6
dffl = —n?—2a%>+2n(a + b+ c) — 26> — 2¢2 — 2bc — me (12)
i=0

Proof. This follows from the fact that ¢?(g) for g € H is equal to Y. m? where m;
are the coordinates of the multiplicity vector for ¢(g); see the comments prior to
Lemma 2.19. O

LEMMA 4.2. Let g € GL(n, F).

(1) Let p # 2 and g*> =1d. Then d% = 2d% —n and d% = d%, +n.

(2) Let p # 3, g* = 1d and express the multiplicity vector of g as [d},,b,c]. Then
d% =2d% —di, + (b—c)?.

(3) Suppose that p # 7, g° = 1d and express the multiplicity vector of g as
[d?,,m1, ma2, m3, Mg, m5,mg). Then d% = 2d% — dy, + (m1 —mg)? + (m2 —ms)? +
(m3 —my)?.

Proof. (1) Let a = dy,. Then d% = a® + (n — a)? and 2d% = n® +n —2a(n —a). So
the result follows.
(2) We have d% = (d¥,)>+b*+c? and 2d% = (d},)* +d}, + 2bc, whence the result.
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(3) We have d% = (d%,)2 + 3°0_, m? and 2d% = (%)% + d, 4 2mymeg + 2mams +
2msmy, so the result follows. O

LEMMA 4.3. Let p = 2 and g € GL(n, F). Let Jordg = diag(kyJ1, kaJ2) and let
[a,n — a] be the multiplicity vector for g.

(1) a=ki+ ko, n—a=ks.

(2) d§ = d}, + di, = d}, + a.

(3) dl =n(n+1)2 —a(n —a) and d% = 2d —n.

Proof. (1) is trivial. (2) Let B = {by,...,b,} be the standard basis of F". Then
g is similar to a permutation matrix 7 (that is, 7B = B), and the respective
permutation of B has ko cycles of size 2 and k; = 2a — n fixed points. Let e;;
be the matrix with 1 at the (4, j)-position and 0 elsewhere. Then {e;; +€;; : 1 <
i < j < n}is abasis Bg in E and a basis Bg of S is obtained by adding e;;
for i = 1,...,n. Then 7#Bgn? = Bg and nBgn? = Bg. Observe that 77 =
7! so the action of m on {e;} is isomorphic to the action on B. This implies
(3). It is well known that dim S9 is equal to the number of m-orbits on Bg. This
number does not depend on the ground field so we can compute it by viewing the
Jordan form of 7|g over Q. As Jordgn = diag(Id,, —Id,—_,) we have dim S9 =
(ala+1)+(n—a)in—a+1))/2=n(n+1)/2 —a(n — a), as required for (2). O

LEMMA 4.4. Let g be a unipotent matriz in GL(n, F) and p # 2. Then d% = d%+d¥,.

Proof. As g is unipotent, V and V are isomorphic g-modules. If p # 2 then R =
S @ E is a direct sum of GL(n, F')-modules with respect to the congruence action.
Therefore, d% + df, =d%. AsR=V @V and A=V ®V and g is unipotent, their

restrictions to g are isomorphic g-modules. Therefore, d% = d? + d¥,. O

LEMMA 4.5. Let g € GL(n, F) and g = 1d.
(1) Let p = 3 and Jord g = diag(k1J1, kaJo, k3Js). Then d% = 2d% — df, + ko =
2d‘g—k‘1—k‘3 andd‘%:dg—d%—f—kz:d‘%—kl—kg.

(2) Let p = 7 and JOqub(g) = diag(lil,kQJQ,k3J3,k4J4,]€5J5,]€6J6,]€7J7).
ThendgA:2d%—k:1—k:3—k:5—k7:2df§—d§’/+k2+k4+k6.

Proof. (1) By [6, Lemma 4.3],

]{Il(kl + 1) k3(3k3 + 1)

d% = + kiko + k3 + + kiks + 2koks.

On the other hand, d% = (k1 + k2 + k3)? + (k2 + k3)? + k3, so the result follows.
(2) By [6, Lemma 4.3],

2d% = ki (k1 + 1) + 2k3 + k3(3ks + 1) + 4kj + ks (5ks + 1) + 6kg + k7 (Thr + 1)

7 7 7 7
+2k1 > kj+ 4k > kj+ Gk Y K+ 8ks Y kj + 10ks (kg + k) + 12kgkr.

j=2 j=3 j=4 j=5
On the other hand, d% = 2]7':0(217: y k;)2. So the result follows by expansion of
the above expressions. O

https://doi.org/10.1112/51461157000001303 Published online by CafhBridge University Press


https://doi.org/10.1112/S1461157000001303

NON-HURWITZ GROUPS

PROPOSITION 4.6. (1) Let p # 3,7. Then
df = 2dfF + a2 + a2 — (b— )2 = (my — mg)? — (my — ms)? — (m3 — my)?.

In particular, if p # 3,7 and ¢(y) and ¢(zy) are real then dff = 2dfL + d?}(y) +

(2) Let p=2. Then dff = dff + dft.

(3) Let p #2,3,7. Then dfff = dfH + a0 + a2™".

(4) Let p = 3 and Jord ¢(y) = diag(k1J1, kaJ2, k3J3). Then dfif = 2dfE + k; +
ks +d9™Y) — (my —me)? — (ma —ms)? — (ma—ma)? and dfy = dfg+dfo™ +kr+ks.

(5) Let p = 7 and Jord¢(y) = diag(kiJy1, koo, k3 Js, kaJy, ksJs, keJs, krJ7).
Then dff = 2df# +d2"Y) — (b—¢)2 + ky + ks + ks + k7 and dfff = dftf + dfo"¥ +
ki1 + ks + ks + k7.

Proof. (1) As df = n2—d%™ —a%®) —a%"™ and 2df# = n?+n—2d%" — 245 —
ZdZ(xy), the result for p # 2 follows from Lemma 4.2. If p = 2, use additionally
Lemma 4.3(3).

(2) By Lemma 4.3, dim §*(®) = dim E¢®) 4 a. In addition, dim 5¢®) = d%*) 4
dim E®) and dim (%) = dim E¢@¥) 4 40 As dim S = dim E + n, we have
th?t) dfg¢(: ()iimb; gid)(a:) d¢(y) d<f>(my) — dimE +n — dd;:(:x:) _ d@(z) B d%(y) B
AP —ag — dfY = aff v afl.

(3) If g € G is of odd order coprime to p then dg(g) = d%(g) + d?}(‘g). As d(gm =

d%(w) + n, the claim follows by straightforward computations.
(4), (5) Combine Lemmas 4.2 and 4.5. O

REMARKS. (i) Claim (2) shows that test T's is useless for p = 2, while the formulas
for E in items (3), (4), (5) tell us that T is useless for p # 2.

(ii) Formulas in items (4) and (5) can be easily expressed in terms of multiplicity
vectors. Say, if p=3 thenn —b—c = ki + ko + k3, b = ko + k3 and ¢ = k3 whence
k1 + ks = n—2b. Similarly, if p = 7 then ki + k3 + ks + k7 = mg —m1 +mo —mg +
my —ms +mg =n — 2(m1 + mg + ms).

PROPOSITION 4.7. Suppose that the minimum polynomial of ¢(xy) is of degree at
most 5; then n < 7. Moreover, if p # 2 then n < 6.

Proof. Set X = ¢(x) and Y = ¢(y). Observe first that if n = zq + -+ + x%

(where n is fixed) then % + - -+ 2% > n?/k. (This fact does not require z1, ...,z
to be integers and can be therefore obtained by computing the minimum of the
real variable function f(x1,...,25) = 23 + -+ + 27 subject to the condition that

n =21+ --+x). Therefore, in formula n242 > X +e¥ +¢XY we have ¢X > n2/2,
¥ >n?/3, &Y >n?/5, 50 n? +2 > 31n?/30 whence n? < 60 and n < 8.

As m; are integers, for n = 7 one obtains that ¢X > 25, ¢¥ > 17 and XY > 11,
which sums to 53 > 72 4 2. Similarly, if n = 6 and p # 2, one obtains that ¢X > 20,
c¢¥ > 12 and ¢XY > 8, which sums to 40 > 62 + 2. O

PROPOSITION 4.8. Let p =7 and n > 6. Suppose that the minimum polynomial of
d(xy) is of degree 6. Then ¢(H) preserves a symmetric bilinear form and n = 12.
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Proof. The Jordan form of ¢(zy) has no block of size 7, hence mg = 0. Recall that
mo = M1 = My = M3 = my > ms. We use Table B-4. If n > 5, from TO7 and T we
get 2a+mg < n+ms 5o 2a < n—mo+ms < n. By T{ we have 2(mo+mi+ms) < 2a
50 2(mo+mi+ma) < n =Y. m; hence mg+mi+mg < mz—+my+ms. Therefore,
mg = mp = mg = mg = my = my = n/6 and n = 2a. By the determinant
condition, a is even so n is divisible by 4. Furthermore, n—>b—c<n/3 from T)
and that n — b — ¢ > n/3 from TJ. Hence d®¥) = n/3. It follows that the Jordan

form of ¢(xy) is (mJs) where n = 6m. By Lemma 4.5, dd)(“’) a5 = n2/6;

hence dg(zy) =n?/12. Then
nn+1) nn-+2) nn+3) n? 2

H _ _ _ e n
dfs == 4 18 be-12 =79 "5

Observe that

—bc——<b+c)2+b2+62_ 2w n? dﬁ(y)_ 5n2  d5W
o 2 2 9 18 2 18 2

In addition, d%% < n2+2— d5™ — d%") = n2 42— n2/2 — n2/6 = n?/3 + 2.
Altogether,

n®> n  5n? n?

df§<5—6—§+€+1_—6+1

As dfl > —2, we conclude that n < 18. As n is divisible by 12, we have n = 12.
If ¢(H) preserves no symmetric bilinear form, —n/6 + 1 > dfs 0, which is
impossible. O

For p > 7 we have only a weaker analogue of Proposition 4.8.

PROPOSITION 4.9. Suppose that n > 6,p # 7 and d?}(zy) = 0. Then either n = 12
and ¢(H) preserves a symmetric bilinear form, orn =8, p # 2,3,7 and ¢ is as in

Lemma 3.14(1).

Proof. We use tests from Appendix B. Assume first that p # 2,3,7. By 112 in
Table B-1, 2a < n. If n # 3 then adding T4 to T5 we have that Zi>0 m; =n < 2a.
Hence n = 2a. As n— a is even by the determinant condition, n is divisible by 4. In
addition, n = (my +mg +my) + (ms3 + ms + meg) implies mq + mo +my4 = n/2 and
m3 + ms + mg = n/2 in view of Ty, Ts. Observe that Ty, T7 and Ty are equivalent
ton—b—c<m;+mr_; for i =1,2,3 (as mo = 0). Similarly, T4, T15 and T3¢ are
equivalent to m; +my_; < n—b—c (here we do not need to assume n # 8 as ¢ is not
equivalent to the representations in Lemma 3.14(1)). Hence m; + m7_; = n—b—c.
Summing these over i € {1,2,4}, one obtains 3b + 3¢ = 2n, in particular, n is
divisible by 3 for n # 4,8 and n — b — ¢ = n/3.

Suppose first that ¢(G) preserves no symmetric bilinear form. Then dfg = 0.
This can be expressed as

nn+1) nn+2) nn+3) b2n—3b) m;(n — 3m;)
S T e 3

=0,
1<i<3

whence (6 + 24b)n — n? < 36(b> + m? + m3 + m3). Similarly, (6 + 24c)n — n? <
36(c? +m3 +m2 + m2). Adding these two inequalities, we get

12n + 18n% < 36(d5Y) + d%™¥).
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By T4 we have dﬁ(y) + dz(xy) < n2/2 + 2 50 61 + 9n? < 9n? + 36 which is false for
n > 6.

If (@) is orthogonal then dfff > —2, so the above computation gives 6n+9n?
9n? 4 72; hence n < 12. As n is divisible by 4 and 3, we have n = 12.

Let p = 2. We use Table B-2. If n # 3 then from T}7 and T? we get 2a <
n—mg = n. As p = 2, we always have 2a > n, so n = 2a. In addition, n =
(m1—|—m2—|—m4)—|—(m3—|—m5+m6) implies my+mao+my = n/2 and mg+ms+meg = n/2
in view of T and T2. By T2, T and T2, we have that m; +m7_; <n —b— c and
by T¢, T? and T¢ that n —b—c < m; +mz_; for i = 1,2,3. Hence 3(n—b—c) = n.
The formula for computing dfs makes no difference with that for p > 7, so the
above argument works again and yields that n < 12 and ¢(G) preserves symmetric
bilinear form. As n is divisible by 6, n = 12.

Let p = 3. We use Table B-3. Then 2a < n by T and n < 2a by T and T3. So
n = 2a. As above, n is divisible by 4. In addition, n = (mj + mg + my4) + (ms3 +
ms + mg) implies my + ma + my = n/2 and m3 + ms + mg = n/2 in view of T}
and T3. By Tg, T3 and T§ we have that n — b — ¢ < m; + my_; for i = 1,2,3
and always n < 3(n —b —¢). Hence 3(n —b—¢) = n and b+ ¢ = 2n/3. As
n/3=n—b—c>b>cfor p=3, we have that b = ¢ = n/3. So the Jordan form of
#(y) is (bJ3) and 3b = n. So n is divisible by 12. Observe that T3, T% and T3 are
equivalent to dﬁ(y) —b—c<my+my_; fori=1,23. So m; + m7r—; > n/3.
As >, m; = n, we deduce that m; + m7_; = n/3. As ng( v) — dﬁ(y) + b by Lemma

4.5, we have d[b(y) (n? + n)/6. Therefore,

2
ap = " ED M2 T S = S
1<i<3 1<i<3
However, 32, ;g mimr—; = Zl<z<3(mt +m7_i)?/2 — (21<1<6m2)/2 =n?/6 —
d¢ =4) /2. As d¢ @) + d‘b(y) + dd)(z) <n?+2and d¢(r =n?/2 and d¢(y =n?/3, we
have that dﬁ‘w <n2+2-n%/2—n?/3=n2/6+2 whence 5" /2 < n2/12 + 1.
Therefore, dffl = (n? — 2n)/12 — n2/6 + d3" /2 < —n/6 + 1. If ¢(H) preserves a
symmetric bilinear form that —2 < —n/6+ 1, whence n < 18 so n = 12. Otherwise,
dfg > 0 and n < 6 which is false. O

PROPOSITION 4.10. If d*¥) = 2 (respectively, 1) then n < 12 (respectively, 8). If
d?W) =2 and the minimum polynomial of ¢(xy) is of degree 6 then n < 10.

Proof. Set X = ¢(x) and Y = ¢(y). Observe that ¢X > n?/2, ¢X¥ > n?/7 (see the
proof of Lemma 4.7). By formula (9) ¢V < 24n?—cX —cXY < 245n2/14. Asd¥ =2
(or, respectively, 1), we have ¢¥' > 4 + (n — 2)2/2 (respectively, 1 + (n — 1)2/2)
so 4+ (n—2)2/2 <2+ 5n2/14 (respectively, 1 + (n — 1)?/2 < 2+ 5n?/14). Equiv-
alently, n? — 14n + 28 < 0 (respectively, 2n? — 14n — 7 < 0) whence n < 12
(respectively, n < 8).

For the additional claim, as the minimum polynomial of XY is of degree at
most 6, we have ¢*¥ > n?/6 whence ¢¥' < 2 +n? — ¥ — XY <2+ 1n2/3. So
4+ (n—2)%/2 < 2+n?/3, whence n? — 12n +24 < 0. This implies that n < 10. O

LEMMA 4.11. Let ¢ : Hazy — GL(n, F) be a rigid representation. Suppose that ¢(y)
and ¢(xy) are real. Then ¢(Hazr) preserves a symmetric bilinear form and n < 8.
In addition, n <6 forp=2, andn <7 forp=3 or 7.

N
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Proof. By Lemma 2.12(2), ¢(Hzs7) preserves a non-degenerate symmetric or alter-
nating bilinear form f . Assume n > 2. By Lemma 2.7, the minimum polynomial of
#(y) is of degree 3. In particular, d®®) > 0. As ¢ is rigid, df ¥ = —2. Let p # 3,7. By
Proposition 4.6, 2df 4 +d?W) 4 q¢=y) = _2 whence dffl < —2. By Lemma 2.18, f is
symmetric and df#f = —2. Then d®®) +d¢@¥) = 2. So d®™) = 1 or 2. Let p # 2. By
summing inequalities 737 — Tho in Table B-1 we get n < 6d®¥) 4+ d?@) If d¢W) = 1
then d?(*¥) = 1 and n < 7. (Lemma 3.8 gives an example with d*®) = d*(*¥) = 1
and n = 7.) If d*@) = 2 then d?@¥) = (0 and n < 12. In this case ¢?@¥) > n%/6
and c¢?¥) =4 + (n — 2)?/2 whence n? — 12n + 24 < 0 by formula (9). This implies
n < 9. In fact, n is even as b = ¢ and d*®W =2 Son < 8. (If n = 8, we have an
example [4,4][2,3,3][0,2,1,1,1,1,2] in Lemma 3.14(1).)

Let p = 2. By summing inequalities TZ, T3, T% in Table B-2, we get n <
3d?W) 4 @?v) If d¢W) =1, then d**¥) = 1 and n < 4. If d*®) = 2, then n < 6.

Let p = 3. Let Jord ¢(y) = diag(kJy, ko Jo, k3J3). Then d?¥) = ki + ky + ks,
b = ko + k3, ¢ = k3. By Proposition 4.6, ki + ks + d*@¥) < 2. As the minimum
polynomial of ¢(y) is of degree 3, k3 > 0. Hence k3 = 1 or 2. By summing inequalities
T3, — Tjs, we have that mq+mao+ms+ma+ms+mg < 6¢ = 6ks whence n—mg < 6k3
and n < 6ks +d?@Y) If ks = 1 then ky +d?@¥) < 1 whence n < 7. (See an example
for n =7 in Lemma 3.8.) If k3 = 2 then k1 = 0 and d*@Y) =0 son < 12. As above
we have n < 9. However, n = 2ko + 6 is even hence n < 8. (There is an example for
n =6 in Lemma 3.7 for ks = 2.)

Let p = 7 and let JOI‘d(ﬁ(l‘y) = diag(lil,k‘gJQ,king,k4J4,k‘5J5,]€6J6,k7J7).
Then by Proposition 4.6, ki + ks + ks + k7 + d*®) < 2. In particular, d*®) < 2. If
d®®) =1 then n < 7 by Lemma 4.10. (See Lemma 3.8 for an example for n = 7.)
Let d®®) = 2. Then k; = ks = ks = ky = 0. In particular, k7 = 0 means that the
minimum polynomial of ¢(zy) is of degree at most 6, hence equal to 6 in view of
Lemma 4.7 (provided n > 5). By Lemma 4.10, n < 10 so kg = 1 and then ks < 1.
If n > 6 then ko = 1, n = 8 and Jord ¢(xy) = diag(Js, Js). By Lemma 2.27, f is
symplectic, hence dfg > 0. O

PROPOSITION 4.12. Let H = Hag7 and ¢ : H — GL(n, F') be a rigid representation.
Suppose that ¢(y) and ¢(xy) are real. Then one of the following holds:
(1) n=p=2 and ¢(H) = SL(2,8);

)

Yn =4 and ¢(H) = SL(2,p) o SL(2,p) if p =D and PSL(2,p?) otherwise;
)n=2>5,p>3 and ¢(H) = PSL(2,p);

)n=06,p#2,7 and ¢(H) = SL(3,2);

Yn="7,p#2 and (H) = SL(2,8);

otherwise.

Proof. By Lemma 4.11, n < 8. The existence of the representations in (1) — (7)
follows from Lemma 3.3 for n = 2, Lemma 3.5 for n = 3, Lemma 3.13 for n = 4,
Lemma 3.5 for n = 5, Lemma 3.7 for n = 6, Lemma 3.8 for n = 7 and Lemma 3.14
for n = 8. In order to show that ¢ is one of these representations it suffices to ob-
serve, in view of Theorem 2.10, that the multiplicity vector [m?®®)], [m®®)], [m¢@)]
coincides with a multiplicity vector provided in the above lemmas. This can be
easily done by using the determinant conditions and the adjoint test. Let, say,
n = 6,p # 2. Then [m®®)] = [4,2] or [2,4] so the adjoint test combined with the
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determinant conditions implies [m®®)] = [2,2,2] and [m®@¥)] =[0,1,1,1,1,1,1] if
for p # 7, and [1,1,1,1,1,1,0] for p = 7. The option [m?®®)] = [2,4] contradicts
tests Ty, T and Ty in Tables B-1, B-3 and B-4, respectively. If p = 7, the option
[m?®)] = [4,2] contradicts test 7] in Table B-4, otherwise the multiplicity vector in
question coincides with that in Lemma 3.7. Let n = 6, p = 2. Then [m®®)] could be
[4,2] or [3,3]. At the former case [m?™)] = [2,2,2] and [m?@¥)] = [0,1,1,1,1,1, 1] is
the only option which however contradicts test ¢2 in Table B-2. Let [m‘z’(z ] =1[3,3].
The option [m?®)] = [4,1,1] contradicts the adjoint test, so [m?®¥)] = [2,2,2] by
the determinant condition. As ¢ is rigid, ¢?(*¥) = 8 Wthh cannot hold if ¢(zy) is
real.

For n = 7,8 we can argue similarly, but we wish to provide a more conceptual
argument. By Lemma 4.11, p #£ 2,3, 7 if n = 8 and p # 2 if n = 7. Furthermore, we
have seen in the first paragraph of the proof of Lemma 4.11 that (d®(¥), d®(=¥)) =
(1,1)if n = 7,p # 3 and (2,0) if n = 8. If n = 7,p # 3 then [m?*W)] = [1,3,3]
hence the only option left by the adjoint test and the determinant condition is
[4,3][1,3,3][1,1,1,1,1,1,1] which occurs in Lemma 3.8. If n = 7,p = 3 then k3 = 1
in the proof of Lemma 4.11. It is easy to rule out the option ky = 1 so k&1 = 0
and mo = 1. The adjoint test and the determinant condition left us with the
only option [4,3][3,3,1][1,1,1,1,1,1,1] which occurs in Lemma 3.8. If n = 8 then
[m?®W)] = [2,3,3] and d®(®¥) = 0. Then the result follows from Proposition 4.9. [

5. Non-Hurwitz irreducible groups

In this section we assume that G C GL(n, F) is an irreducible subgroup which
preserves no non-zero quadratic form. This is equivalent to saying that G fixes no
non-zero element of S or that dg = 0 or that G is contained in no orthogonal group.

We start from arbitrary elements X,Y,Z € SL(n, F)) such that X? = Y? =
Z7 =1d and det X = detY = det Z = 1. (The latter condition is often referred as
the determinant condition.) The conjugacy classes of these elements are described
by multiplicity vectors of shape [a,n—a][n—b—c¢, b, ¢, |[mo, m1, ma, m3, My, M5, M)
where mo+- - -+m7 = n. If G = ¢(Has7) is the image of a representation ¢ such that
X =¢(x),Y = ¢(y) and Z = ¢(xy) then the multiplicity vector satisfies conditions
Tx,Ts and Ty as well as the conditions in the tables in Appendix B. Our aim is
to write down all such vectors. So we arrive at the following algorithm. We look
through all multiplicity vectors and discard those which do not satisfy any of the
above condition. Vectors we shall be left with are called admissible. This approach
makes it convenient to say that a vector passes test T4 (or Ts etc.) if it satisfies T4.
Thus, a vector is called admissible if it satisfies the determinant condition and passes
all the tests T'a, Ts and Ty as well as those recorded in Appendix B (which consists
of Tables B-1, B-2, B-3, B-4, depending on p). We emphasize that tests T4, Ts and
Tg consist of applying Scott’s formula to the adjoint module, symmetric square
and exterior square of the representation module V', while the tests in the tables of
Appendix B are produced by applying Scott’s formula to the tensor product of V'
with the modules constructed in Section 3.

ExaMPLE. Vector [2,3][3,1,1][1,1,1,0,0,1, 1] does not satisfy the determinant con-
dition as det X = —1. Vector [3,2][3,1,1][1,1,1,0,0,1,1] does not pass test Ty in
Table B-1.
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Recall that test Tg can be omitted for p # 2 as every vector passed tests Tg
and Ty passes Tg. Similarly, if p = 2 then test T is not useful. This follows from
Proposition 4.6 which describes the dependence between tests Ty, T, Ty and Tg.

The tables in Appendix C-Appendix F list all admissible multiplicity vectors
for certain values of n (according to the value of p). To make the tables shorter we
have been forced to omit the vectors which can be obtained from a vector given in
a table by the substitution w — w? (that is, up to permuting b and ¢) and ¢ — &’
(which is equivalent to permuting mq, mo, ms, m4, ms, mg by powers of (132645)).
(It would be incorrect to use other permutations.)

The above algorithm has been implemented as a computer program, so the tables
in Appendix C-Appendix F have been obtained as the output of the program. In
principle, the necessary computations can be performed manually, as our main
results concern matrices of size at most 40.

Proof of Theorem 1.2. If n = 2 then p = 2 and the result follows from Lemma 3.3.
For n = 3 consult [6, Theorem 1]. For n = 4,5,6,7,10 the result is contained in
[6, Theorem 2], except for the case n = 6, p = 2. Let m" = [a,n —a][n — b —
¢, b, c|[mo, my, ma, ms, ma, ms, mg] be the multiplicity vector of ¢(x), d(y), ¢(xy).
Then it is admissible. For n < 20 the list of admissible vectors is provided by Tables
C-1, D-1, E-1, F-1 (depending on p). These tables contain no entry for n = 10, 11
which tells us that there is no representation in question. In addition, Table D-1
contains no entry for n = 8,9, Table E-1 contains no entry for n = 13,14 and Table
F-1 contains no entry for n = 12,17, 18 which leads to the similar conclusion for
p=2n=89;p=3,n=13,14;and p="T7,n = 8,9,12,17,18.

If p = 2 then the entries in Table D-1 for n = 6,13 are of rigidity index 0. If
p # 2,3 then for n = 8,9 and 13 the entries in Tables C-1 and F-1 are of rigidity
index 0 which tells us that ¢ is rigid if it exists. The existence of ¢ for all the cases
is proved in Section 3. So for these cases the theorem follows from the results of
Section 3. O

REMARK. We do not identify rigid representations of dimension 14 so the question
of their existence remains open.

PROPOSITION 5.1. The group G = PSp(6, 3) is not Hurwitz.

Proof. By [1], G has a complex irreducible representation of dimension 13 whose
image preserves no bilinear form. By Theorem 1.2, GG is not Hurwitz. O

PROPOSITION 5.2. The groups G = Sp(6, q) with q even are not Hurwitz.

Proof. Suppose the contrary. Let ¢ : Hozr — Sp(6,q) be a surjective homomor-
phism and set X = ¢(z), Y = ¢(y). Let V be the natural module for Sp(6, ¢). By
Lemma 2.7 d¥ > 0. So d¥ > 3, d¥ # 1,3 (as Y is real). By formula (5) d¥ < 4. So
d¥ =2, and hence dX¥ < 1by (5). As XY isreal, d*¥ = 0. As cX +c¥ +cXY < 38,
¢¥Y =12 and ¢X > 18, we have that ¢XY < 8. If some eigenvalue ¢ # 1 of XY is of
multiplicity 2 then ¢X¥ > 10. Hence ¢XY = 6 so each eigenvalue is of multiplicity 1
and the multiplicity vector of XY is [0,1,1,1,1,1,1]. By formula 77 in Table B-2,
d* = 3. So the multiplicity vector of X,Y, XY is [3,3][2,2,2][0,1,1,1,1,1,1].

Let F5 be an algebraically closed field of characteristic 2. We first observe that
Sp(6, F3) contains a unique conjugacy class of elements of order 3 and 7 with the
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above multiplicity vector. By Witt’s theorem it suffices to show that there are bases

of Fg with Gram matrix ( 's) such that Y makes shape diag(w,w,1,1,w? w?),

and XY makes shape diag(e,e?,e3,¢%,¢% ¢%)). Indeed, it is easy to observe that
every element g € Sp(6, F'2) of odd order preserves a totally isotropic subspace W
of dimension 3. Moreover, W can be chosen so that under certain basis by, bs, b3 of
W the matrix of Y|y would be diag(w,w, 1) and diag(e,e2, %) for XY |y It is well

known that by, bs, b3 can be complemented to a basis of Fg (called a Witt basis)
with the above Gram matrix. This justifies the claim.

By [1] (see the character table of Sp(6,2)), the conjugacy classes of elements in
classes 3C' and 7A have the above multiplicity vectors. It follows that Y and XY
are conjugate in Sp(6, F') to elements of Sp(6,2) from classes 3C and 7A.

By Steinberg’s theorem [18, Theorem 49|, every irreducible Fy-representation of
Sp(6,2) extends to a representation of Sp(6, F'5) and hence of Sp(6, ¢). In particular,
as Sp(6,2) has an irreducible representation of degree 8 (see [2]), this also true for
Sp(6, F3) and Sp(6, q). Denote the representation of Sp(6,q) of degree 8 by 7. The
trace of 7(Y) equals 2 and the trace of 7(XY') equals 1 as is for the restriction
of 7 to Sp(6,2); see [2]. Therefore, d™¥) = 4 and d"XY) = 2. As d™X) > 4, this
contradicts formula (5). O

The results of the previous sections are valid for almost arbitrary q. Here we
consider more special cases.

DEFINITION 5.3. An element g € GL(n, F') of order 7 (and its conjugacy class) is
called

rational,if p # 7 and g is conjugate in GL(n, F) to g' for 1 <i < 6;
semirational,if p # 7 and g is conjugate in GL(n, F) to g°.

If g € GL(n, F) is unipotent, its conjugacy class always meets GL(n,q) and
U(n,q). The condition for Sp(n,q) and O(n,q) is recorded in Lemma 2.27. If g is
semisimple then the similarity class of g does not always meet G. This depends
on certain conditions on ¢ which can be described in terms of symmetries of the
eigenvalue multiplicities or, equivalently, in terms of symmetries of the multiplicity
vector of g. We only need to state the conditions for g of order 3 or 7. To do this,
we introduce a function s(g) called the symmetry type of g. If |g| = 3, we define
s(g) = 2 if g is real and 1 otherwise. Let |g| = 7. We set s(g) = 6 if g is rational,
otherwise s(g) = 3,2, 1 if g is, respectively, semirational, real or neither of these.

In order to tabulate the information let g,h € GL(n, F) and |g| = 3, |h| = 7.
Table 3 (which is a rearrangement of [6, Table 5]) indicates conditions on s(g), s(h)
which guarantee that the similarity classes of g and h meet G. We use * to express
the absence of any condition; for example, (*,6) means that h is rational, and s(g)
may be 1 or 2. Observe that if [n — b — ¢,b,c] and [mg, m1, ma, mg, mg, ms, mg)
are the multiplicity vectors of g, h, respectively, then the symmetry type of (g, h)
is expressed in terms of these vectors as follows. We have s(g) = 2 if and only if
b = ¢. We have s(h) = 6 if and only if m; = -+ = mg; s(h) = 3 if and only if
my; = mg = my # ms = ms = mg; s(h) =2 if and only if m; = m7_; (i =1,2,3)
but not all m; coincide. In the column headed by Sp(n,q) the entry with — refers
to Lemma 2.27.
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LEMMA 5.4. Let 1 # g,h € G where G € {GL(n,q),U(n,q),Sp(n,q)}. Suppose that
g>=1and h" = 1. Then (s(g),s(h)) takes one of the values indicated in Table 3.

Observe that 26% = 1 (mod 21), 26k*1 = 2 (mod 21), 26¥*2 = 4 (mod 21), 26k+3 =
8 (mod 21), 26#=2 = —5 (mod 21) and 26*~! = —10 (mod 21). Therefore, if g is even
then one has to use only 1st, 3rd, 5th and 7th rows of Table 3.

Table 3: Symmetry types of elements of order 3 and 7 in classical groups.

q GL(n,q) U(n,q) Sp(n, q) and
O(n,q)

¢ = 1 (mod 21) (%, %) (2,2) or (2,6) | (2,2) or (2,6)
g = —1(mod21) (2,2) or (2,6) | (x,%) (2,2) or (2,6)
g=2,-10(mod21) | (2,3) or (2,6) | (x,6) (2,6)
g=—2,10(mod21) | (x,6) (2,3) or (2,6) | (2,6)
q=4,-5(mod21) | (x,3) or (x,6) | (2,6) (2,6)
¢=—4,5(mod21) | (2,6) (+,3) or (+,6) | (2,6)
g = 8 (mod 21) (2,%) (*,2) or (%,6) | (2,2) or (2,6)
¢ = —8(mod 21) (*,2) or (x,6) | (2,%) (2,2) or (2,6)
q = 3% (%, %) (%,2) or (,6) | (—,2) or (—,6)
q = 36k+3 (%,2) or (%,6) | (,%) (—,2) or (—,6)
q = 36kE1 (*,6) (,3) or (%,6) | (—,6)
q = 30k=2 (*,3) or (x,6) | (x,6) (—.6)
g =0(mod7) (%, %) (2,%) (2,-)

Let p # 2,3,7. A vector [a,n — a][n — b — ¢, b, ¢|][mo, m1, ma2, m3, My, M5, mg| 18
called admissible if it passes all tests T - T3g of Table B-1 and tests T4 and Ts. In
order to take account of the symmetry type, we introduce the following notation. For
s€{1,2},and t € {1,2,3,6} we denote by N(s,t) the set of all natural numbers n
such that there is no admissible multiplicity vector which symmetry type is (ks, [t)
for some integers k,l. For instance, n = 12 belongs to N(2,2), N(2,3), N(2,6),
N(1,6), N(1,3) and does not belong to N(1,1) and N(2,1) as for n = 12 the
admissible vectors are of symmetry type (2,1); see Table C-1. Similarly, the entries
for n = 15 are of symmetry type (1,6) or (2,1) so 15 belongs to N(2,6), N(2,2) and
N(2,3) and does not belong to N(1,1), N(2,1), N(1,3) and N(1,6). Observe that
N(s,t) C N(2,6). If p =2 we denote a similar set by Na(s,t). If p =3 or 7, we use
notation N3(%,t) or N7(s,*) for a similar purpose. (We did not define the notion
of similarity type for unipotent elements. So n € N3(x,t) means that there is no
admissible multiplicity vector which symmetry type is (x,lt) for some integer I.)
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In fact, the main use of the tables in Appendix C—Appendix F is for deducing the
following lemma.

LEMMA 5.5. Assume 12 < n

< 40 and n # 13.

(1) Letn € N(2,6). Then n € {12,14,15,16,17, 18,19, 22,23, 24,25, 31}.
(2) Letn € N(1,6). Then n € {12,16,17, 18,23, 24}.
(3) Letn € N(2,3). Thenn <19 orn = 23.
(4) Letn € N(1,3). Then n € {12,23}.
(5) Letn € N(2,2). Then n <19 orn = 22.
(6) Letn e N(1,2). Then n € {12,16,17,18}.
(7) Letn € N(2,1). Then n = 14.
(8) Letn € N3(2,6). Then n < 21 or n € {22,23,24, 25, 26, 30, 31, 32, 38}.
(9) Let n € No(1,6). Then n € {12,16,17,18,19,22, 23,24, 25, 31}.
(10) Let n € N2(2,3). Then n < 18 or n € {19,22,23,24,25}.
(11) Let n € No(1,3). Then n € {12,16,17,19,22,23}.
(12) Letn € N(2,2). Then n <20 orn = 22,23.
(13) Let n € N3(2,1). Then n = 14.
(14) Let n € No(1,2). Then n =12,16,17,18.
(15) Let n € N3(*,6). Then n < 20 orn € {22,23,24,25,31}.
(16) Let n € N5(*,3). Then n < 17 orn € {18,19,22,23,25}.
(17) Let n € N5(*,2). Then n < 20 or n € {22,31}.
(18) Letn € N7(2,%). Then n < 20 or n = 22.

Proof. This is achieved by inspection of the tables in Appendix C—Appendix F. [

REMARK. The restriction n < 40 in Lemma 5.5 is sufficient in order to prove our
results. However, we could show that N(2,6) hence N(s,t) contains no entries for
n > 40.

In order to make transparent the matter of significance of Lemma 5.5 for deter-
mining non-Hurwitz groups, we record the following statement.

LEMMA 5.6. Let ¢ : Hazr — SL(n,q) (respectively, Hazy — SU(n,q)) be an ab-
solutely irreducible representation. Suppose that ¢(H) preserves no non-zero sym-
metric bilinear form. Then n & N(s,t) for N(s,t) positioned in the row with the
above q in the second (respectively, third) column of Table 4. In particular, SL(n, q)
(respectively, SU(n,q)) is not Hurwitz if n € N(s,t).

Proof. The multiplicity vector of ¢(z), ¢(y), ¢(zy) is obviously admissible. As ¢ is
given, its symmetry type (s,t), say, should agree with Table 3. So n & N(s,t) by
the definition of N(s,t). O

Proof of Theorem 1.3. By Lemma 5.6, we only have to determine the sets N(s, ),
Ny(s,t), N3(*,t) and N7(s,*) to fill the appropriate boxes in Tables 1 and 2. This
has been done in Lemma 5.5. O

COROLLARY 5.7. (1) The group SL(n,2) is not Hurwitz for n < 18 and n €
(19,22, 23,24, 25}.

(2) SL(n, 3) is not Hurwitz for n < 20 and n € {22,23,24,25,31}.
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Table 4: Symmetry types and admissible multiplicity vectors.

SL(n,q) | SU(n,q)
q = 1(mod21) odd N(1,1) N(2,2)
¢ = —1(mod21) odd N(2,2) N(1,1)
g =2,—10(mod 21) odd N(2,3) N(1,6)
q = —2,10 (mod 21) odd N(1,6) N(2,3)
q=4,—5(mod21) odd N(1,3) N(2,6)
q = —4,5(mod 21) odd N(2,6) N(1,3)
q =8 (mod21) odd N(2,1) N(1,2)
q = —8(mod 21) odd N(1,2) N(2,1)
q = 3%k Ns(x,1) | N3(x,2)
q=308+3 N3(%,2) | N(x1)
q = 30+ N3 (x,6) N3 (x,3)
q = 36k%2 N3(x,3) | N3(x,6)
¢ =0(mod7) N7(1,%) N7(2, %)
q = 2% =1 (mod 21) No(1,1) | Na(2,2)
q =20kt =2 10 (mod21) | Na(2,3) | Na(1,6)
q=20F*2 =4 —5(mod21) | Na(1,3) | Na(2,6)
q = 26k3 = 8 (mod 21) Ny(2,1) | Na(1,2)

Proof of Theorem 1.4. Set G = ¢(H). Let p # 2,3,7. If ¢ # £1 (mod 7) then the
symmetry type of Hurwitz generators for G is (2,6), otherwise (2,2) or (2,6); see
Table 3. Therefore, n & N(2,6) in the former case and n ¢ N(2,2) in the latter
case. As n is even, this coincides with what is recorded in statement (1) of the
theorem. Let p = 3. Then n & N3(x,2) if ¢ = 33! (which is a power of 27) otherwise
n & N3(%,6). Let p = 7. Then n € N7(2,x*). Of course, in all the cases we have to
choose even n. This implies the theorem for odd p.
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Let p = 2. The case n = 6 has been settled in Proposition 5.2. Part (3) is
contained in Theorem 2.28 which also contains (2) for n = 10. Suppose that ¢ #
1 (mod7) or, equivalently, ¢ = 26**! or ¢ = 26#%2_ Then the multiplicity vector
in question must be of (2,6) symmetry. Inspection of Table D-4 shows that n #
18,24 unless G preserves a quadratic form. (Theorem 2.28 follows from Table D-4
as well.) In addition, we show that ¢ cannot exist if n = 12 or 16. Let m" be
the multiplicity vector of ¢(z), ¢(y), ¢(xy). Let n = 12. Suppose first that m" =
[6,6][4,4,4][0,2,2,2,2,2,2]. Then dfa = 0, 2dfs = df4 — d¥ — d* = —4, dfs = 2,
dfy = 2, dfg = —4 which contradicts Lemma 2.18. The same holds if [6,6] is
replaced by [7,5]. For other choices of m" we have that df4 < —2. Let n = 16.
Suppose first that m" = [8, 8][4, 6, 6][4,2,2,2,2,2,2]. Then df4 = 256 — 128 — 16 —
72 —-16—-24 =0, 2dfs = dfs — d¥ — d* = -8, dfs = —4, which is false. The option
m" = [8,8][6,5,5][4,2,2,2,2,2,2] contradicts T¢. O

REMARK. One can expect that Lemma 2.27(3) is useful to improve these results. In-
deed, one can observe that a few entries of symmetry (2,2) and (2,6) in Appendix E
and Appendix F do not satisfy Lemma 2.27(3). However, this does not affect the
final list of n in Theorem 1.4.

Proof of Theorem 1.5. Table G-1 contains no entry with n = 10. If p = 3 then
Table G-3 contains no entry with n = 8,10,11,14,17. If p = 7 then Table G-5
contains no entry with n = 9,10, 11,13,16, 18. So for these values of n the result
follows. O

Proof of Corollary 1.6. Suppose the contrary. Let first ¢ = 7. By Theorem 1.4,
Sp(8,¢) is not Hurwitz (Theorem 1.4), so there is a surjective homomorphism
H — Sp(8,q) where H is a 2-fold covering of Hasr (see Section 3). This leads
to an irreducible representation 6 : H — Sp(8, F) such that 6(H) = Sp(8, ¢) (where
F is an algebraically closed field of characteristic 7). Let ¢ : H — GL(2, F) be
the representation described in Lemma 3.3(3). Then ¢ ® 0 is an irreducible rep-
resentation of dimension 16. As Z(]EI) belongs to the kernel of ¢ ® 6, this can be
viewed as a representation of Hag7. It is irreducible and (¢ ®0)(H) is isomorphic to
a central product Sp(8, ¢) o SL(2, 7). Observe that 6(H) and ¢(H) preserve bilinear
forms with skew symmetric Gram matrices A, B, say. Hence (¢ ® 0)(H) preserves
a bilinear form with matrix A ® B which is symmetric. This contradicts Theorem
1.5.

Let ¢ = 3*. By Theorem 1.5 groups Q%(8,q) are not Hurwitz. As Q(8,q) is
centerless, we are left with examining the case where there is a surjective represen-
tation 6 : H — Q% (8,¢) C O(8, F). Let ¢ : H — SL(2, F) and 7 = ¢ ® §. As in the
previous paragraph, 7(H) preserves a skew symmetric bilinear form hence 7(H) is
contained in Sp(16, F). As 7(#?) = Id, one can view 7 as a representation of H,
which contradicts Theorem 1.4.

Let n = 10. Let G denote GT = Q%(10,q) or G~ = Q7(10,q). If ¢q is even
then the result is contained in Theorem 1.4(2). Let ¢ be odd. If —Id ¢ G then the
result follows from Theorem 1.5. So assume that —Id € G. Suppose that G/Z(G)
is Hurwitz. Then there is a surjective homomorphism 6 : H — G. Let o : H —

SL(2, F') (as above) and 7 = ¢ ® 0. Then 7(H) preserves a skew symmetric bilinear
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form hence 7(H ) is contained in Sp(20, F'). As above, this contradicts Theorem
1.4(1). (Observe that —Id € G* if ¢ = 1 (mod4), otherwise —Id € G~; see [11,
Proposition 2.5.13].) O

REMARK. For p = 7, Corollary 1.6 can be proved straightforwardly. For this one
has to observe that the Jordan normal form of #(xy) does not have block J7 by
Lemma 2.27. Computing df4 and dfg one gets a contradiction.

Proof of Theorem 1.7. Suppose first that p # 3,7. Then the symmetry type of
the multiplicity vector in question is (2,6). Tables G-1, G-2 contain no entry of
this symmetry for n = 9,11,17,18,24. So the result follows. Let p = 3. Then the
symmetry type is (x,6). Tables G-3 and G-4 contain no entry with (x,6) symmetry
for n = 8,9,10,11,16,17,18,23,24. This yields the result for p = 3. (The values
n = 8,11, 17 have been excluded from the statement as they have already occurred
in Theorem 1.5.) O

Proof of Theorem 1.8. Suppose the contrary. Then SL(n,2) and SL(n,3) are Hur-
witz. By Corollary 5.7, at least one of these groups is not Hurwitz for n < 20,
22 < n <26 and n = 30,31, 32. To treat the other cases let X,Y € G be such that
X% =Y3 = (XY)" =1Id. Let m be the multiplicity vector for the triple X,Y, XY.
Then m is of (2,6) symmetry type, and similarly for X (modp), ¥ (modp) and
XY (modp) for p = 2. If p = 3,7 then the symmetry types are (x,6) and (2, %), re-
spectively. This tells us that SL(n,2) and SL(n, 3) have (2, 3, 7)-generators of (2,6)
and (x,6), respectively. Therefore, the values n = 20, 26,38 can be discarded as
the rows of Tables D-2 and D-3 for n = 20,26 and 38 contain no vector of (2,6)
Ssymietry.

Let n = 29. According to Table C-2, there are exactly 2 options for multiplic-
ity vectors of (2,6)-symmetry type, namely, [13,16][9,10,10][5,4,4,4,4,4,4] and
[15,14][9,10,10][5,4,4, 4,4, 4, 4]. The second option has to be discarded as the rows
of Table E-2 for n = 29 contain no vector of (*,6) symmetry and with the X-entry
[15, 14]. Consider the option with X-entry [13,16]. Then X is conjugate in GL(n, Z)
to a matrix of shape diag(—1,...,-1,1,...,1,M,..., M) where M = ({ ;) and
M,1 or —1 may not occur. Let 7,s,t be the number of occurrences of M, —1
and 1, respectively. Then the multiplicity vector of X is [r + ¢,r + s]. Obviously,
Jord X (mod 2) is diag(rJa, (s + t)J1), and the multiplicity vector of this matrix is
[r4+s+tr]. If [r+¢,r+s] = [13,16] then r + s+t > 16. Hence the multiplicity
vector of X (mod2) cannot be [15,14], which is the only option allowed by Table
D-2.

Let n = 37. Table C-3 gives us the following options for the multiplicity vector,
namely, [17,20] [11,13,13][7,5,5,5,5,5,5], [17,20][13,12,12][7,5,5,5,5,5,5 and
(19,18] [11,13,13] [7,5,5,5,5,5,5]. As [19, 18][11,13,13][7,5,5,5,5, 5, 5] is the only
vector of symmetry (2,6) for n = 37 in Table D-3, we immediately dispose of the
second option, while the first option can be ruled out as was done for n = 29.
Indeed, r + s + ¢ > 20 so the multiplicity vector of X (mod2) cannot be [19,18].
So we are left with the third option. However, the multiplicity vector of X (mod 3)
cannot be [19,18] by Table E-4. O
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6. Tables

Here we explain how to read the tables given below.

In Appendix A, Tables A-1 to A-4 list multiplicity vectors for rigid represen-
tations described in Section 3. It is partitioned into Tables A-1 (p # 2,3,7), A-2
(p=2), A-3 (p=3) and A-4 (p = 7). Recall that p = p if p(p? — 1) is divisible by
7; otherwise p = p°.

Tables B-1 to B-4 of Appendix B list formulas to be satisfied by the multiplicity
vectors of irreducible representations of Ho37. The restriction on n in the 3rd column
is for the reader’s guidance only. In fact, the right restriction is weaker, and can be
extracted from the lemma indicated in the ‘reference’ column.

The tables in Appendix C—Appendix F list admissible multiplicity vectors of cer-
tain dimensions, that is, those which pass the tests T4, Ts, Tk and the tests from
Tables B. (Test T is used only for p = 2; see the remark after Proposition 4.6.) In
all these tables except D-4 passing T's means that dfs > 0 and passing Tr means
that dfg > 0. So the tables are used for showing that Hs37 does not have irreducible
representations with certain multiplicity vectors preserving no symmetric bilinear
form. (See Proposition 2.18 and the comments following it.) In contrast, Table D-4
has been created assuming that test Ts means dfs > —1 and Tg means dfgp > —2.
In addition, we require each multiplicity vector to be of (2,2) or (2,6) symmetry
according with Table 3. Thus, in this case we call a multiplicity vector admissible
‘symplectic’ if it is of (2,2) or (2,6) symmetry and passes tests Ty - T of Table
B-2 and tests T'a, Ts, T. Table D-4 is used for showing that Hs37 does not have
irreducible representations with certain multiplicity vectors in characteristic 2 pre-
serving a symmetric bilinear form and no alternating bilinear form. Observe that
Lemma 2.27 has not been used for producing Table D-4; however, every entry of
this table satisfies Lemma 2.27.

In Appendix G, Tables G-1 to G-5 list admissible ‘orthogonal’ multiplicity vec-
tors. If p # 2, 3,7 then a multiplicity vector

my = [mﬁ(I)][m?;(y)][m@(wy)]
is called admissible ‘orthogonal’ if it is of (2,2) or (2,6) symmetry, passes tests Ty,
To - T and dfs > —2. If p = 3 (respectively, 7) then a multiplicity vector is called
admissible orthogonal if it is of (x,2) (respectively, (2,+)) symmetry, passes tests
Ta, T§ — T, (vespectively, Tg - T2) and dfs > —2 and, additionally, the respective
Jordan form of ¢(y) (respectively, ¢(zy) satisfies the condition of Lemma 2.27.

We observe that the tables in Appendix A in fact contain all rigid irreducible
representations in dimension less than 14. Indeed, if both ¢(y), ¢(xy) are real, this
follows from Proposition 4.12. If ¢(y) or ¢(xy) is not real then ¢(Hazy) preserves
no symmetric bilinear form (Lemma 2.27). Therefore, the multiplicity vector of ¢
is admissible. This means that the multiplicity vector of ¢ appears in the tables
in Appendix C-Appendix F. By inspection of these tables, there are no other ad-
missible multiplicity vector for n < 14 except those in the tables of Appendix A.
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Appendiz: the tables

Appendix A.  Multiplicity vectors for rigid representations of Hozr

Table A-1: 1 <n <13 and p # 2,3,7.

multiplicity vector
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Table A-2: 1 <n <13 and p = 2.
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Table A-4: 1<n<13 andp=1717.

no. dim multiplicity vector image

1 3 [1,2][1,1,1] [1,1,1,0,0,0,0] PSLy(7)

2 5 [3,2] [1,2,2] [1,1,1,1,1,0,0] PSLy(7)

3 7 [3,4][1,3,3] [1,1,1,1,1,1,1] SLy(8)

4 13 [7,6][4,3,6] [2,2,2,2,2,2,1] PSL(2,27)

5 13 [7,6] [4,6,3] [2,2,2,2,2,2,1] PSL(2,27)

Appendix B. Testing inequalities
Table B-1: p #£ 2,3, 7.

ref.  testing inequality warning reference
To a+mog<b+ec n>1  formula (5)
1 mo+mi+mg<a n#3 Lemma 3.5
T, mgo+mo+ms<a n#3 Lemma 3.5
T35 mo+ms+my<a n#3 Lemma 3.5
T, mi1+mo+my < a n#3 Lemma 3.6
s m3+ms+mg<a n#3  Lemma 3.6
Te mi1+mo+ms+mg<b+c n#4 Lemma 3.13
T mpi+ms+ma+mg<b+c n#4 Lemma 3.13
Ts mo+ms+myg+ms <b+c n#4 Lemma 3.13
Ty a+b+e<<n+mg+mg n#bh Lemma 3.5
T a+b+c<n+mg+ms n#>b Lemma 3.5
T1 a+b+c<n+msg+my n#5 Lemma 3.5
T 2a<n+mg n#6 Lemma 3.7
T3 2b+2c<n+a n#T7 Lemma 3.8
Ty b+c+mi+mg<n+mg n#8 Lemma 3.14
Tis b+c+mg+ms<n+mg n#8  Lemma 3.14
Tig b+c+mz+my<n+mg n#8  Lemma 3.14
Ti7 b+c+mi+mzg<n+my n#8 Lemma 3.14
Tig b+c+mo+mg<n+m n#8 Lemma 3.14
Ti9 b+c+myg+ms<n+me n#8 Lemma 3.14
Too b+c+my+mg<n+ms n#38 Lemma 3.14
To1 b+c+mi+ms <n+mg n#8 Lemma 3.14
Too b+c+mg+ms<n+ms n#8 Lemma 3.14
Tos3 a+mi+mg+mg<n+mg n#9 Lemma 3.15
Tou a-+mo+myg+mg<n+ms n#*9 Lemma 3.15
Tos a+mgo+mz+mg<n+my n#9 Lemma 3.15
Tog a-+mq+ms+ms <n+mo n#9 Lemma 3.15
To7 a+mi+mg+ms<n+msg n#9 Lemma 3.15
Togs  a+myg+ms+mg<n+m n#9 Lemma 3.15
Tog a+2c<n+b+myg n# 13 Lemma 3.9
T30 a+2b<n+c+my n# 13 Lemma 3.9
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Table B-2: p = 2.

testing inequality
a+mog<b+ec
b+c+mi+mg<n
b+c+mo+ms<n
b+c+mg+my<n
a+mi+mo+my<n
a-+msg+ms+mg<n
mi+mo+ms+mg<b+c
my+ms+myg+mg<b+c
mo +ms+myg+ms <b+c
mg < my + Mg

my < My + ms

me < M1 + Mms

my < ma +mg

ms < mg + mg3

mo < My + ms
a+2c<n+b+mg
a+2b<n+c+myg

warning
n>1
n+#2
n # 2
n#2
n#3
n#3
n#4
n#4
n#4
n#6
n#6
n#6
n# 6
n#6
n#6
n# 13
n# 13

Table B-3: p = 3.

testing inequality
at+mog<b+ec

mo+mqp +mg < a

mo + me +ms < a

mo +m3+my < a
my1+mo +my < a

ms3 +ms +mg < a
mi1+mo+ms+mg<b+c
mi+ms+my+meg<b+ec
mo +ms+my+ms <b+c
2a < n+mg

n<a+2c

mi1+mg <My +c

mo +mg <M1+ ¢

my +ms < Mo+ ¢

my +mg < M3+ ¢

mi + ms <mg+ ¢

mo +m3g <My + ¢
a—+mq+mo+mg < n+mg
a—+mg+my +meg < n+ms
a—+mo+ms+mg < n+my
a+mip+ms3+ms <n+mo
a+mq+myg+ms <n+msg
a+myg+ms+mg<n+my

warning
n>1
n#3
n#3
n#3
n#3
n#3
n#4
n#4
n#4
n # 6
n#7
n#8
n#8
n#8
n#8
n#8
n#8
n#9
n#9
n#9
n#9
n#9
n#9
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Lemma 3.5
Lemma 3.5
Lemma 3.6
Lemma 3.6
Lemma 3.13
Lemma 3.13
Lemma 3.13
Lemma 3.14
Lemma 3.14
Lemma 3.14
Lemma 3.14
Lemma 3.14
Lemma 3.14
Lemma 3.9
Lemma 3.9

reference
formula (5)
Lemma 3.5
Lemma 3.5
Lemma 3.5
Lemma 3.6
Lemma 3.6
Lemma 3.13
Lemma 3.13
Lemma 3.13
Lemma 3.7
Lemma 3.8
Lemma 3.14
Lemma 3.14
Lemma 3.14
Lemma 3.14
Lemma 3.14
Lemma 3.14
Lemma 3.15
Lemma 3.15
Lemma 3.15
Lemma 3.15
Lemma 3.15
Lemma 3.15
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Table C-1: 1 < n < 20.

ultiplicity vector
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NOTE: In all the tables below we omit multiplicity vectors that can be
obtained from each other by substitutions w — w? and ¢ — €% for 1 < i < 6.

Appendix C.  Admissible multiplicity vectors for p # 2,3,7
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Table C-3: Admissible multiplicity vectors with
(2,6) symmetry for 31 < n < 41.

n
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37

multiplicity vector
[16,16][12,10, 10][2, 5, 5,

[16,16][10, 11,11
[15,18][9, 12,12
[17,16][9, 12,12

[17,16][13, 10, 10

[15,18][11, 11,11

[17,16][11,11,11
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[17,18][9, 13, 13][
[17,18][13,11, 11][
[17,18][11, 12, 12][
[16,20][10, 13, 13][
20, 16][10, 13, 13][
[16,20][12, 12, 12][
[18,18][10, 13, 13][
[18,18][12,12, 12][
[17,20][11, 13, 13][
[17,20][13,12, 12][
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Appendix D.  Admissible multiplicity vectors for p = 2

Table D-1: 1 < n < 20.

symin. type

rid. index

ultiplicity vector

e s T R L i s i S S N N N N N T L e T PN
oA O O O A A A MDA

NN A A A NAA AN~ N~ NN

e e e e N e e e N e e N e e N N e N

SO NONOIFTOOO FOOFON F © © ©

oo mMAa NN mMMmMAaNmMmmamE o N ™
ScHaAN NN NN TGt oy <f o
—oaNNNNN NN BN R
ca~aadadddNnTANR AN 0
HFH AN NN NN NNNN® O NN
—H A AN AN A A A A AN A NN NN
=R T Wac la W War Nor la W I Wor W War W oW Wac Wack

AN O O~~~ 0D OO0 0 OO OO

SN AN SIS FF A F S S TS PSS S

N O O T~T~T=00 00000 00 0 0D DD
273a677777&87878787&&979797979»97979797

shed online by Caf{Bridge University Press

https://doi.org/10.1112/51461157000001303 Publi


https://doi.org/10.1112/S1461157000001303

NON-HURWITZ GROUPS

O© AN AN

Table D-2: Admissible multiplicity vectors

with non-trivial symmetry for 19 < n < 33.

Symm. type

rid. index

multiplicity vector
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Appendix E.  Admissible multiplicity vectors for p = 3

Table E-1: 1 < n < 20.

Symim. type

rid. index

multiplicity vector
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Table E-2: Admissible multiplicity vectors
with symmetries (*,6), (x,3) and (*,2) for 19 < n < 30.

Symi. type

rid. index

multiplicity vector
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[13,14][10, 10, 7][3,4, 4, 4,4, 4, 4]
[13,14][10,9,8][3,4,4,4, 4,4, 4]

[13,14][9,9,9][3,4,4,4,4, 4, 4]

[15,12][9,9,9][3,4,4,4,4, 4, 4]

[15,12][9,9,9][3,3,3,4,3,4,4]

[13,14][9,9,9][5,3,4,4,4, 4, 3]
[14,14][10, 10, 8][4, 4,4, 4, 4,4, 4]
[14,14][10,9,9][4,4,4, 4, 4,4, 4]
[14,14][10, 10, 8][4, 3,4,5,5,4, 3]
[14,14][10,9,9][4,3,4,5,5,4, 3]
[14,14][10, 10, 8][4, 3,5, 4, 4, 5, 3]
[14,14][10,9,9][4,3,5,4, 4,5, 3]
[14,14][10, 10, 8][2,4,4,5,5,4, 4]
[14,14][10,9,9][2,4,4,5,5,4, 4]
(13, 16][10, 10,9][5, 4, 4, 4, 4. 4. 4]
[15,14][11, 10, 8][2,4,4,5,4, 5, 5]
[15,14][11,9,9][2,4,4,5,4,5, 5]
[15,14][10,10,9][2,4,4,5,4,5, 5]
[13,16][10,10,9][3,4,4,5,5,4, 4]
[15,14][11, 10, 8][3,4,4,5,5,4, 4]
[15,14][11,9,9][3,4,4,5,5,4, 4]
[15,14][10,10,9][3,4,4,5,5,4, 4]

12
16
18
14
8
16
18
20
14
16
14
16
12
14
16
10
12
14
14
14
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Table E-3: Admissible multiplicity vectors
with (x,3) and (%,6) symmetry for 29 < n < 34.

multiplicity vector

[14,16][10, 10, 10][6,4, 4, 4, 4,4, 4]
16, 14][10, 10, 10][3, 4,4, 5,4, 5, 5]
[16,14][11, 10, 9][3, 4,4, 5,4, 5, 5]
[16,14][11,11,8][3,4,4,5,4, 5, 5]
[15,16][11,11,9][4,4,4,5,4,5, 5]
[15,16][12,10,9][4,4,4,5,4,5, 5]
[15,16][12,11,8][4,4,4,5,4,5, 5]
[16,16][12,11,9][2,5,5,5,5,5, 5]
16, 16][12, 10, 10][2, 5,5, 5, 5, 5, 5]
[16,16][11, 11, 10][5,4,4, 5,4, 5, 5]
[15,18][12,12,9][3,5,5,5,5, 5, 5]
[17,16][13,11,9][3,5,5,5,5,5, 5]
[15,18][12, 11 10][3,5,5,5,5,5,5]
[17,16][12,12,9][3,5,5,5, 5, 5, 5]
[15,18][11, 11 11][3,5,5,5,5,5,5]
[17,16][13, 10, 10][3,5,5,5, 5,5, 5]
[17,16][12,11,10][3,5,5,5,5,5, 5]
[17,16][11,11,11][3,5,5,5,5,5, 5]

rid. index
18
18
16
12
20
18
14
14
16
24
14
16
18
18
20
18
22
24
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symm. type

(*,6)

*

*

*

*

*

* X ¥

* %

/-\AAA/—\AA/-\/\*/-\/-\/-\AA/—\A/.\
DD WO O W W W W w
T D D D D D D I D D D D

*

EE R

*
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34
34
34
34
34
34
35
35
35
35
35
36
36
36
36
37
37
38
38
38
38
38
38
39
39
39
39
39
39
39
39
39
39
39
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Table E-4: Admissible multiplicity vectors
with (x,6) symmetry for 33 < n < 40.

multiplicity vector
12,11,11][4,5,5,5,5, 5,
12,11, 11
12,12,10
12,12,10

8,16
6,18 ,
8,16

3 )

) ) Y )

6,18

b

)

[18, 16][
[16, 18][
[18,16][
[16, 18][
[16, 18]

6,18][13,11,10][4, 5,

DDA OO OO Oy UL Ut Ut Ut Ut Ut Ut Ot Ot O Ot Ot Ot Ot Ot Ot

16, 18][13,12,9
[17,18][12,12, 11
[17,18][13,11,11
[17,18][13,12,10

[17,18][13,13,9
15,20][12,12,11
18, 18][12,12, 12
16,20][12, 12, 12
16,20][13,12, 11
16,20][13, 13, 10
17,20][13, 12, 12
17,20][13, 13,11

) )

) 9 )

g )

D )

) )

) 9 )

) 9 )

D )

D

) ) )

) ) )

) )

1[4,5,5
1[4,5,5
1[4,5,5
14,5, 5
1[4,5,5
1[5,5,5
[5,5,5
1[5,5,5
1[5,5,5
1[5,5,5
1[6,5,5
1[6,5,5
1[6,5,5
1[6,5,5
1[7,5,5
1[7,5,5
18,20][14, 13, 11][2, 6, 6
[2,6,6
[2,6,6
[2,6,6
[2,6,6
1[2,6,6
13, 6,6
1[3,6,6
1[3,6,6
1[3,6,6
13, 6,6
13,6,6
1[3,6,6
1[3,6,6
1[3,6,6
1[3,6,6
13,6,6

3

18,20][14, 12, 12][2, 6,

18,20][13,13, 12

)

Y

[

[18, 18][

[16,20][

[16,20][

[16,20]

[17,20]]

[17,20]]

[18,20]]

[18,20]]

[18,20]
[20,18][14,13,11
[20,18][14,12,12
[20,18][13,13,12
[19,20][15, 14,10
[19,20]]

[19,20]]

[19,20]]

[19,20]]

[19,20]]

[21, 18][

[21, 18]

[21, 18]

[21, 18][

[21,18]]

) )

) ) 9

) ) 9

Y

19,20][15,13, 11
19,20][14, 14, 11
19,20][15, 12, 12
19,20][14, 13, 12
19,20][13,13, 13

)

D

) ) )

) ) 9

) ) 9

¥

1,18][15,13,11

b

Y

14,14,11
15,12,12
14,13,12
13,13,13

) ) ) )

) ) )

) ) ) )

5,5,5
5,5,5
5,5,5
5,5,5
5,5,5
5,5,5
5,5,5
5,5,5
5,5,5
5,5,5
5,5,5
5,5,5
5,5,5
5,5,5
5,5,5
5,5,5
5,5,5
6,6,6
6,6,6
6,6,6
6,6,6
6,6,6
6,6,6
6,6,6
6,6,6
6,6,6
6,6,6
6,6,6
6,6,6
6,6,6
6,6,6
6,6,6
6,6,6
6,6,6

2
21,18
21,18
21,18
21,18

3 ) ) ) )

rid. index

26
26
24
24
22
18
30
28
26
20
18
32
24
22
18
26
24
16
18
20
16
18
20
16
22
24
24
28
30
18
20
20
24
26
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Appendix F.  Admissible multiplicity vectors for p =7

Table F-1: 1 < n < 26.

symm type

rid. index

multiplicity vector

S OO AN FTANOOANNO FANONWIFFNNOO OANO <
— — — — — —

NN NN B d R momm oo ool eded oo <f <
NN NN B R m oo <t od < ed < < <<
AN AR SR omed ol o od < <f <t < o3 < < < <f
NN AN Aol < < << < <<
[N WorWarWar o War Wae War Mo War Wi W gl B i OB s O e W M s i
IR T S N N o N N N o e SR e B M "e B el e Ml e Ml o e Bl e Bl
- - - - - - - - - - - - - - - o~ r— - o~ — — o~ —
AAFF T IO I SIS LSS G BB ~00 « « -~ ~ -
P Al NS A N N N S Ny
T F I S S E NI S S S b 0L« s
—— e e e e e e e e e e e e e O S I I B m—00,00,00,
S ww o oo oo oo o NN NN NN = N ==
- - - -~ — — — —

Table F-2: Admissible multiplicity vectors with (2,*) symmetry

forp=7 for 25 <n < 31.

rid. index

multiplicity vector

12
12
14
14
14
16
12
18
20
18
16

NN N ? ™ < ™
< ey o < < < <
< < < <
< < < < < <
< o o o < <
< o < <
R e R I s i M B SR o
= =E=)
- - - - - -~ - -~
SoddFH ~FSd .
P A N o S
6,08,06,06,3.55,— &S = —
RSP AP APRPE= g ==
AN <F A<D~ M o — —
R e TR e R o R e B | ~— <f - -
P P P B P S P R S

= T
O © © O b~ D~ D~-D- 00 0
AN AN AN AN AN AN ANANANAN AN
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1010 < 1SS S S S < WS
19 1S 13 18 13 10 18 13 1S S s g

11,11
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LOST A IS S OB
PRI RDRDG I RX,

Appendix G. Admissible orthogonal multiplicity vectors

Table G-1: p #2,3,7 and 6 < n < 19.

NN AN N N N N N N N N N N N N N S S
oo a NN vt NN NN ™™
NaadadadadaadadadadadadadddaSd S

— e e e e e e S e S S e e S e

Symin. type

SN ANANANANIFTFANFHO OO FHO O

rid. index

R N I A S B B A A S BN B S R I BN
VA A AN NN NN NNNNNN e
e o I B IR TN B N o oS B o R S B e B - S~
A A AN NN NNNNNM T Moo
AN NN NN NSNS e
HA A A AN A NN NN NN NS

licity vector

T T O O O O © © 0000000 00D
N O O N T N A S =S
3345566778677889970

Table G-2: Admissible orthogonal multiplicity vectors

with (2,6) symmetry for p #2,3,7 and 18 < n < 32.

rid. index

multiplicity vector
)
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© 3

12
12
13
13
15
15
16
16
18
18

21 [9,12][5,8,8][3,3,3,3,3,3,3] 6

21 [11,10][7,7,7][3,3,3,3,3,3,3] 12

22 [10,12][6, 8, 8][4, 3, 3,3,3, 3, 3] 8

22 [12,10][6,8, 8][4, 3,3, 3,3, 3, 3] 8

22 [10,12][8,7,7][4,3,3,3,3,3,3] 10

23 [11,12][7,8,8][5,3,3,3,3,3,3] 10

25 [13,12][7,9,9][1,4, 4, 4,4, 4, 4] 6

25 [13,12][9, 8, 8][1,4,4,4,4,4,4] 8

26 [12,14][10, 8, 8][2, 4, 4, 4 4,4, 4] 10

26 [14,12][10, 8, 8][2,4, 4,4, 4,4, 4] 10

26 [12,14][8,9,9][2,4,4,4,4, 4, 4] 12

26 [14,12][8,9,9][2,4, 4,4, 4,4, 4] 12

27 [15,12][7,10,10][3,4,4,4,4,4,4] 8

27 [13,14][7,10,10][3,4,4,4,4,4,4] 12

27 [13, 14][11,8,8][3,4 4,4,4,4, 4] 12

27 [15,12][9,9,9][3,4,4,4,4,4,4] 14

27 [13, 14][ 9,9][3,4 4,4,4,4,4] 18

28 [12,16][8,10,10][4,4,4,4,4,4,4] 10

28 [16,12][8,10,10][4,4,4,4,4,4,4] 10

28 [12, 16][10 9,9][4,4,4,4,4,4,4] 12

28 [14,14][8,10,10][4,4,4,4,4, 4, 4] 18

28 [14, 14][10,9, )[4, 4,4, 4,4, 4, 4] 20

29 [15,14][7,11,11][5,4,4, 4,4, 4,4] 10

29 [13,16][11,9,9][5,4,4,4,4,4,4] 14

29 [13,16][ 9,10,10][5,4,4,4,4,4,4] 16

29  [15,14][9,10,10][5,4, 4,4, 4 4,4] 20

30 [14,16][8,11,11][6,4,4,4, 4,4, 4] 12

30 [16,14][8,11,11][6,4,4,4,4,4,4] 12

30 [14,16][10,10,10][6,4,4,4,4,4, 4] 18

31 [15,16][11,10,10][1,5,5,5,5,5, 5] 10

31 [15,16][ 9,11,11][7,4,4,4,4,4,4] 14

Table G-3: p=3 and 6 < n < 19.

multiplicity vector rid. index symm. type
[3,4][3,3,1][1,1,1,1,1,1,1] 0 (*,6)
[3,4][3,2,2][1,1,1,1,1 1,1] 2 (*,6)
[5,4][3,3,3][1,1,1,2,2,1,1] 2 (*,2)
[6, 6][4,4,4][0,2,2,2,2,2,2] 2 (*,6)
[6,6][4,4,4][2,1,2,2,2,2,1] 4 (*,2)
[7,6][5,4,4][1,2,2,2,2,2,2] 4 (*,6)
[7,6][5,5,3][2,1,2,2,2,2,1] 2 (*,6)
[7,8][5,5,5][3,2,2,2,2,2,2] 6 (*,6)
7,8](5,5,5][1,2,2.3,3,2,2] 1 (%2
8, 8][6,6,4][2,2,2,3,3,2,2] 4 (*,2)
8,8][6,5,5][2,2,2,3,3,2,2] 6 (*,2)
[8,10][6,6,6][2,2,3,3,3,3,2] 6 (*,2)
[10, 8][6, 6, 6][2,2, 3, 3,3, 3, 2] 6 (*,2)
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Jordan shape
(J3,2J3)
(2J3, J1)

(3J3)
(4J3)
(4J3)
(33, 2J2)
(5J3)
(5J3)

(4J3,2.J3)

(4J3,2J3)

(4J3,2J3)

(4J3,2J5)
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n
19
19
20
20
21
21
22
22
25
25
26
26
26
26
27
27
27
27
28
28
28
28
29
29
30
31
31

NON-HURWITZ GROUPS

Table G-4: Admissible orthogonal multiplicity vectors

of (x,6) symmetry for p=3 and 18 < n < 32.

O

multiplicity vector

[9,10][7,7,5][1,3,3,3,3,3,3]
19.10[7.6, 6][1,3.3,3.3,3.3

10, 10][8, 6,6][2,3, 3, 3,3,3, 3]
[10,10][8,7,5][2,3,3,3,3,3,3]
[9,12][7,7,7][3,3,3,3,3,3,3]
[11,10][7,7,7][3,3,3,3,3,3,3]
10, 12][8,8,6][4,3,3,3,3,3, 3]
[10,12][8,7,7][4,3,3,3,3,3,3]
[13,12][9,9,7][1,4, 4,4, 4,4, 4]
[13,12][9,8,8][1,4,4,4,4, 4, 4]
[12,14][10,9,7][2,4,4, 4, 4,4, 4]
[14, 16][10,9,7][2,4,4,4, 4,4, 4]
[12,14][10,8,8][2, 4,4, 4, 4,4, 4]
[14,12][10,8,8][2, 4,4, 4, 4,4, 4]
[13,14][11,9,7][3,4,4,4, 4,4, 4]
[13,14][11,8,8][3,4,4,4, 4,4, 4]
[15,12][9,9,9][3,4, 4, 4,4, 4, 4]
[13,14][9,9,9][3,4, 4,4, 4, 4, 4]
[12,16] [10,10,8][4,4,4,4,4,4, 4]
[12,16] [10,9,9][4, 4, 4,4,4,4,4]
[14,14] [10,10,8][4,4,4,4, 4,4, 4]
[14,14] [10,9,9][4,4 4,4,4,4,4]
[13,16] [11,10,8][5,4, 4,4, 4, 4, 4]
[13,16] [11,9,9][5,4,4, 4,4, 4, 4]
[14,16][10, 10, 10][6, 4, 4,4, 4, 4, 4]
[15,16][11,11,9][1,5,5,5,5,5, 5]
[15,16][11, 10, 10][1,5,5,5,5, 5, 5]

rid. index

— —
OOOOOOGJOOOMOOOOOJ@%

10
10
10
12
14
18
20
12
18
20
12
14
18
8
10

Table G-5: p =7 and 6 < n < 20.

multiplicity vector

3,4][1,3,3][1,1,1,1,1,1,1]
[3,4][3,2,2][1,1,1,1,1,1,1]
[4,4][2,3,3][2,1,1,1,1,1,1]
[6,6]4,4,4][2,2,2,2,2,2,0]
[6,6]4,4,4][2,2,2,2,2,1,1]
[6,8][4,5,5][2,2,2,2,2,2,2]
8,6][4,5,5][2,2,2,2,2,2,2]
7,8][5,5,5][3,2,2,2,2,2,2]
9,8][5,6,6][3,3,3,2,2,2,2]
[9,10][5,7,7][3,3,3,3,3,3,1]
[9,10][5,7,7][3,3,3,3,3,2,2]
[9,10][7,6,6][3,3,3,3,3,2,2]
[9,10][7,6,6][3,3,3,3,3,3,1]

)

rid. index

o

S0 DO RN NN

https://doi.org/10.1112/51461157000001303 Published online by Ca8ridge University Press

Jordan shape
(5J3,2J2)
(6J37J1)
(6J3,2J1)

(5J3,2J3, J1)

(7J3)
(7J3)
(6J3,2J3)
(7J33 1)
(7J3,2J3)
(8J3,J1)

(7J3,2J2,J1)

(7J3,2J2,J1)
(8J3,2J1)
(8J3,2J1)

(7J3,2J2,2J7)
(8J3,3J1)

(9J3)
(9J3)
(8J3,2J3)
(93, J1)
(83,275

(9J3, J1)

(873,23, J1)

(9J3,2J3)

(10J3)

(9J3,2J2)

(10]3,J1)

Jordan shape
Jz
Jz
(J7,J1)
(2J6)
(J7,J5)
(2J7)
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