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NON-HURWITZ CLASSICAL GROUPS

R. VINCENT and A.E. ZALESSKI

Abstract

In previous work by Di Martino, Tamburini and Zalesski
[Comm. Algebra 28 (2000) 5383–5404] it is shown that cer-
tain low-dimensional classical groups over finite fields are not
Hurwitz. In this paper the list is extended by adding the spe-
cial linear and special unitary groups in dimensions 8,9,11,13.
We also show that all groups Sp(n, q) are not Hurwitz for q
even and n = 6, 8, 12, 16. In the range 11 < n < 32 many
of these groups are shown to be non-Hurwitz. In addition,
we observe that PSp(6, 3), PΩ±(8, 3k), PΩ±(10, q), Ω(11, 3k),
Ω±(14, 3k), Ω±(16, 7k), Ω(n, 7k) for n = 9, 11, 13, PSp(8, 7k)
are not Hurwitz.

1. Introduction

A finite group H �= 1 is called Hurwitz if it is generated by two elements X,Y
satisfying the conditions X2 = Y 3 = (XY )7 = 1. A long-standing problem is that
of classifying simple Hurwitz groups. The problem has been solved for alternating
groups by Conder [4], and for sporadic groups by several authors with the latest
result by Wilson [27]. It remains open for groups of Lie type and for classical groups.
Quite a lot is known. Groups 3D4(q) for (q, 3) = 1, 2G2(q), G2(q) are Hurwitz with
few exceptions, groups 3D4(3k) are not Hurwitz; see Jones [10] and Malle [15, 16].
Classical groups of large rank are Hurwitz; see [12], [13] and [26]. However many
classical groups of small rank are not Hurwitz [6]. The current state of the problem
and its history is discussed in a survey of Tamburini and Vsemirnov [23]. Formally,
the problems of determining all Hurwitz groups and all non-Hurwitz groups are
equivalent. However, proving that a given group is Hurwitz or non-Hurwitz requires
very different technique. In this paper we focus on proving that certain groups are
not Hurwitz.

We show that Sp(6, q), Sp(8, q), Sp(10, q), Sp(12, q) and Sp(16, q) with q even
are not Hurwitz groups. In addition, groups PSp(6, 3), PΩ±(8, 3k), PΩ±(10, q),
Ω(11, 3k), Ω±(14, 3k), Ω±(16, 7k), Ω(n, 7k) for n = 9, 11, 13, PSp(8, 7k) are not Hur-
witz. We extend the results of [6] by proving that groups SL(n, q) and SU(n, q) are
not Hurwitz for n = 8, 9, 11, 13. If n is coprime to q−1 then SL(n, q) is simple. Simi-
larly, SU(n, q) is simple if n is coprime to q+1. Therefore, these results contribute to
the above problem. In addition, we show that for n ∈ {12, 14, 15, 16, 17, 18, 19, 22, 23,
24, 25, 31} there are infinitely many values of q such that SL(n, q) is not Hurwitz
and there are infinitely many values of q such that SU(n, q) is not Hurwitz; see
Table 1.

Received 30 August 2005, revised 11 March 2006; published 15 March 2007.
2000 Mathematics Subject Classification 20C99, 20D05, 20F38, 20H30, 30F10.
c© 2007, R. Vincent and A.E. Zalesski

LMS J. Comput. Math. 10 (2007) 21–82https://doi.org/10.1112/S1461157000001303 Published online by Cambridge University Press

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/10
https://doi.org/10.1112/S1461157000001303


non-hurwitz groups

Theorem 1.1. (1) Groups SL(n, q) and SU(n, q) are not Hurwitz if n < 14 and
n �= 12 except for SL(2, 8) and SL(3, 2). In addition, groups SL(n, q) and SU(n, q)
are not Hurwitz if q ≡ 0(mod 3) and n = 14 and q ≡ 0(mod 7) and n = 12, 17, 18.

(2) Groups Sp(n, q) with q even are not Hurwitz if n = 6, 8, 10, 12 and n = 16.

Let H237 be the group defined by two generators x, y subject to relations x2 =
y3 = (xy)7. Theorem 1.1 follows from our more general results on representations
of H237. The first is the following (where ◦ denotes a central product).

Theorem 1.2. Let F be an algebraically closed field of characteristic p > 0 and
set H = H237. Let φ : H → GL(n, F ) be an irreducible representation such that
G = φ(H) preserves no symmetric bilinear form on V = Fn. Define p = p if
(7, p3 − p) �= 1 and p = p3 otherwise.

(A) Suppose that p �= 2, 3, 7. Then one of the following holds:
(A1) n > 13 or n = 12;
(A2) n = 3 and G ∼= SL(3, 2);
(A3) n = 8 and G ∼= SL(2, 7) ◦ SL(2, p);
(A4) n = 9 and G ∼= SL(3, 2) × PSL(2, p);
(A5) n = 13 and G ∼= PSL(2, 27).

(B) Suppose that p = 2. Then one of the following holds:
(B1) n > 13 or n = 12;
(B2) n = 3 and G ∼= SL(3, 2);
(B3) n = 6 and G ∼= SL(3, 2) × SL(2, 8);
(B4) n = 13 and G ∼= PSL(2, 27).

(C) Suppose that p = 3. Then one of the following holds:
(C1) n > 14 or n = 12;
(C2) n = 3 and G ∼= SL(3, 2);
(C3) n = 8 and G ∼= SL(2, 7) ◦ SL(2, 27);
(C4) n = 9 and G ∼= SL(3, 2) × PSL(2, 27).

(D) Suppose that p = 7. Then one of the following holds:
(D1) n > 13 and n �= 17, 18;
(D2) n = 13 and G ∼= PSL(2, 27).

In particular, for 3 < n < 12 and n = 13 neither SL(n, q) nor SU(n, q) is Hurwitz.
If n � 7 or n = 10, these results are not new; see [3], [6] and [23].

In the next theorem we assume n > 13 as the cases n � 13, n �= 12 are considered
in Theorem 1.2, and for n = 12 our computations do not extend the results of [6].

Theorem 1.3. Assume that n > 13. Then for the values of (n, q) given in Tables
1 and 2 groups SL(n, q) and SU(n, q) are not Hurwitz.

More generally, let ρ : H237 → GL(n, q) (respectively, H237 → U(n, q)) be an
absolutely irreducible representation and G := ρ(H). If (n, q) appears at the 2nd
column of Table 1 or the 3rd column of Table 2, then G preserves a symmetric
bilinear form.
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Theorem 1.4. Let H = H237 and φ : H → Sp(n, q) be an absolutely irreducible
representation.

(1) If p �= 2 then n > 20 and n �= 22. In addition, if q �≡ 0,±1(mod 7) then
n �= 24.

(2) Let p = 2 and 6 < n < 18. Then n �= 10. If n ∈ {8, 12, 16} then φ(H)
preserves a quadratic form. In particular, groups Sp(n, q) with q even and n =
8, 10, 12, 16 are not Hurwitz.

(3) Groups Sp(6, q) and Ω±(10, q) are not Hurwitz for q even.
(4) Assume p = 2 and q �≡ 1(mod 7). Then n �= 12, 16, in particular, groups

Ω±(12, q) and Ω±(16, q) are not Hurwitz. If n = 18, 24 then φ(H) preserves a
quadratic form. In particular, groups Sp(18, q), Sp(24, q) are not Hurwitz.

Theorem 1.5. Let p �= 2, H = H237 and φ : H → O(n, F ) be an irreducible
representation. Then n �= 10. In addition, if p = 3 then n �= 8, 11, 14, 17 and if
p = 7 then n �= 9, 11, 13, 16, 18. In particular, the corresponding groups Ω(n, q) and
Ω±(n, q) are not Hurwitz.

Theorem 1.5 for p = 3 implies that groups 3D4(3k) are not Hurwitz which
provides a new proof of this fact known from Malle [16].

Corollary 1.6. All groups PSp(8, 7k), PΩ+(8, 3k) and PΩ+(10, q) are not Hur-
witz.

Theorem 1.7. Let p �= 2, 7, H = H237 and φ : H → O(n, q) be an absolutely
irreducible representation.

(1) If q �≡ ±1 (mod 7) then n �= 9, 11, 16, 17, 18, 24. In particular, for these
q groups Ω(n, q) are not Hurwitz for n = 9, 11, 17 as well as Ω±(n, q) for n =
16, 18, 24.

(2) If q ≡ 0 (mod 3) and q �= 33k then n �= 16, 18, 23, 24. In particular, for these q
groups Ω(n, q) for n = 9, 11, 23 are not Hurwitz as well as Ω±(16, q) and Ω±(24, q).

Observe that the occurrence of certain values of n in the boxes of Tables 1
and 2 is a consequence of results obtained in [6], especially, the boxes with q ≡
−1 (mod 3) at the SL(n, q)-column and with q ≡ 1 (mod 3) at the SU(n, q)-column.
Our computations have been performed independently and therefore confirm the
results of [6]. The case n = 12 known from [6] is included into the tables for reader’s
convenience.

We expect that our results concerning groups SL(n, q), SU(n, q) and Sp(n, q)
are close to being final (but not for the simple quotients of these groups). Ac-
cording to Table 1 the maximum value of n for which some group SL(n, q) or
SU(n, q) is not Hurwitz equals 31 (and equals 38 for SU(n, q) with q even). In
the opposite direction, in [26] it is shown that all groups SL(n, q) are Hurwitz for
n = 49, 57, 63, 64, 70, 77, 85 and many other with n > 90; see also [28]. This is an
additional evidence that small n, say for n < 39, cannot be treated uniformly.

Let Z denote the ring of integers. Lucchini, Tamburini and Wilson [12] prove
that all groups SL(n,Z) with n > 287 are quotients of H237. Vsemirnov [26] and
Yongzhong Sun [28] extend this result for many other values of n > 48. We have
the following result:

Theorem 1.8. Groups G = SL(n,Z) are not (2, 3, 7)-generated for n ∈ {22, 23,
24, 25, 26, 29, 30, 31, 32, 37, 38} and n � 20.

23https://doi.org/10.1112/S1461157000001303 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001303


non-hurwitz groups

Table 1: Values of n > 11, n �= 13 for which SL(n, q), SU(n, q) or Sp(n, q)
with q odd are not Hurwitz.

q SL(n, q) SU(n, q) Sp(n, q)
n > 18,
n �= 22

q ≡ 1 (mod 21) � 19, 22
q ≡ −1 (mod 21) �19, 22
q ≡ 2,−10 (mod 21) � 19, 23 12, 16, 17, 18, 23, 24 24
q ≡ −2, 10 (mod 21) 12, 16, 17, 18, 23, 24 � 19, 23 24
q ≡ 4,−5 (mod 21) 12, 23 � 19, 22, 23, 24, 25, 31 24
q ≡ −4, 5 (mod 21) � 19, 22, 23, 24,

25, 31
12, 23 24

q ≡ 8 (mod 21) 14 12, 16, 17, 18
q ≡ −8 (mod 21) 12, 16, 17, 18 14
q = 36k 14 � 19, 22
q = 36k+3 � 19, 22 14
q = 36k±1 � 19, 22, 23, 24,

25, 31
�16, 23, 25 24

q = 36k±2 � 16, 23, 25 � 19, 22, 23, 24, 25, 31 24
q ≡ 0 (mod 7) � 12, 17, 18 � 19, 22

Table 2: Values of n > 11, n �= 13 for which SL(n, q), SU(n, q) or Sp(n, q)
with q even are not Hurwitz.

q SL(n, q) SU(n, q) Sp(n, q)

26k � 20, 22, 23 12, 16
26k±1 � 17, 19, 22, 23, 24, 25 16, 17, 18, 19, 23, 24, 31 12, 16, 18, 24
26k±2 16, 17, 19, 22, 23 � 20, 22, 23, 24, 25, 26, 30, 12, 16, 18, 24

31, 32, 38
26k+3 14 16, 17, 18,19,23,24 12, 16

As in [6], our method is based on a theorem of Scott [19, page 491] (see Theo-
rem 2.1 below). Scott himself pointed out that his result can be used for showing
that certain linear groups are not Hurwitz (he provided examples of SL(6, 3) and
SL(9, 3)). In a more systematic way Theorem 2.1 was used in Tamburini and Vas-
sallo [22] and in Di Martino, Tamburini and Zalesski [6]. In particular, it was shown
in [6] that the groups SL(n, q) and SU(n, q) with n = 5, 6, 7, 10 are not Hurwitz;
however, the potential of Scott’s theorem was not used in full. In this paper we
examine further values of n.

Our method can be outlined as follows. To show that some group H which
contains non-central elements of order 2, 3, 7 is not Hurwitz, one could first realize
H as an irreducible matrix group over some algebraically closed field F obtaining an
FH-module M, say. If H is Hurwitz with Hurwitz generators X,Y , Scott’s formula
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in Theorem 2.1 provides an essential restriction to the shape of the Jordan normal
form of matrices corresponding to X,Y and XY . Usually, one chooses M to be
a non-trivial module of minimum dimension. However, applying Scott’s theorem
solely to M does not lead to major progress. Other useful modules to be examined
are the adjoint module Hom(M,M) and the symmetric square of M . These have
been used in Di Martino, Tamburini and Zalesski [6] to show that the groups
SL(n, q) and SU(n, q) are not Hurwitz for n = 5, 6, 7, 10. We observe here that,
instead of dealing with an individual finite group H, it is beneficial to deal with
representations of the infinite group H237 defined by two generators x, y subject to
relations x2 = y3 = (xy)7. If H is Hurwitz, there is a surjective homomorphism
H237 → H so every FH-module can be viewed as an FH237-module. The original
question of whether H = SL(n, q) or SU(n, q) is Hurwitz can be replaced by the
question on the existence of an irreducible representation φ : H237 → GL(n, F ) such
that φ(H237) does not preserve a symmetric non-degenerate bilinear form, where F
contains the field of q elements. (If q is odd, this is equivalent to saying that H is not
a subgroup of an orthogonal group.) Scott’s formula applies equally to φ(H237) but
now we have a larger store of modules. For instance there is an irreducible FH237-
module L of dimension 3 while there is no irreducible 3-dimensional SL(n, q)-module
for n > 3. This allows us to apply Scott’s formula to FH237-module Hom(M,L).
Surprisingly, this eliminates certain options for the conjugacy class choice for the
Hurwitz generators in H = SL(n, q) and H = SU(n, q) with n = 8, 9, 11, 13, and
leads to the conclusion that these H are not Hurwitz.

Let H be as above and Z(H) the center of H. It has to be noticed that the
group H/Z(H) can be Hurwitz but H itself is not. Therefore, one is faced with the
problem of deciding which projective groups PSL(n, q) and PSU(n, q) are Hurwitz
provided H = SL(n, q) and SU(n, q) are not Hurwitz. This happens for n = 2 as
no SL(2, q) with q odd is Hurwitz. Another series of examples is discovered in [25]
for n = 5. Further results on PSL(n, q) and PSU(n, q) for n � 7 are obtained in a
recent paper [24] (which also contains a few auxiliary facts recorded in Section 2
below).

In Section 2 we describe the method in detail. In Section 3 we list a few irreducible
FH237-modules that are particularly useful in our analysis.

In Section 4 we discuss tests for an irreducible FH237-module V arising in ap-
plying Scott’s theorem to the adjoint module V ⊗ V̂ as well as to the symmetric
and exterior square of V (which are submodules of V ⊗ V ).

Section 5 contains proofs of the theorems stated in the introduction.

Notation. F always denotes an algebraically closed field of characteristic p � 0.
We denote by M(n, F ) the vector space of (n×n)-matrices over F and by GL(n, F )
the group of all non-degenerate matrices. SL(n, F ) is the subgroup of GL(n, F ) of
matrices of determinant 1. The identity (n × n)-matrix will be denoted by Id or
1n. We denote by S and E the subspaces of M(n, F ) constituted by all symmetric
matrices and all alternating matrices, respectively; an alternating matrix is the
same as skew symmetric if p �= 2 and as symmetric with zero diagonal if p = 2.
Let V = Fn denote the natural M(n, F )-module. We use the standard notation
for classical groups. If A ⊂ GL(V ) is a subset then V A denotes the subspace of
all vectors fixed by every element of A, and dA or dAV is the dimension of V A. We
also set C(A) = {M ∈ M(n, F ) : Ma = aM for all a ∈ A} and cAV = dimC(A).
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We use the symbol V̂ for the dual GL(V )-module, and we set d̂AV = dim V̂ A. This
is also used in the representation context: if φ : G → GL(V ) is a representation
of a group G and A ⊆ G then C(A) means C(φ(A)) and the symbols dφ(A), dAV
and cAV carry the obvious meaning. If V is an FG-module then the FG-module
Hom(V, V ) ∼= V ⊗ V̂ is called the adjoint module of V . The symmetric and exterior
square of V is often denoted by S(V ) and E(V ).

For a matrix t we denote by Jord t the Jordan form of t. The Jordan block
of size r with eigenvalue 1 is denoted by Jr. We set kJr = diag(Jr, . . . , Jr) (k
times). We often use friendly notation for JordA for a unipotent matrix A, namely,
diag(k1J1, k2J2, . . . , k�J�) where ki is the multiplicity of Ji occurring as a con-
stituent of JordA. Say, diag(2J1, 2J3, J4) means the block-diagonal matrix with
Jordan blocks 1, 1, J3, J3, J4 at the diagonal. An element t ∈ GL(n, F ) is called real
if it is conjugate in GL(n, F ) to its inverse. Next we introduce a parametrization of
certain conjugacy classes of GL(n, F ) in terms of multiplicity vectors. This is useful
for producing tables and performing computations.

Let A be a diagonalizable matrix such that Al = Id for some l. In this case we
have a natural ordering of the eigenvalues. If we fix a primitive l-root ε of 1, then
we order other l-roots as follows: 1 = ε0, ε, ε2, . . . , εl−1. Another choice of ε means
the replacement ε → εi where i is coprime to l, but we need ε to be fixed. If F is
the field of complex numbers then we always fix ε to be exp (2πi/l) where i2 = −1.
The Jordan normal form of A is determined by the string [m0,m1, . . . ,ml−1] where
mi is the multiplicity of ε as an eigenvalue of A and some mi may be equal to 0.
We call the string [m0,m1, . . . ,ml−1] the multiplicity vector of A.

If A is unipotent then JordA is determined by the sizes of the Jordan blocks.
However, in some situations it is useful to parametrize unipotent matrices by
multiplicity vectors. To do this, set mi = dim(A − Id)iV − dim(A − Id)i+1V
where V = Fn is the natural space for A. Clearly,

∑
mi = n. Observe that

m0 = dimV − dim(A− Id)V and mi = rank(A− Id)i − rank(A− Id)i+1 for i > 0.
The string [m0,m1, . . . ,ml−1] is called the multiplicity vector of A. One can check
that mi =

∑l
j=i+1 kj . Observe that mi = 0 if i is greater than the degree of the

minimum polynomial of A. It is rather obvious that m0 � m1 � · · · � ml−1 if A is
unipotent. One can observe that a unipotent matrix is determined by the very val-
ues {m0, . . . ,ml−1} as their ordering is immaterial (in the sense that the values can
always be reordered to be non-increasing). This allows us to ignore the condition
m0 � · · · � ml−1 for the coordinates of the multiplicity vector of a unipotent ma-
trix. This will be used for uniformity purposes. For instance, the vector [1, 2] can be
used as a label of the similarity class of the matrix diag(1,−1,−1) if characteristic
p �= 2 as well as of the matrix diag(J1, J2) for p = 2.

The multiplicity vector of A is often denoted by mA. Given a string of matri-
ces A1, . . . , Ak we call [mA1 , . . . ,mAk ] the multiplicity vector of {A1, . . . , Ak}. For
practical purposes we need to distinguish the parts related to these Ai. To make it
easier we usually express the above multiplicity vector as [mA1 ] . . . [mAk ].

If u = (a0, . . . , al) and v = (b0, . . . , bl) are two vectors then the standard inner
product 〈u, v〉 is defined to be a0b0 + · · ·+albl. We use this for multiplicity vectors.
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2. Some facts on representations

Some results in this section (in particular, Scott’s theorem, 2.1) do not require
F to be algebraically closed. However, we prefer to hold this assumption as this is
sufficient for our exposition.

We start by stating a theorem of Scott [19]. Let G be any group and V an FG-
module. We set dgV = dimV g and dGV = dimV G. Clearly, V g = V g

−1
. For g ∈ G

set d̄gV = n− dgV and d̄GV = n− dGV . Let V̂ denote the dual module for V .

Theorem 2.1. (Scott [19, Theorem 1]) Let G be a group generated by elements
g1, . . . , gk and set gk+1 = g1 · · · gk. Let V be an FG-module. Then

hV (g1, . . . , gk) := d̄g1V + · · · + d̄gk

V + d̄
gk+1
V − d̄GV − d̄G

V̂
� 0. (1)

Remark. This result is stated in [19] with g−1
k+1 in place of gk+1. However, this is

immaterial as V g = V g
−1

.

It is convenient to us to deal with dgV in place of d̄gV . As d̄gV = n − dgV and
d̄GV = n− dGV , one can express (1) as

(k − 1)n+ dGV + dG
V̂
− dg1V − · · · − dgk

V − d
gk+1
V � 0. (2)

We set dfGV =: (k− 1)n− dg1V − · · · − dgk

V − d
gk+1
V and we call dfGV the defect of G on

V . The following lemma is obvious.

Lemma 2.2. (1) dfGV � −dGV − dG
V̂
.

(2) If V = V1 ⊕V2 is a direct sum of FG-modules V1, V2 then dfGV = dfGV1
+ dfGV2

.
(3) Let V1 be a submodule of V and V2 = V/V1. Then dfGV � dfGV1

+ dfGV2
. If V is

the sum of the gi-eigenspaces for every i = 1, . . . , k + 1 then dfGV = dfGV1
+ dfGV2

.

If k = 2, (2) simplifies to

dg1V + dg2V + dg3V � n+ dGV + dG
V̂
. (3)

If V is a non-trivial irreducible G-module (or more generally, V G = 0 and V̂ G = 0)
then (2) takes shape

dg1V + · · · + dgk

V + d
gk+1
V � (k − 1)n, (4)

and (3) simplifies to
dg1V + dg2V + dg3V � n. (5)

Formula (5) is very useful for deciding whether a particular group G is Hurwitz.
In practice, one starts with a G-module V of minimal dimension greater than 1.
The efficiency of formula (5) is revealed in full when it applies to several G-modules.
For G being SL(n, q) or SU(n, q) the only useful modules turn out to be the natural
one, its symmetric square (the exterior square if p = 2) and the adjoint module.
Another practical way of using Scott’s formula is in applying it to tensor products.
In this case, we have to use the language of representation theory. In the remaining
part of this section we develop some machinery for doing this efficiently.

Let V,W be FG-modules. We set M = HomF (V,W ). Recall that the G-action
which turns M into an FG-module is defined as follows. Let g ∈ G, f ∈ M and
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v ∈ V . Define g ◦ f ∈ HomF (V,W ) by (g ◦ f)(v) = gf(g−1(v)). Clearly, g ◦ f is a
linear mapping. In addition, for g, h ∈ G we have (gh ◦ f)(v) = ghf(h−1g−1)v) =
g((h ◦ f)(g−1v)) = (g ◦ (h ◦ f))(v).

The following fact is well known. We provide a proof for readers’ convenience.

Lemma 2.3. Let V,W be FG-modules. Then

dim HomFG(1G,HomF (V,W )) = dim HomFG(V,W ).

Proof. Let f ∈ HomF (V,W ) and g ∈ G. The mapping sending g ∈ G to the linear
transformation f → g ◦ f is a representation of G. Next, g ◦ f = f means that
gf(g−1(v)) = f(v) for all v ∈ V , so f(g−1(v)) = g−1(f(v)) for all v ∈ V . If this
is true for all g ∈ G, then f is a FG-module homomorphism. It follows that the
subspace X of G-fixed points on HomF (V,W ) is isomorphic (as a vector space) to
HomFG(V,W ). Clearly, the dimension of X is equal to that of HomFG(1G, X) and
we are done.

Corollary 2.4. If V,W are some FG-modules then HomF (V,W ) has no G-fixed
point if and only if no quotient module of V is isomorphic to a non-zero submodule
of W . In particular, this happens if V and W are irreducible and V is not isomorphic
to W.

Now we state the following special case of Theorem 2.1 which is particularly
useful for what follows.

Proposition 2.5. Let G = 〈g1, . . . , gk〉 and gk+1 = g1 · · · gk. Let V,W be some
FG-modules and M = HomF (V,W ). Set dgk

M = dimMgi for i = 1, . . . , k+ 1. Then

dg1M + · · · + dgk

M + d
gk+1
M � (k − 1)(dimV )(dimW )

+ dim HomFG(V,W ) + dim HomFG(W,V ). (6)

If V and W are irreducible and V is not isomorphic to W then the right-hand side
is (k − 1)(dimV )(dimW ).

Proof. The first claim follows from Theorem 2.1 and the second one follows from
Corollary 2.4.

The case where M = Hom(V, V ) = EndV is of particular interest. Let λ : G →
GL(V ) be the representation associated with V . As EndV can be identified with
the vector space M(n, F ) of all (n×n)-matrices over F , the G-action defined above
can be expressed as g ◦ x = gxg−1 for g ∈ G, x ∈ M(n, F ). Then dgM is exactly
the dimension of the vector space C(g) of matrices commuting with λ(G). We set
cgV := dgEndV and similarly denote by cGV the dimension of the vector space of
matrices commuting elementwise with λ(G). It follows from (6) that

cg1V + · · · + cgk

V + c
gk+1
V � (k − 1)n2 + 2cGV . (7)

Lemma 2.6. If V is irreducible then

cg1V + · · · + cgk

V + c
gk+1
V � (k − 1)n2 + 2. (8)

Proof. By Schur’s lemma, cGV = 1 = cG
V̂

so the result follows from the above.
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For k = 2, (8) simplifies to

cg1V + cg2V + cg3V � n2 + 2. (9)

We illustrate the use of the Scott’s theorem by providing a new proof of the
following classical fact.

Lemma 2.7. Let G = 〈A,B〉 ⊂ GL(n, F ) be an irreducible subgroup. Suppose that
the minimum polynomials of A,B are of degree 2. Then n = 2.

Proof. The multiplicity vectors for A and B are of shape [a, n − a], [b, n − b] for
some integers a, b > 0, respectively. So cAV = a2 + (n− a)2 � n2/2 and cBV � n2/2.
Hence cAV + cBV � n2. By formula (9) cABV � 2. This implies n � 2 as cgV � n for
any (n× n)-matrix g.

Definition 2.8. Let G = 〈g1, . . . , gk〉 and set gk+1 = g1 · · · gk. Let L be a field and
λ : G→ GL(n, F ) an absolutely irreducible representation. The value

ri(λ) =: (k − 1)n2 + 2 − c
λ(g1)
V − · · · − c

λ(gk)
V − c

λ(gk+1)
V

is called the rigidity index of λ. If ri(λ) = 0, one says that λ is rigid.

So a representation λ is rigid if it is irreducible and ri(λ) = 0.

The following result (which motivates the term ‘rigid’) goes back to P. Deligne
(see Simpson [17]).

Theorem 2.9. Let G = 〈g1, . . . , gk〉 and gk+1 = g1 · · · gk. Let λ, µ : G→ GL(n, F )
be representations such that matrix λ(gi) is similar to µ(gi) for every i = 1, . . . , k+1.

(1) Suppose that λ is rigid. Then µ is equivalent to λ. (Equivalently, if λ and µ
are non-equivalent then λ is not rigid.)

(2) Suppose that λ is not rigid. Then there exists a representation ν : G →
GL(n, F ) not equivalent to λ such that matrices λ(gi) and ν(gi) are similar for
every i = 1, . . . , k + 1.

Proof (see [21]). We reproduce the proof of (1) here as this emphasizes the role
played by Theorem 2.1. Suppose the contrary. Let V,W be the FG-modules associ-
ated with λ, µ, respectively. As V andW are not isomorphic and V is irreducible, the
right-hand side in (6) is (k−1)n2. As λ(gi) is similar to µ(gi) for i = 1, . . . , k+1, the
left hand sides in (6) and in (7) coincide. In addition, they are equal to (k−1)n2 +2
as λ is rigid. This is a contradiction.

The following useful result is an immediate consequence of Theorem 2.9.

Theorem 2.10. Let G = 〈g1, . . . , gk〉 and gk+1 = g1 · · · gk. Let L be a field and
let λ : G → GL(n,L) be a rigid representation. Let α be an automorphism of L
extended to GL(n,L) by the standard way. If α preserves the similarity classes of
λ(g1), . . . , λ(gk+1) then λ is equivalent to αλ.

This can be used as follows.

Theorem 2.11. Let G = 〈g1, . . . , gk〉 and gk+1 = g1 · · · gk. Let L be a finite field
of characteristic p and let λ : G→ GL(n,L) be an irreducible rigid representation.
Let K be a proper subfield of L such that every λ(gi) for i = 1, . . . , k+ 1 is similar
to a matrix in GL(n,K). Then λ is equivalent to a representation into GL(n,K).
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Proof. Let α be a generator of the Galois group of L/K. Observe that α preserves
the similarity class of λ(gi) for every i = 1, . . . , k + 1. Indeed, λ(gi) is similar to a
matrix over K so α fixes a GL(n,L)-conjugate of λ(gi) hence the similarity class.
By Theorem 2.10, λ ∼= αλ, that is, α(λ(g)) = Mλ(g)M−1 for some M ∈ GL(n,L)
and g ∈ G. It follows that the trace t(g) of λ(g) is fixed by α for all g ∈ G. By
the Galois theory, t(g) ∈ K for all g ∈ G. As λ is absolutely irreducible (by the
definition of rigidity), the enveloping algebra 〈λ(G)〉 ofG overK is simple and finite,
hence is isomorphic to a matrix algebra M(r, P ) for some field P which contains
K (Wedderburn’s theorem). Here r = n as λ(G) contains n2 linear independent
matrices over L by Burnside’s theorem. As all traces t(g) belong to K, we have
that K = P .

The following theorem is rather well known.

Theorem 2.12. Let L and λ be as in Theorem 2.11.
(1) Suppose that L has an automorphism of order 2 and let σ be the automor-

phism of GL(n,L) extending it. Suppose that every λ(gi) for i = 1, . . . , k + 1 is
similar to σ(λ(g−1

i )). Then λ is equivalent to a representation into the unitary
group U(n,L).

(2) Suppose that λ(gi) is similar to λ(g−1
i ) for every i = 1, . . . , k + 1, that is,

every λ(gi) is real. Then λ is equivalent to a representation into either Sp(n,L) or
O(n,L).

Proof. For uniformity of the argument we declare σ to be the trivial automor-
phism of GL(n,L) in case (2). For x ∈ GL(n,L) set x∗ = σ((x−1))T and λ∗(g) =
σ(λ(g−1

i ))T for g ∈ G. Then ∗ is an involutory automorphism of GL(n,L). There-
fore, g → λ∗(g) is a representation of G and λ∗∗ = λ. By assumption, the matrices
λ∗(gi) and λ(gi) are similar for every i = 1, . . . , k + 1 (as every matrix x is similar
to xT ). As λ is rigid, λ is equivalent to λ∗ by Theorem 2.9. So the result follows
from [11, Lemma 2.10.15].

Set R = M(n, F ) and view R as a GL(n, F )-module under the congruence action
(the congruence action is defined by sending each M ∈ R to gMgT for g ∈ GL(n, F )
where gT stands for the transpose of g). Let V be the natural GL(n, F )-module. We
denote by S = S(V ) the GL(n, F )-module of all symmetric bilinear forms on V . It
becomes a GL(n, F )-module if one defines the action of g ∈ GL(n, F ) on f(x, y) ∈ S
for x, y ∈ V by (gf)(x, y) = f(gTx, gT y). (Here we use the transpose of g to have
S a left module.) Then S can be identified with the set of all symmetric matrices
viewed as a GL(n, F )-module under the congruence action. Similarly, denote by
E = E(V ) the GL(n, F )-module of all alternating bilinear forms on V . If p �= 2,
then E can be identified with the set of all skew symmetric matrices viewed as a
GL(n, F )-module under the congruence action. In addition, R = S ⊕ E. If p = 2
then E can be identified with the set of all symmetric matrices with zero diagonal.
It is a classical fact that E is an irreducible GL(n, F )-module and, if p �= 2, so
is S. If p = 2 then S/E is irreducible of dimension n and E is a unique minimal
submodule of S and of R. Recall that dimS = n(n+1)/2 and dimE = n(n− 1)/2.
Observe that R = M(n, F ) as a GL(n, F )-module under the congruence action is
isomorphic to Hom(V, V̂ ) ∼= V ⊗ V . Therefore, S is isomorphic to the symmetric
square of V which is the subspace of V ⊗ V spanned by v ⊗ v and v ⊗ v′ + v′ ⊗ v
for v, v′ ∈ V .
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Lemma 2.13. Let G ⊂ GL(V ) be a subgroup which preserves a non-degenerate
bilinear form f on V . Let W be a G-stable subspace of V . Then Ŵ ∼= V/W⊥ (a
G-module isomorphism).

Proof. For u ∈ V define a mapping αu : V → F as αu(v) = f(u, v). Then αu ∈ V̂
and u→ αu is a G-module isomorphism V → V̂ . Observe that the restriction αu|W
of αu to W belongs to Ŵ and the kernel of the linear mapping u → αu|W is W⊥.
(The kernel consists of u such that αu|W = 0, equivalently, f(u,W ) = 0.) Hence
V/W⊥ ∼= Ŵ as required.

The following is well known.

Lemma 2.14. (1) The dual Ê of E is isomorphic to E(V̂ ).
(2) If p �= 2 then the dual Ŝ of S is isomorphic to S(V̂ ).
(3) If p = 2 then Ŝ ∼= R/E.

Proof. (1) Define a mapping α : R → R by α(M) = M −MT for M ∈ R. Then
the image of α belongs to E and the kernel of α coincides with S. (This is true
for p = 2 as well as for p �= 2.) By a dimension reason, the image of α coincides
with E. As α is a GL(n, F )-module homomorphism, we have that E ∼= R/S. As
E is irreducible, so is Ê. It follows that Ê is a minimal submodule of the dual of
R; that is, of Hom(V̂ , V ) ∼= V̂ ⊗ V̂ . However, V̂ ⊗ V̂ contains E(V̂ ) as a minimal
submodule. So the result follows.

(2) Similarly, define a mapping β : R → R by β(M) = M + MT . Then the
image of β belongs to S. As p �= 2, the kernel of β coincides with E. Now a similar
argument yields the result.

(3) Define a non-degenerate bilinear form on R by f(A,B) = Tr(AB) for A,B ∈
R where Tr stands for the trace of a matrix. The result follows by takingR for V and
S for W in Lemma 2.13. Indeed, S = {Y ∈ R : Y = Y T } and E = {X +XT : X ∈
R}. Hence f(X +XT , Y ) = Tr(XY ) + Tr(XTY ) = 0 as Tr(XTY ) = Tr(Y XT ) =
Tr(XY )T . So f(E,S) = 0. As dimS + dimE = dimR, the result follows.

Remark. If p = 2 and n > 3 then Ŝ is not isomorphic to S(V̂ ). Indeed, in this
case Ŝ has an irreducible quotient module isomorphic to Ê so it has a submodule
of dimension n in contrast with S(V̂ ) which has a unique irreducible submodule of
dimension n(n− 1)/2.

Lemma 2.15. Let G ⊂ GL(n, F ) be an irreducible subgroup. Then dimSG � 1 and
dimEG � 1.

Proof. For i = 1, 2 let Γi ∈ S and gΓigT = Γi for all g ∈ G. As G is irreducible,
each Γi is non-degenerate so Γ−1

1 gΓ1 = (gT )−1 = Γ−1
2 gΓ2. Hence Γ2Γ−1

1 centralizes
G. By Schur’s lemma, Γ2Γ−1

1 is scalar, whence the result. The second claim follows
by the same argument for Γi ∈ E.

Let K denote the FG-module of all quadratic forms on V .

Lemma 2.16. Let n, q be even. Then K ∼= R/E ∼= Ŝ.
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Proof. Denote by T the subspace of upper triangular matrices in R. Then T∩E = 0
and dimT+dimE = n2. Hence T⊕E = R. A quadratic form Q : Fn → F is defined
for (x1, . . . , xn)T ∈ Fn by the formula:∑

i

αiix
2
i +

∑
k<l

αklxkxl

where αij ∈ F . Denote by t(Q) the upper triangular matrix whose the (k, l)-entries
for k � l are αkl. We call t(Q) the matrix of Q. Thus, Q → t(Q) is a bijection
t : K → T . Moreover, t is a vector space isomorphism. For g ∈ GL(n, q) the action
of g on K is defined by (gQ)(v) = Q(gT v) for v = (x1, . . . , xn)T ∈ Fn. Under this
action K becomes an GL(n, F )-module. To show that the GL(n, F )-modules K
and R/E are isomorphic, we have to prove that t((g(Q)) + gt(Q)gT ∈ E. It suffices
to prove this for Q = xkxl with k � l as the mapping Q → t(g(Q)) + gt(Q)gT

is linear. Therefore, in this case g(Q)v = (gT v)k(gT v)l = (
∑
i gikxi)(

∑
j gjlxj) =∑

ij gikgjlxixj . Therefore, the (i, j)-entry of the matrix t(g(Q)) is gikgjl+gjkgil for
i < j and gikgil for i = j. On the other hand, t(Q) = Ekl, the matrix with (k, l)-
entry equal to 1 and 0 elsewhere. The (i, j)-entry of gEklgT is gikgjl. Therefore, the
diagonal entries of t(g(Q)) and gT t(Q)g ∈ E are the same, while the off-diagonal
entries differ by matrices from E. This proves that K ∼= R/E and R/E ∼= Ŝ by
Lemma 2.14(3).

Lemma 2.17. Let p = 2 and let G be an irreducible subgroup of GL(n, q) where n, q
are even.

(1) dimKG � 1.
(2) If G preserves a symmetric bilinear form and preserves no quadratic form

then dimKG = 0 and dim K̂G = 1 (equivalently, dim ŜG = 0 and dimSG = 1).

Proof. (1) Observe that K contains a submodule L formed by the squares of the
linear forms on V . Clearly, dimL = n and L is irreducible. So dimK/L = n(n−1)/2.
The kernel of the polarization mapping π (which sends every Q ∈ K to the bilinear
form Q(u+ v) +Q(u) +Q(v) for u, v ∈ V )) coincides with L. Therefore, K/L ∼= E.
As L is irreducible, L ∩KG = 0. So dimKG = dimπ(KG). As π(KG) ⊆ EG ⊆ SG

and dimSG � 1 by Lemma 2.15, the result follows.
(2) It is obvious that dimKG = 0. As K̂ ∼= S, the assertion follows from Lemma

2.15.

Proposition 2.18. Let G = 〈g1, . . . , gk〉 ⊂ GL(n, F ) be an irreducible group and
set gk+1 = g1 · · · gk. Let V = Fn and let S be the set of all symmetric matrices
in M(n, F ) viewed as an FG-module under the congruence action. For g ∈ G set
dgS = dimSg and dfGS = (k − 1) dimS − dg1S − · · · − d

gk+1
S .

(1) dimEG = dim ÊG � 1. If p �= 2 then dimSG = (k − 1) dim ŜG � 1; if p = 2
then SG = 0 implies ŜG = 0.

(2) dfGE � −2 and dfGS � −2.
(3) If G preserves no symmetric bilinear form then dfGS � 0; if p = 2 then,

additionally, dfGE � 0. If p �= 2 and G preserves no skew symmetric form then
dfGE � 0.

(4) If p = 2 and G preserves a symmetric bilinear form but no quadratic form
then dim ŜG = 0 and dfGS � −1.
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Proof. (1) As G is irreducible on V , it is irreducible on V̂ . By Lemma 2.15,
dimEG � 1 and dimSG � 1. By Lemma 2.14, dim ÊG � 1. If dimEG or dim ÊG

equals 1 then G preserves a symplectic form on V ; hence V is a self-dual G-module.
Then dimEG = dim ÊG = 1. Let p �= 2. The equality dimSG = 1 means that G
preserves a symmetric bilinear form f on V . AsG is irreducible, f is non-degenerate.
Let Γ be the matrix of f relative to some basis so Γ is non-degenerate and gΓgT = Γ
for all g ∈ G. Then Γ−1gΓ = (gT )−1 which implies that V is a selfdual FG-module,
that is, V ∼= V̂ . By Lemma 2.14, S ∼= Ŝ so dim ŜG = 1. The proof of the converse
is similar. Let p = 2. It is well known that KG �= 0 implies that SG �= 0 (see also
the proof of Lemma 2.17(1)). As Ŝ = K by Lemma 2.16, the result follows.

(2) By formula (3) applied to S we have that dfGS � −dimSG−dim ŜG, and the
right-hand side is not less than −2 by Lemma 2.15, Lemma 2.14 (for p �= 2) and
Lemma 2.17 (for p = 2). Similarly, −dimEG − dim ÊG � −2 by Lemmas 2.15 and
2.14.

(3) By formula (3) applied to S we have dfGS +dimSG+dim ŜG � 0. As SG = 0,
by (1) we have ŜG = 0 and the result follows. If p = 2 then E ⊂ S so SG = 0
implies EG = 0. By Lemma 2.14, Ê ∼= E(V̂ ) hence ÊG = 0, and (3) applied to E
yields the result.

(4) As Ŝ ∼= K (Lemma 2.16), we have ŜG = KG = 0 and dimSG = 1. So the
result follows from Lemma 2.2.

Verifying formulas for S from items (2), (3), (4) of Proposition 2.18 for a given
multiplicity vector is called the symmetric test, and verifying those for E is called
the exterior test. We refer to them as TS and TE , respectively. To be precise, if G
is irreducible then we have:

TS =



dfGS � −2
dfGS � 0 if G preserves no non-degenerate symmetric bilinear form,
dfGS � −1 if p = 2 and G preserves a non-degenerate alternating

bilinear form, and no quadratic form.

Similarly,

TE =
{
dfGE � −2
dfGE � 0 if G preserves no skew symmetric bilinear form.

Additionally, verifying formula (8) is called the adjoint test which is refered to as
TA. Computational aspects of this matter for k = 2 are discussed in Section 4.

We shall regularly apply Theorem 2.1 to the FG-module M = Hom(V,W ) where
V,W are irreducible FG-modules. Lemma 2.3 gives us the right-hand side values dGM
and dG

M̂
for formulas (2), (4) and (5) above, that is, with M in place of V . Namely,

dGM = dim HomFG(V,W ) and dG
M̂

= dim HomFG(W,V ), because M̂ ∼= Hom(W,V ).
We next discuss some aspects of computing the left-hand side. Let g ∈ G with gl = 1
and let A,B be the matrices of the action of g in V,W , respectively. Suppose first
that A,B are diagonalizable with multiplicity vectors mA = [mA

0 ,m
A
1 , . . . ,m

A
l−1]

and mB = [mB
0 ,m

B
1 , . . . ,m

B
l−1], respectively. Then, by the definition of the action of

g on M = HomF (V,W ), the multiplicity dgM of eigenvalue 1 of the action of g on M
is

∑l−1
i=0m

A
i m

B
i . This can be viewed as the inner product of the multiplicity vectors

if one regards them as elements of Ql. Therefore, if we denote by mg
V and mg

W the
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multiplicity vectors mA and mB of g on V,W , respectively, then dgM = 〈mg
V ,m

g
W 〉

where 〈 , 〉 is used to denote the inner product.
Furthermore, we show that formula dgM = 〈mg

V ,m
g
W 〉 holds when A,B are unipo-

tent matrices. Let s1 � · · · � sk and t1 � · · · � tl be the sizes of the blocks
in the Jordan form of A and B, respectively. Then dgM = dim HomF 〈g〉(V,W ) =∑
i,j min{si, tj}; see, for instance, Humphreys [9, Section 1.2]. One can show that

the right-hand side value is equal to the inner product 〈mg
V ,m

g
W 〉. To do this, one

can use diagrams Y (A) for the partitions dimV = s1 + · · · + sk. Young diagrams
look like

where the ith row consists of si boxes. One observes that the coordinates of the
multiplicity vector mA are exactly the lengths of the columns of Y (A). Next one
can use induction on k to establish the inner product formula.

If V = W and mg
V = [mg

0, . . . ,m
g
l−1] is the multiplicity vector for g then cgV =

dgM =
∑
i(m

g
i )

2 which is trivial for semisimple matrices but not obvious in general
(of course, this is well known; see for instance [9, Section 1.3]).

In fact, the inner product formula can be extended to arbitrary matrices. For
this, we introduce a notion of a multiplicity function in place of a multiplicity vector.
Let α ∈ F and A ∈ EndV . Set mA

i (α) = dim(α · Id−A)iV − dim(α · Id−A)i+1V
(here we set (α · Id−A)0V = V ). Let Z+ denote the set of all non-negative integers.
The function mA : F → Z+ × · · · × Z+ defined by α → [m0(α),m1(α), . . .] is
called the multiplicity function for A. This is a generalization of the notion of
a multiplicity vector for unipotent matrices, and, in a sense, it also extends the
notion of a multiplicity vector introduced for semisimple matrices of finite order.
Clearly, mA(α) = 0 if α is not an eigenvalue of A. If A,B are square F -matrices
(not necessarily of the same size), we set 〈mA,mB〉 =

∑
α∈F 〈mA(α),mB(α)〉 =∑

α∈F
∑
im

A
i (α)mB

i (α). Obviously, this sum contains only finitely many non-zero
terms. If V is a G-module, and A is the matrix of the action of g ∈ G on V , we
usually write mg for mA, which will not lead to any confusion as it corresponds to
the traditional convention.

The above argument for unipotent matrices works in the case where each A and
B has only one eigenvalue, common for A and B. As distinct eigenvalues do not
actually interfere, we have the following lemma.

Lemma 2.19. Let M = Hom(V,W ) and g ∈ G. Then dgM = 〈mg
V ,m

g
W 〉.

To be more accurate, one can argue as follows. Set Vα = {v ∈ V : (A − α ·
Id)rv = 0 for some r}. Then HomF 〈g〉(V,W ) =

∑
α∈F HomF 〈g〉(Vα,Wα) so dgM =

dim HomF 〈g〉(V,W ) =
∑
α∈F dim HomF 〈g〉(Vα,Wα) =

∑
α〈mg

V (α),mg
W (α)〉.

If V = W then cgV =
∑
α∈F

∑
i(mi(α))2 as cgV = dgM in this case. This yields the

following.

Lemma 2.20. Let λ : G → GL(n, F ) be an irreducible representation. Then the
rigidity index is even.
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Proof. By Definition 2.8, ri (λ) = −2n2+2+
∑k+1
i=1 (n2−cλ(gi)

V ) so it suffices to show
that n2 − c

λ(g)
V is even for any g ∈ G. Let [m1, . . . ,ml] be the multiplicity function

of g. Then m1 + · · ·+ml = n and cλ(g)
V = m2

1 + · · ·+m2
l = n2 − 2

∑
i<jmimj .

The following well known fact is used many times without a reference, especially
in the cases where g is semisimple.

Lemma 2.21. Let g ∈ GL(n, F ) and let k be the degree of the minimum polynomial
of g. Then cg � n2/k.

Proof. Let mg(α) = [m0(α), . . .] be the multiplicity function of g. Then cg =∑
α∈F

∑
i(mi(α))2. Observe that k is equal to the number of non-zero terms in

this sum. (Indeed, the minimum polynomial of g makes shape Πα(x− α)kα where
kα is the maximum size of a Jordan block of g with eigenvalue α. In addition,
mi(α) = dim(α · Id−g)iV − dim(α · Id−g)i+1V which is non-zero if and only if
i+ 1 � kα. So the claim follows.) Recall that

∑
α∈F

∑
imi(α) = n. So the lemma

follows from the well known inequalities
∑k
i=1 x

2
i � (x1 + · · · + xk)2/k for real

numbers x1, . . . , xk.

The notion of a multiplicity vector (function) can be extended to strings of
matrices. Say, if A1, . . . , Ak is a string of (n × n)-matrices over F , we define
the multiplicity vector (function) mA1,...,Ak for the string to be [mA1 , . . . ,mAk ].
If B1, . . . , Bk is a string of (l × l)-matrices over F with the same k, then we set
〈mA1,...,Ak ,mB1,...,Bk〉 =

∑k
i=1〈mAi ,mBi〉. This can be used when V,W are G-

modules and Ai, Bi are the matrices of the action of gi ∈ G on V,W , respectively.
We also write mgi

V for mAi

V in this and similar situations.

If V,W are irreducible and non-isomorphic then formula (6) can be expressed as

〈mg1,...,gk+1
V ,m

g1,...,gk+1
W 〉 =

k+1∑
i=1

〈mgi

V ,m
gi

W 〉 � (k − 1)(dimV )(dimW ), (10)

and we often omit the superscript g1, . . . , gk+1. If V ∼= W then

k+1∑
i=1

cgi

V =
k+1∑
i=1

〈mgi

V ,m
gi

V 〉 � (k − 1)(dimV )2 + 2. (11)

Verifying formula (10) for some actual irreducible FG-module W and a virtual
irreducible FG-module V with given multiplicity vector is called the tensor test.
This complements the adjoint test, symmetric test and exterior test for V discussed
above. They are used as conditions of the non-existence of V when we argue by the
way of contradiction. If formula (10) holds, we say that V passes the tensor test
with W , otherwise we say that V fails the tensor test with W which means that
we have a contradiction, and hence V does not exist. If V,W are not assumed to
be non-isomorphic then failing formula (10) means that V,W must be isomorphic.
One observes that this is exactly the argument establishing Theorem 2.9(1). Of
course if V is an actual FG-module, it passes every test. As tests examine only
the multiplicity vector [mg1

V , . . . ,m
gk+1
V ], failing the test means that there is no

irreducible FG-module V with this multiplicity vector.
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Example. Let G = H237. Lemmas 3.7 (p �= 2, 7) and 3.8 (p �= 2, 3) produce
irreducible FG-modules W with multiplicity vector [4, 2][2, 2, 2][0, 1, 1, 1, 1, 1, 1] and
[3, 4][1, 3, 3][1, 1, 1, 1, 1, 1, 1], respectively. It is easy to check that formula (10) yields
that 2dxV � dimV +dxyV and dimV � dxV +2dyV . These complement Scott’s formula
(5) which says that dxV + dyV + dxyV � dimV .

Section 3 provides further examples of FH237-modules, and the tables given in
Appendix B record more formulas, similar to those in the above example.

A multiplicity vector (function) is called basic if it is not the sum of the mul-
tiplicity vectors (functions) of actual representations of G. A representation (and
corresponding module) is called basic if its multiplicity vector (function) is basic.

Let U , V , W be irreducible FG-modules with multiplicity vectors (functions)
mU , mV , mW , respectively. Suppose that mU = mV + mW . Obviously, if some
module N passes the tensor tests with V,W then it passes the test with U . There-
fore, such U is not useful for testing. Thus, the only representations useful for tensor
tests are basic. Obviously, if φ = ρ ⊗ τ is basic then ρ and τ are basic. There is a
connection between basic and rigid representations:

Lemma 2.22. (1) Every rigid representation is basic.
(2) If a multiplicity vector is not basic, it has to pass every tensor test.

Proof. (1) Suppose that R is a rigid FG-module. By the way of contradiction,
let M1, . . . ,Mt be non-zero irreducible FG-modules such that mR =

∑
mMi .

Then 〈mMi ,mR〉 � (k − 1)(dimMi)(dimR) by formula (10). Hence 〈mR,mR〉 �
(k− 1)(dimR)(dimR) while the rigidity requires 〈mR,mR〉 = (k− 1)(dimR)2 + 2.

(2) This is obvious.

The tensor product of two representations ρ, τ can be a rigid representation; see
Lemmas 3.12, 3.14 and 3.15 below. We show in Theorem 2.26 that if ρ⊗ τ is rigid
then both ρ, τ are rigid. For this we need a few preparatory observations.

Let C = 〈g〉 be a cyclic group, let ρ : C → GL(n, F ) be a representation and
set mg = mρ(g) for the multiplicity function of ρ(g). Let V be the natural module
for GL(n, F ) and set H = HomF (V, V ). If α is an eigenvalue of g on H, we set
Hα = {x ∈ H : (g − α · Id)kx = 0 for some k = k(x)}.

We denote by µg the multiplicity function of g on Hom(V, V ). Thus, µg(α) =
[µg0(α), µg1(α), . . .] for α ∈ F . Hence µg0(1) = cg is the dimension of the 1-eigenspace
of g on Hom(V, V ).

Lemma 2.23. Let α ∈ F . Then µgi (α) � µg0(α) � µg0(1) = cg.

Proof. The first inequality is well known. Express ρ(g) = DU where D is diag-
onalizable and U is a unipotent matrix such that DU = UD. Then Hα is ex-
actly the α-eigenspace of D on H. Hence Hα = ⊕β∈FHom(Vβ , Vαβ) is an FC-
module isomorphism (the sum is finite as Vβ = 0 if β is not an eigenvalue of
D). Let m(β) = [m0(β),m1(β), . . .] denote the multiplicity vector of U |Vβ

. By
Lemma 2.19, the dimension of the 1-eigenspace of U on Hom(Vβ , Vαβ) is equal to
〈m(β),m(αβ)〉 so µg0(α), the dimension of the 1-eigenspace of U on Hα, is equal to
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∑
jmj(β)mj(αβ). Therefore, µg0(1), the dimension of the 1-eigenspace of g on H,

is equal to
∑
β

∑
jmj(β)mj(αβ). If α = 1 then this is equal to

∑
β

∑
j(mj(β))2. So

µg0(1) − µg0(α) =
∑
β

∑
j

(mj(β))2 −
∑
β

∑
j

mj(β)mj(αβ)

=
1
2

∑
β

∑
j

(mj(β) −mj(αβ))2

as
∑
β

∑
j(mj(β))2 =

∑
β

∑
j(mj(αβ))2.

Let τ be another irreducible representation of C realized in a module W .

Lemma 2.24. Let V,W be FC-modules.
(1) FC-modules HomF (V ⊗W,V ⊗W ) and HomF (V ⊗V )⊗HomF (W,W )) are

isomorphic.
(2) Let µg, µτ(g), µ(ρ⊗τ)(g) denote the multiplicity functions of g on Hom(V, V ),

Hom(W,W ) and Hom(V ⊗W,V ⊗W ), respectively. Then

µ
(ρ⊗τ)(g)
0 (1) =

∑
α

〈µg(α), µτ(g)(α)〉.

Proof. The following FC-modules are known to be isomorphic:

Hom(V ⊗W,V ⊗W ), (V ⊗W ) ⊗ (V̂ , Ŵ ), (V ⊗ V̂ ) ⊗ (W ⊗ Ŵ ),

Hom(V, V ) ⊗ Hom(W,W ), Hom(Hom(V, V ),Hom(W,W )),

where the latter isomorphism is due to the fact that Hom(W,W ) is self-dual. This
implies that µ(ρ⊗τ)(g)

0 (1) = dgM where M = Hom(Hom(V, V ),Hom(W,W )). By
Lemma 2.19, dgM =

∑
α〈µg(α), µτ(g)(α)〉.

Lemma 2.25. µ(ρ⊗τ)(g)
0 (1) � n2µ

τ(g)
0 (1).

Proof. By Lemmas 2.24 and 2.23

µ
(ρ⊗τ)(g)
0 (1) =

∑
α

〈µg(α), µτ(g)(α)〉 �
∑
α

µg(α)µτ(g)0 (1).

As
∑
α µ

g(α) = n2, the lemma follows.

Theorem 2.26. Let ρ, τ be non-equivalent irreducible representations of a group
G = 〈g1, . . . , gk〉 and gk+1 = g1 · · · gk. Suppose that ρ⊗ τ is rigid. Then ρ and τ are
rigid.

Proof. Let n = dim ρ and n′ = dim τ . Then

(k − 1)n2(n′)2 + 2 =
k+1∑
j=1

µ
(ρ⊗τ)(gj)
0 (1) � n2

k+1∑
j=1

µ
τ(gj)
0 (1)

by Lemma 2.25, whence n2((k − 1)(n′)2 − ∑k+1
j=1 µ

τ(gj)
0 (1)) � −2. Therefore,

(n′)2(k − 1) −
k+1∑
j=1

µ
τ(gj)
0 (1) < 0.
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The left-hand side is even (Lemma 2.20), and is not less than −2 by Lemma 2.6 as
τ is irreducible. So the equality holds, which means that τ is rigid. By symmetry,
so is ρ.

Lemma 2.27. Suppose that g ∈ GL(n, F ) preserves a non-degenerate bilinear form f .
(1) g is real; in addition, if n is odd and det g = 1 then 1 is an eigenvalue of g.
(2) Suppose that g is semisimple; then n− dg is even.
(3) Suppose that g is unipotent and Jord g = diag(k1J1, k2J2, . . . , krJr). If f is

alternating then ki are even for i odd; if p �= 2 and f is symmetric then ki are even
for i even.

Proof. (1) Let X be the Gram matrix of f associated to the standard basis in Fn,
and let gT denote the transpose of g. Then gTXg = X. As X is non-degenerate,
it follows that g is similar to (gT )−1. It is well known that g and gT are similar
matrices. Hence det(g − Id) = det(g−1 − Id) = det(Id−g) det g−1 as det g = 1. If n
is odd, det(g − Id) = 0 and the result follows.

(2) Set W = V g, that is, W is the 1-eigenspace for g and dg = dimW . Then W
is non-degenerate, that is, W ∩W⊥ = 0 so g fixes no non-zero vector on W⊥. By
(1), dimW⊥ is even, whence the result.

(3) See [20, Chapter IV-E.2.10].

Theorem 2.28. Let q be even, H = H237 and let φ : H → Sp(n, q) be an irreducible
representation. Then n �= 10. If n = 8, 12 or 16 then φ(H) preserves a quadratic
form. In particular, groups Sp(8, q), Sp(10, q), Ω±(10, q), Sp(12, q) and Sp(16, q)
with q even are not Hurwitz.

Proof. Suppose the contrary. By Lemma 2.27, elements φ(y) and φ(xy) are real.
Therefore, the multiplicity vector for φ(x), φ(y), φ(xy) can be expressed as [a, n−a]
[n−2b, b, b] [m0,m1,m2,m3,m3,m2,m1]. Recall that 2dφ(x)

S = n(n+1)−2a(n−a)
whose minimum value is attained by a = n/2 and is equal to n(n+ 2)/2. Similarly,
2dφ(y)
S = n(n+1)−2b(2n+1)+6b2 and 2dφ(xy)

S = (n−2m1−2m2−2m3)(n−2m1−
2m2 − 2m3 + 1) + 2m2

1 + 2m2
2 + 2m2

3. One can check that the minimum values for
d
φ(y)
S and dφ(xy)

S are (12,6), (19,9), (26,12), (46,20) for n = 8, 10, 12, 16, respectively.
It follows that that the minimum of dfφS = dimS− dφ(x)

S − dφ(y)
S − dφ(xy)

S is equal to
−2,−3,−2,−2, respectively. If n = 10 then dfS = −3 which violates Proposition
2.18(3). If n = 8, 12, 16, this contradicts Proposition 2.18(3).

Recall that Jk denotes the Jordan block of size k with eigenvalue 1.

Lemma 2.29. Let l,m be integers such that 1 � l � m � p. The Jordan form of
Jl ⊗ Jm is described as follows.

(i) If l +m � p then Jord(Jl ⊗ Jm) = diag(Jm+l−1, Jm+l−3, . . . , Jm−l+1);

(ii) If l +m > p and m < p then

Jord(Jl ⊗ Jm) = diag(Jp, . . . , Jp, J2p−m−l−1, J2p−l−m−3, . . . , Jm−l+1),

where Jp is repeated m+ l − p times;

(iii) If m = p then Jord(Jl⊗Jp) = diag(Jp, . . . , Jp), where Jp is repeated l times.

Proof. See [7, Theorem VIII.2.7].
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3. Examples of rigid representations

In this section we denote by H̃ the group defined by two generators x̃, y subject
to relations x̃4 = [x̃2, y] = y3 = (x̃y)7 = 1. Then the mapping x̃→ x, y → y extends
to a homomorphism H̃ → H237. The kernel of this homomorphism is Z(H̃) (it is
well known that Z(H) = 1).

As above, F is an algebraically closed field of characteristic p. If p �= 3 then we
fix a primitive 3-root ω of 1, and if p �= 7 then we fix some primitive 7-root ε of 1.
Recall that p = p if (7, p3 − p) �= 1 and p = p3 otherwise.

We shall often use the following fact without a reference.

Lemma 3.1. (1) Group H̃ (and H237) coincides with its commutator subgroup. This
is also true for every Hurwitz group.

(2) If φ is a linear representation of H̃ (or a Hurwitz group), then all matrices
in the image of φ have determinant 1.

Lemma 3.2. Let G = 〈x, y〉 ∈ GL(n, F ) be irreducible and x2 ∈ Z(G), y3 ∈ Z(G).
Then the dimension of each eigenspace of y does not exceed n/2, while the dimension
of each eigenspace of x does not exceed 2n/3.

Proof. Let W be an eigenspace of x. Then W ∩ yW ∩ y2W = 0 as it is G-stable. It
follows that dimW � 2n/3. Similarly, if W is an eigenspace of y, then W ∩xW = 0,
hence dimW � n/2.

Lemma 3.3. (1) If p �= 7 then there are exactly 3 equivalence classes of irreducible
representations H̃ → GL(2, F ).

(2) If p = 7 then all irreducible representations H̃ → GL(2, F ) are equivalent.
(3) Let φ : H̃ → GL(2, F ) be an irreducible representation and p > 0. Then

φ(H̃) ∼= SL(2, p).

Proof. Let p �= 7. Let C1, C2, Cε be the similarity classes of matrices diag(i,−i),
diag(ω, ω−1) and diag(ε, ε−1), respectively. It is well known and can be easily ob-
served that there are matrices A ∈ C1, B ∈ C2 such that AB ∈ Cε. Then the
mapping x̃ → A, y ∈ B extends to a homomorphism λε : H̃ → GL(2, F ). By
Lemma 3.1, λε is irreducible. Obviously, λε is rigid so it is unique up to equivalence
(Theorem 2.9). In addition, λε, λε2 and λε3 are pairwise non-equivalent as their
characters are distinct. Let λ be an arbitrary irreducible representation of H̃ in
GL(2, F ). Then λ(H̃) ∈ SL(2, F ) by Lemma 3.1. Hence λ(x̃y) belongs to Cε, Cε2
or Cε3 , and λ(x̃) ∈ C1, λ(y) ∈ C2. By Theorem 2.9, λ is equivalent to λε, λε2 or
λε3 .

(2) In this case let C3 be the similarity class containing J2. A similar argument
works. As there is a single similarity class of elements of order 7 in GL(2, F ), all
irreducible representations H̃ → GL(2, F ) are equivalent.

(3) By Theorem 2.11, λ(H̃) is similar to a subgroup of SL(2, p). Using the clas-
sification of finite groups of (2× 2)-matrices (consult, for instance [8]) one observes
that SL(2, p) contains no proper irreducible subgroups containing an element of
order 7.

Remarks. (1) Item (3) in Lemma 3.3 is a theorem of Macbeath [14].
(2) Below we hold symbols λε, λε2 and λε3 to denote the representations in item

(1) of the lemma.
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Lemma 3.4. Let G = SL(2, pm) and let ρn denote the natural F -representation of
G in the space of homogeneous polynomials in two variables of degree n − 1 (so
dim ρn = n). Assume 2 � n � p.

(1) ρn is irreducible.
(2) ρn(G) preserves a symmetric bilinear form if n is odd, otherwise it preserves

a skew symmetric bilinear form.
(3) Let γ denote the Frobenius (or field) automorphism of SL(2, pm) obtained

from the mapping y → yp for y ∈ Fpm . Let 1 � k < m. Then ρi⊗γkρj is irreducible.

Proof. This is well known. (1) and (3) is a particular case of Steinberg [18, Theorem
49]). As every element of SL(2, F ) conjugate to its inverse, the characters of ρn and
of its dual coincide. Hence ρn is self-dual. As ρn(Id) = Id for n odd, (3) follows
from [18, Lemma 79].

Lemma 3.5. Let G = GL(2, F ). Let ρn denote the natural F -representation of G
in the space of homogeneous polynomials of degree n− 1 (so dim ρn = n). Assume
2 � n � p.

(1) The representation ρn is irreducible.
(2) For i = 1, 2, 3 let λεi be the representation H̃ → GL(2, F ) defined in Lemma

3.3. Then the representation ρnλεi : H̃ → GL(n, F ) is irreducible. If n < 6, it is
rigid.

(3) For p �= 7 and for each n = 3, 4, 5 the representations ρnλεi with i = 1, 2, 3
are pairwise non-equivalent.

(4) If n is odd, ρnλεi is trivial on x̃2 so it can be viewed as a representation of
H237.

Proof. By Lemma 3.4(1), ρn(SL(2, p)) is irreducible for n � p. This implies (1). As
λεi(H̃) = SL(2, p), (2) follows. Rigidity in (2) is a matter of a simple computation.
(3) is implied by the fact that the character values of x̃y for i = 1, 2, 3 are distinct
for each n < 6. (4) is obvious.

Remark. ρ3 and ρ5 can be viewed as representations of PSL(2, q).

Lemma 3.6. (1) Let p �= 7 and H = H237. Then H has rigid representations φ1, φ2

of dimension 3 whose multiplicity vectors are

[1, 2][1, 1, 1][0, 1, 1, 0, 1, 0, 0] and [1, 2][1, 1, 1][0, 0, 0, 1, 0, 1, 1],

respectively, if p �= 2; otherwise,

[2, 1][1, 1, 1][0, 1, 1, 0, 1, 0, 0] and [2, 1][1, 1, 1][0, 0, 0, 1, 0, 1, 1].

In addition, φi(H) ∼= SL(3, 2) ∼= PSL(2, 7) for i = 1, 2 and φi(H) preserves no
symmetric bilinear form.

(2) Let p �= 2, 7. Then H̃ has rigid representations ψ1, ψ2 of dimension 4 with
multiplicity vectors

[0, 2, 0, 2][2, 1, 1][1, 1, 1, 0, 1, 0, 0] and [0, 2, 0, 2][2, 1, 1][1, 0, 0, 1, 0, 1, 1],

respectively. In addition, ψi(H̃) ∼= SL(2, 7) for i = 1, 2 and ψi(H̃) preserves no
symmetric bilinear form.
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Proof. Let G = SL(2, 7) and let a, b ∈ G be such that a2 ∈ Z(G) b3 = 1 and
(ab)7 = 1. Group G has irreducible representations φ′1, φ

′
2 of dimension 3, and ψ′

1,
ψ′

2 in dimension 4 with the above multiplicity vectors for a, b, ab. This can be seen
by inspection of the Brauer character table (see [1] and [2]) unless a or b is of order
p. Let φ1, φ2 and ψ1, ψ2 be the representations of H̃ obtained from a surjective
homomorphism H̃ → SL(2, 7). If p = 3 then cφ

′
i(b) � 3 and cψ

′
i(b) � 6 for i = 1, 2

by formula (11). This implies that Jordφ′i(b) = J3 and Jordψ′
i(b) = diag(J3, 1) for

i = 1, 2. The case p = 2 occurs only in (1), where diag(1, J2) is the only option for
Jordψ′(a). So the lemma follows.

Remarks. (1) The case p = 7 is considered in Lemma 3.5.
(2) Recall that Jordψi(x̃) = diag(i, i,−i,−i) where i2 = −1 and the multiplicity

vector of ψi(x̃) is [0, 2, 0, 2] according to our convention.

Lemma 3.7. Let p �= 2, 7 and let H = H237. Then H has a rigid representation π
of degree 6 with multiplicity vector [4, 2][2, 2, 2][0, 1, 1, 1, 1, 1, 1]. In addition, π(H)
preserves a symmetric bilinear form and π(H) ∼= SL(3, 2).

Proof. Let G = SL(3, 2). If p �= 2, 7 then G has an irreducible representation
π of degree 6 and π(G) preserves a symmetric bilinear form; see [2]. As G is a
quotient group of H, π can be regarded as a representation of H. If p �= 3 then
π is not modular and the lemma follows by inspection of the character of π in
[1]. Let p = 3 and let S be a Sylow 3-subgroup of G. As |S| = 3, a complex
irreducible representation of degree 6 is of defect 0, hence it remains irreducible
under reduction modulo 3. The representation obtained is equivalent to π as π is
unique. The restriction to S of a modular representation of defect 0 is a direct sum
of the regular representation of S. This means that Jordπ(y) = diag(J3, J3), and
the result follows.

Lemma 3.8. Let p �= 2 and let H = H237. Then H has a rigid representation
θ of degree 7 with multiplicity vector [3, 4][1, 3, 3][1, 1, 1, 1, 1, 1, 1] if p �= 3, and
[3, 4][3, 3, 1][1, 1, 1, 1, 1, 1, 1] for p = 3. In addition, σ(H) preserves a symmetric
bilinear form and θ(H) ∼= SL(2, 8).

Proof. Let G = SL(2, 8). If p �= 2, 3 then G has an irreducible representation θ of
degree 7 whose Brauer character value at elements of order 3 is equal to −2; see
[2]. As G is a quotient group of H237, θ can be viewed as a representation of H. If
p �= 3, 7 then θ is not modular so the lemma follows by inspection of the character
of θ in [1]. Let p = 7 and let S be a Sylow 7-subgroup of G. As |S| = 7, all four
complex irreducible representations of degree 7 are of defect 0. Hence G has four
7-modular irreducible representations of defect 0. The restrictions to S of each of
them is the regular representation of S. It follows that Jord θ(XY ) = J7 and the
result follows.

Let p = 3. Sylow 3-subgroups of G are cyclic of order 9. Let t ∈ G be of
order 9. It follows from the theory of representations of groups with cyclic Sylow
p-subgroup [7, Ch. VII] that Jord θ(t) = J7; see [29, Lemma 2.2]. Then Jord θ(t3) =
diag(J3, J2, J2). As y is conjugate to t3 in G, the result follows.

The fact that θ preserves a symmetric bilinear form is recorded in [2].

Remark. The group G = SL(2, 8) has no irreducible representation of dimension
7 in characteristic 2.
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Lemma 3.9. Assume p �= 3 and let H = H237. Then H has rigid representations
σ1, σ2 of degree 13 whose multiplicity vectors are [7, 6][4, 6, 3][1, 2, 2, 2, 2, 2, 2]
and [7, 6][4, 3, 6][1, 2, 2, 2, 2, 2, 2], respectively, for p �= 7; if p = 7 then they are
[7, 6][4, 6, 3][2, 2, 2, 2, 2, 2, 1] and [7, 6][4, 3, 6][2, 2, 2, 2, 2, 2, 1]. In addition, σi(H) for
i = 1, 2 preserves no symmetric bilinear form and σi(H) ∼= PSL(2, 27).

Proof. Let G = PSL(2, 27). Let h : H237 → G be a surjective homomorphism
and let X = h(x), Y = h(y). Suppose first that F = C. Then G has two irre-
ducible representation σ1, σ2 of degree 13. Let χ1, χ2 be their characters. Reorder-
ing σ1 and σ2 if necessary, by [1] we observe that χ1(X) = 1, χ1(XY ) = −1 and
χ1(Y ) = 1

2 (−1 + 3
√−3) = 1 + 3ω, χ1(Y 2) = 1 + 3ω2 where ω = 1

2 (−1 +
√−3).

In addition, χ2(Y m) = χ1(Y 2m) for m = 1, 2 and the values of χ2 at X and XY
are the same. The eigenvalue multiplicities of of X, Y and XY can be obtained
from computations with the characters of cyclic groups 〈X〉, 〈Y 〉, 〈XY 〉, respec-
tively. This yields the result on multiplicity vectors. In fact, G has an irreducible
representation of dimension 13 in any characteristic not equal to 3 (see [2]), and the
Brauer character values on p′-elements of G coincide with the complex character
values. Therefore, the Jordan form of p′-elements and their multiplicity vectors are
the same as in the complex number case. Let p = 2. The multiplicity vector for X is
of shape [a, 13−a] where a � 7. So cX = a2+(13−a)2 � 85 with equality for a = 7,
and the value is greater for a > 7. Then cX+cY +cXY = cX+86 � 85+86 = 132+2.
Scott’s formula implies that a = 7.

Let p = 7. Here cX+cY = 146 so Scott’s formula implies that cXY � 171−146 =
25. As |XY | = 7, the Jordan form of XY has no block of size greater than 7. If
the multiplicity vector of XY is [2, 2, 2, 2, 2, 2, 1] then cXY = 25 and for all other
multiplicity vectors this value is greater. Therefore, [2, 2, 2, 2, 2, 2, 1] is the only
option, and the rigidity follows. Clearly, JordXY = diag(J7, J6).

Lemma 3.10. Let G1, G2 be finite simple groups and X ⊂ G1×G2 a proper subgroup.
Let πi : X → Gi denote the natural projections. Suppose that πi(X) = Gi. Then
X ∼= G1

∼= G2 and π2π
−1
1 : G1 → G2 is an isomorphism α : G1 → G2.

Proof. Set Ki = kerπi. Clearly, K1 ∩ K2 = 1 so π1(K2) ∼= K2. If K2 �= 1 then
π1(K2) is a non-trivial normal subgroup of G1 = π1(X). Therefore, K2 = 1 or
π1(K2) = G1. In the latter case |X| = |G1| · |G2| so X = G1 × G2. Therefore,
K2 = 1. Similarly, K1 = 1. So G1

∼= G2
∼= X and π1, π2 are isomorphisms. The

second claim of the lemma is trivial.

Lemma 3.11. For 1 � i < j � 3 let λεi : H̃237 → SL(2, p) be as in Lemma
3.3. Define λi : H237 → PSL(2, p) to be λεi followed by the projection SL(2, p) →
PSL(2, p). In Lemma 3.10 specify G1

∼= G2
∼= PSL(2, p) where (p2 − 1, 7) �= 1 and

X = {(λi(h), λj(h)) : h ∈ H237}. Then X = G1 ×G2.

Proof. The lemma follows from Lemma 3.10 as soon as we show that τ := λjλ
−1

i is
not an isomorphism. Let Ci be the conjugacy class in PSL(2, p) corresponding to the
matrices diag(εi, ε−i) for 1 � i � 3. It is well known that every automorphism α of
PSL(2, p) is obtained from an inner automorphism of PGL(2, p). Hence α preserves
Ci in contrast with τ . So the result follows.
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Lemma 3.12. For i = 1, 2 let p �= 7 and let p � ni > 1 be integers. Set α1 = ρn1λεj

and α2 = ρn2λεk where 1 � j < k � 3 and λεj , λεk are as in Lemma 3.3. Then
β := α1 ⊗ α2 is an irreducible representation of H̃. In addition, if G := β(H̃)
and G = G/Z(G) then G ∼= PSL(2, p3) if p = p3 and G ∼= PSL(2, p) × PSL(2, p)
otherwise.

Proof. As αi(H̃)/Z(αi(H̃)) = PSL(2, p), one observes that β(H̃)/Z(β(H̃)) is con-
tained in the direct product PSL(2, p)×PSL(2, p). Suppose first that p = p. Observe
that αi(H̃) can be viewed as ρni

(Gi) where Gi = SL(2, p). Then β(H̃) is a homo-
morphic image of C1 ×G2 by Lemma 3.11. So β(H̃) can be obtained as an external
tensor product of irreducible representations of G1 and G2. It is well known that
such a representation is irreducible.

Let p = p3. Let γ denote the Frobenius (or field) automorphism of SL(2, p3)
obtained from the mapping y → yp for y ∈ Fp3 . Then λεk = γaλεj for some a ∈
{1, 2} so the kernels of these representations coincide. Hence β is a representation
of SL(2, p3) inflated to H̃. It is irreducible (see, for instance Steinberg [18, Theorem
49]) and β(H̃)/Z(β(H̃)) ∼= PSL(2, p3).

We say that G is a central product of groups G1, G2 if G ∼= (G1 ×G2)/Z where
Z is a subgroup of Z(G1 × G2). Below, we use this term only if G is not a direct
product of non-trivial subgroups.

Lemma 3.13. Assume p �= 7 and let λε, λε2 , and λε3 be representations of H̃
introduced in the proof of Lemma 3.3. For 1 � i < j � 3 set λij = λεi ⊗ λεj .
Then λij are ordinary irreducible representations of H237. They are rigid and non-
equivalent to each other, and each λij preserves a symmetric bilinear form. In
addition, λij(H) ∼= PSL(2, p3) if p = p3 and λij ∼= SL(2, p) ◦ SL(2, p) (a central
product) otherwise.

Proof. Observe that λij(x̃2) = Id. Therefore λij can be viewed as a representation of
H237. We show first that these representations are irreducible. Suppose the contrary.
It is easy to see that the eigenvalues of λij(x̃y) are ε±i±j �= 1. Therefore, in view of
Lemma 3.1, λij has no trivial composition factor. If p �= 2, λij has no composition
factor of dimension 2 as H237 has no irreducible representation of dimension 2; see
Lemma 3.3. Let p = 2. Observe that the Jordan form of y in each representation
is diag(1, 1, ω, ω−1). If α, β are the composition factors then detα(y) = 1 and
detβ(y) = 1, hence either α(y) = Id or β(y) = Id. This is impossible, by Lemma
3.1. As the characters of λij are distinct, they are not equivalent. The multiplicity
vector v of λ12 is [2, 2][2, 1, 1][0, 1, 0, 1, 1, 0, 1] so the rigidity follows as 〈v, v〉 = 18.
Other cases are similar. Choosing a suitable basis in F 2 one can assume that λεi

preserves a skew symmetric bilinear form with Gram matrix Γ = ( 0 1
−1 0 ) provided

that p �= 2. Then λεi ⊗ λεj preserves a symmetric bilinear form with Gram matrix
Γ ⊗ Γ. If p = 2, replace −1 by 1 with the same conclusion.

The additional claim follows from Lemma 3.12.

Lemma 3.14. Let H = H237.
(1) Let p �= 2, 3, 7. Then H has rigid F -representations ν1, ν2, ν3 of degree 8 with

multiplicity vectors

[4, 4][2, 3, 3][0, 2, 1, 1, 1, 1, 2], [4, 4][2, 3, 3][0, 1, 2, 1, 1, 2, 1],
[4, 4][2, 3, 3][0, 1, 1, 2, 2, 1, 1],
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respectively. In addition, νi(H) preserves a symmetric bilinear form and νi(H) ∼=
SL(2, p) if p �= p and a central product SL(2, p) ◦ SL(2, p) otherwise.

(2) Let p �= 2, 7. Then H has rigid F -representations τij (1 � i � 3, j = 1, 2) of
degree 8 with multiplicity vectors

[4, 4][2, 3, 3][1, 2, 1, 2, 0, 1, 1], [4, 4][2, 3, 3][1, 0, 2, 1, 1, 1, 2],

[4, 4][2, 3, 3][1, 1, 0, 1, 2, 2, 1], [4, 4][2, 3, 3][1, 1, 1, 0, 2, 1, 2],

[4, 4][2, 3, 3][1, 2, 1, 1, 1, 2, 0], [4, 4][2, 3, 3][1, 1, 2, 2, 1, 0, 1].

(If p = 3, one has to replace [2, 3, 3] by [3, 3, 2].) In addition, τij(H) ∼= PSL(2, p)
◦SL(2, 7) (a central product) and τij(H) preserves no symmetric bilinear form.

(3) Let p = 2. Group H has rigid F -representations σij (1 � i � 3, j = 1, 2) of
degree 6 with multiplicity vectors

[3, 3][2, 2, 2][1, 1, 1, 2, 0, 1, 0], [3, 3][2, 2, 2][1, 0, 1, 0, 2, 1, 1],

[3, 3][2, 2, 2][1, 0, 1, 1, 1, 0, 2], [3, 3][2, 2, 2][1, 2, 0, 1, 1, 1, 0],

[3, 3][2, 2, 2][1, 1, 0, 0, 1, 2, 1], [3, 3][2, 2, 2][1, 1, 2, 1, 0, 0, 1].

In addition,σij(H) ∼= SL(2, 8)× SL(3, 2) and σij(H) preserves no non-zero bilinear
form.

Proof. (1) Set νi = ρ4λi ⊗ λj where 1 � i � 3 and with j = i + 1 (mod 3). Then
νi(Z(H̃)) = Id so νi can be viewed as a representation of H. The multiplicity vector
of the representation νi is computed straightforward. The assertion on the structure
of νi(H̃) follows from Lemma 3.12. By Lemma 3.4, ρ4λi(H̃) and λj(H̃) preserves
a skew symmetric bilinear forms with matrices Γ1,Γ2, say. Then νi preserves a
symmetric bilinear forms with matrix Γ1 ⊗ Γ2.

(2) Let λεi (1 � i � 3) and ψj (1 � j � 2) be representations defined in Lemmas
3.3 and 3.6, respectively. Let G1

∼= SL(2, p) and G2
∼= SL(2, 7). Then λεi(H̃) ∼= G1

and ψj(H̃) ∼= G2. Set τij = λεi ⊗ ψj so dim τij = 8. Then τij(H̃) is contained in
a quotient group of G1 ×G2. In fact, λεi can be viewed as a representation of G1

and ψj as a representation of G2. Therefore, τij(H̃) is contained in the external
tensor product λεi ⊗ ψj viewed as a representation of G1 ×G2. This is well known
to be irreducible. The image G =: (λεi ⊗ ψj)(G1 ×G2) is isomorphic to G1 ◦G2, a
central product of these groups, as the center of G is of order 2 and G has subgroups
isomorphic to G1 and G2.

As τij(x̃2) is the identity matrix, τij is actually a representation of H237. It is
not hard to observe that G1 ◦ G2 has no proper Hurwitz subgroup. So the claim
on images follows. The shape of the multiplicity vectors is the matter of a simple
computation unless p = 3. In this case Jordλi(y) = J2 and Jordψ(y) = diag(J1, J3).
Then Jord τij(y) = diag(J3, J3, J2). This corresponds to the multiplicity vector
[3, 3, 2]. So the rigidity index of τij is equal to 0 (see Definition 2.8) hence τij is
rigid. Obviously, τij is not self-dual, hence τij(H) preserves no non-zero bilinear
form.

(3) As in (2), set σij = λεi ⊗ φj where φj for 1 � j � 2 is introduced in Lemma
3.6. The same argument as in (2) yields the result.
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Lemma 3.15. Let p �= 2, 7. Then H237 has rigid representations ηm (1 � m � 6) of
dimension 9 with multiplicity vectors

[5, 4][3, 3, 3][1, 2, 2, 2, 1, 1, 0], [5, 4][3, 3, 3][1, 1, 2, 1, 2, 0, 2],

[5, 4][3, 3, 3][1, 1, 2, 2, 0, 1, 2], [5, 4][3, 3, 3][1, 2, 0, 2, 1, 2, 1],

[5, 4][3, 3, 3], [1, 2, 1, 0, 2, 2, 1], [5, 4][3, 3, 3], [1, 0, 1, 1, 2, 2, 2].

In addition, the image of each representation preserves no symmetric bilinear form
and it is isomorphic to PSL(2, p) × SL(3, 2).

Proof. We set ηij = ρ3λεi ⊗ φj where ρ3λεi for i = 1, 2, 3 are as in Lemma 3.5
and φj for j = 1, 2 are as in Lemma 3.6. Set G1

∼= PSL(2, p) and G2
∼= SL(3, 2).

As ρ3λεi(H) ∼= G1 and φj(H) ∼= G2, we see that ηij(H) ⊆ G1 × G2. In fact, we
have the equality here, as otherwise ηij(H) would be a proper Hurwitz subgroup
of G1 ×G2. These are only G1 and G2; however, ηij(H) is none of them.

If p �= 3 then the shape of multiplicity vectors is the matter of elementary
computation. If p = 3 then the Jordan form of ρ3λεi(y) is J3 as well as of φj(y).
Therefore, Jord ηij(y) = Jord(J3 ⊗ J3) which is known to be diag(J3, J3, J3). The
multiplicity vector for this matrix is [3, 3, 3]. So the rigidity index of ηij is equal
to 0 (in the sense of Definition 2.8) hence ηij is rigid. As ηij is irreducible and not
self-dual, ηij(H237 preserves no non-zero bilinear form.

The results of this section are collected in Appendix A (Tables A-1, A-2, A-3,
A-4). They are used to produce Tables B-1, B-2, B-3, B-4 (Appendix B) as follows.
Let φ : H237 → GL(n, F ) be an irreducible representation realized in a module
V . Express the multiplicity vec- tor mV of φ(x), φ(y), φ(xy) as [a, n − a], [n − b −
c, b, c], [m0,m1,m2,m3,m4,m5,m6] where m0+ · · ·+m7 = n. Let W be the module
associated with a representation constructed in the above lemmas, and let mW be
the corresponding multiplicity vector. Then we use formula (10) to produce the
entries of Tables B-1, etc.

Example. Let W be the module associated with the representation in Lemma
3.6(1) for p �= 2, 7 so mW = [1, 2][1, 1, 1][0, 1, 1, 0, 1, 0, 0]. Then formula (10) gives:

a+ 2(n− a) + (n− b− c) + b+ c+m1 +m2 +m4 � 3n

which coincides with T4 in Table B-1 and T 3
4 in Table B-3. If p = 2 then mW =

[2, 1][1, 1, 1] [0, 1, 1, 0, 1, 0, 0] which similarly gives T 2
4 in Table B-2.

The condition in Tables B-1 to B-4 at the column headed ‘warning’ reminds
the reader to be careful when the multiplicity vector on test is of the dimension
indicated. One can use the test provided modules V and W are not isomorphic.
To illustrate this, we show that the alternating group A7 is not Hurwitz. Indeed,
it has an irreducible complex representation of degree 6 and one can easily observe
that the multiplicity vector of a triple of elements of order 2,3,7 in A7 can only be
[4, 2][2, 2, 2][0, 1, 1, 1, 1, 1, 1]. This contradicts T12 which can be used for testing here
as the test has been obtained from a representation θ with θ(H237) ∼= SL(3, 2).

We conclude this section by reminding the reader of some known examples of
Hurwitz matrix groups of small dimensions. In particular, groups of Lie type G2(q)
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are Hurwitz for every q > 4 (Malle [15]) as well as their twisted versions 2G2(q)
with q = 32m+1 and m � 1 (Jones [10]). They have 7-dimensional irreducible
representations over the field of q elements if q is odd. If q is even then G2(q) has
6-dimensional irreducible representations over the field of q elements. In addition,
groups 3D4(q) with q �= 4 and coprime to 3 are Hurwitz and they are realizable by
(8 × 8)-matrices over Fq3 (see [16]). The representations of H237 extending these
representations are not basic (see the definition prior to Lemma 2.22). Therefore,
they are useless for performing tensor tests. One can compute the multiplicity
vectors of the representations in question. These are [3, 3], [2, 2, 2], [0, 1, 1, 1, 1, 1, 1]
in dimension 6 with p = 2, [3, 4], [3, 2, 2], [1, 1, 1, 1, 1, 1, 1] in dimension 7 and [4, 4],
[2, 3, 3], [2, 1, 1, 1, 1, 1, 1] in dimension 8.

One can extract from [23] a list of sporadic simple groups known to be Hurwitz.
These are J1, J2, He, Ru, Co3, Fi22, HN, Ly, Th, J4, Fi′24, and M .

4. Relationship between dfA, dfS and dfE

Let H = H237 and let φ : H → GL(n, F ) be an irreducible representation. Set
G = φ(H) and let V be the associated FH-module. Of course, V can be viewed as
an FG-module. Express the multiplicity vector of the triple φ(x), φ(y), φ(xy) as
follows:

[a, n− a], [n− b− c, b, c], [m0,m1,m2,m3,m4,m5,m6].

As in Section 2, S denotes the set of symmetric matrices viewed as a GL(n, F )-
module via the congruence action M → gMgT for M ∈ S, g ∈ GL(n, F ). Similarly,
E is the set of skew symmetric matrices, if p �= 2, and the set of symmetric matrices
with zero diagonal if p = 2. We denote by A and R the vector space M(n, F ) viewed
as an FG-module under the adjoint and the congruence action, respectively. In other
words, A ∼= V ⊗ V̂ and R ∼= V ⊗ V . We view S,E,A as H-modules obtained in the
obvious way from V , so dfHS , dfHE ,dfHA are their defects defined prior to Lemma 2.2.

Lemma 4.1.

dfHA =: − n2 − 2a2 + 2n(a+ b+ c) − 2b2 − 2c2 − 2bc−
6∑
i=0

m2
i . (12)

Proof. This follows from the fact that cφ(g) for g ∈ H is equal to
∑
m2
i where mi

are the coordinates of the multiplicity vector for φ(g); see the comments prior to
Lemma 2.19.

Lemma 4.2. Let g ∈ GL(n, F ).
(1) Let p �= 2 and g2 = Id. Then dgA = 2dgS − n and dgS = dgE + n.
(2) Let p �= 3, g3 = Id and express the multiplicity vector of g as [dgV , b, c]. Then

dgA = 2dgS − dgV + (b− c)2.
(3) Suppose that p �= 7, g7 = Id and express the multiplicity vector of g as

[dgV ,m1,m2,m3,m4,m5,m6]. Then dgA = 2dgS − dgV + (m1 −m6)2 + (m2 −m5)2 +
(m3 −m4)2.

Proof. (1) Let a = dgV . Then dgA = a2 + (n− a)2 and 2dgS = n2 + n− 2a(n− a). So
the result follows.

(2) We have dgA = (dgV )2 +b2 +c2 and 2dgS = (dgV )2 +dgV +2bc, whence the result.

46https://doi.org/10.1112/S1461157000001303 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001303


non-hurwitz groups

(3) We have dgA = (dgV )2 +
∑6
i=1m

2
i and 2dgS = (dgV )2 + dgV +2m1m6 +2m2m5 +

2m3m4, so the result follows.

Lemma 4.3. Let p = 2 and g ∈ GL(n, F ). Let Jord g = diag(k1J1, k2J2) and let
[a, n− a] be the multiplicity vector for g.

(1) a = k1 + k2, n− a = k2.
(2) dgS = dgE + dgV = dgE + a.
(3) dgS = n(n+ 1)2 − a(n− a) and dgA = 2dgS − n.

Proof. (1) is trivial. (2) Let B = {b1, . . . , bn} be the standard basis of Fn. Then
g is similar to a permutation matrix π (that is, πB = B), and the respective
permutation of B has k2 cycles of size 2 and k1 = 2a − n fixed points. Let eij
be the matrix with 1 at the (i, j)-position and 0 elsewhere. Then {eij + eji : 1 �
i < j � n} is a basis BE in E and a basis BS of S is obtained by adding eii
for i = 1, . . . , n. Then πBEπ

T = BE and πBSπ
T = BS . Observe that πT =

π−1 so the action of π on {eii} is isomorphic to the action on B. This implies
(3). It is well known that dimSg is equal to the number of π-orbits on BS . This
number does not depend on the ground field so we can compute it by viewing the
Jordan form of π|S over Q. As JordQ π = diag(Ida,− Idn−a) we have dimSg =
(a(a+ 1) + (n− a)(n− a+ 1))/2 = n(n+ 1)/2 − a(n− a), as required for (2).

Lemma 4.4. Let g be a unipotent matrix in GL(n, F ) and p �= 2. Then dgA = dgS+dgE.

Proof. As g is unipotent, V and V̂ are isomorphic g-modules. If p �= 2 then R =
S ⊕ E is a direct sum of GL(n, F )-modules with respect to the congruence action.
Therefore, dgS + dgE = dgR. As R ∼= V ⊗ V and A ∼= V ⊗ V̂ and g is unipotent, their
restrictions to g are isomorphic g-modules. Therefore, dgA = dgS + dgE .

Lemma 4.5. Let g ∈ GL(n, F ) and gp = Id.
(1) Let p = 3 and Jord g = diag(k1J1, k2J2, k3J3). Then dgA = 2dgS − dgV + k2 =

2dgS − k1 − k3 and dgE = dgS − dgV + k2 = dgS − k1 − k3.
(2) Let p = 7 and Jordφ(g) = diag(k1J1, k2J2, k3J3, k4J4, k5J5, k6J6, k7J7).

Then dgA = 2dgS − k1 − k3 − k5 − k7 = 2dgS − dgV + k2 + k4 + k6.

Proof. (1) By [6, Lemma 4.3],

dgS =
k1(k1 + 1)

2
+ k1k2 + k2

2 +
k3(3k3 + 1)

2
+ k1k3 + 2k2k3.

On the other hand, dgA = (k1 + k2 + k3)2 + (k2 + k3)2 + k2
3, so the result follows.

(2) By [6, Lemma 4.3],

2dgS = k1(k1 + 1) + 2k2
2 + k3(3k3 + 1) + 4k2

4 + k5(5k5 + 1) + 6k2
6 + k7(7k7 + 1)

+2k1

7∑
j=2

kj + 4k2

7∑
j=3

kj + 6k3

7∑
j=4

kj + 8k4

7∑
j=5

kj + 10k5(k6 + k7) + 12k6k7.

On the other hand, dgA =
∑7
j=0(

∑7
i=j ki)

2. So the result follows by expansion of
the above expressions.
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Proposition 4.6. (1) Let p �= 3, 7. Then

dfHA = 2dfHS + d
φ(y)
V + d

φ(xy)
V − (b− c)2 − (m1 −m6)2 − (m2 −m5)2 − (m3 −m4)2.

In particular, if p �= 3, 7 and φ(y) and φ(xy) are real then dfHA = 2dfHS + d
φ(y)
V +

d
φ(xy)
V .

(2) Let p = 2. Then dfHS = dfHE + dfHV .

(3) Let p �= 2, 3, 7. Then dfHE = dfHS + d
φ(y)
V + d

φ(xy)
V .

(4) Let p = 3 and Jordφ(y) = diag(k1J1, k2J2, k3J3). Then dfHA = 2dfHS + k1 +
k3+dφ(xy)

V −(m1−m6)2−(m2−m5)2−(m3−m4)2 and dfφE = dfφS+dfφ(xy)
V +k1+k3.

(5) Let p = 7 and Jordφ(y) = diag(k1J1, k2J2, k3J3, k4J4, k5J5, k6J6, k7J7).
Then dfHA = 2dfHS + d

φ(y)
V − (b− c)2 + k1 + k3 + k5 + k7 and dfHE = dfHS + df

φ(y)
V +

k1 + k3 + k5 + k7.

Proof. (1) As dfHA = n2−dφ(x)
A −dφ(y)

A −dφ(xy)
A and 2dfHS = n2+n−2dφ(x)

S −2dφ(y)
S −

2dφ(xy)
S , the result for p �= 2 follows from Lemma 4.2. If p = 2, use additionally

Lemma 4.3(3).
(2) By Lemma 4.3, dimSφ(x) = dimEφ(x) + a. In addition, dimSφ(y) = d

φ(y)
V +

dimEφ(y) and dimSφ(xy) = dimEφ(xy) + d
φ(xy)
V . As dimS = dimE + n, we have

that dfHS = dimS − d
φ(x)
S − d

φ(y)
S − d

φ(xy)
S = dimE + n − d

φ(x)
E − d

φ(x)
V − d

φ(y)
E −

d
φ(y)
V − d

φ(xy)
E − d

φ(xy)
V = dfHE + dfHV .

(3) If g ∈ G is of odd order coprime to p then d
φ(g)
S = d

φ(g)
E + d

φ(g)
V . As dφ(x)

S =
d
φ(x)
E + n, the claim follows by straightforward computations.

(4), (5) Combine Lemmas 4.2 and 4.5.

Remarks. (i) Claim (2) shows that test TS is useless for p = 2, while the formulas
for E in items (3), (4), (5) tell us that TE is useless for p �= 2.

(ii) Formulas in items (4) and (5) can be easily expressed in terms of multiplicity
vectors. Say, if p = 3 then n− b− c = k1 + k2 + k3, b = k2 + k3 and c = k3 whence
k1 + k3 = n− 2b. Similarly, if p = 7 then k1 + k3 + k5 + k7 = m0 −m1 +m2 −m3 +
m4 −m5 +m6 = n− 2(m1 +m3 +m5).

Proposition 4.7. Suppose that the minimum polynomial of φ(xy) is of degree at
most 5; then n < 7. Moreover, if p �= 2 then n < 6.

Proof. Set X = φ(x) and Y = φ(y). Observe first that if n = x1 + · · · + xk
(where n is fixed) then x2

1 + · · ·+ x2
k � n2/k. (This fact does not require x1, . . . , xk

to be integers and can be therefore obtained by computing the minimum of the
real variable function f(x1, . . . , xk) = x2

1 + · · · + x2
k subject to the condition that

n = x1+· · ·+xk). Therefore, in formula n2+2 � cX+cY +cXY we have cX � n2/2,
cY � n2/3, cXY � n2/5, so n2 + 2 � 31n2/30 whence n2 � 60 and n < 8.

As mi are integers, for n = 7 one obtains that cX � 25, cY � 17 and cXY � 11,
which sums to 53 > 72 +2. Similarly, if n = 6 and p �= 2, one obtains that cX � 20,
cY � 12 and cXY � 8, which sums to 40 > 62 + 2.

Proposition 4.8. Let p = 7 and n > 6. Suppose that the minimum polynomial of
φ(xy) is of degree 6. Then φ(H) preserves a symmetric bilinear form and n = 12.
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Proof. The Jordan form of φ(xy) has no block of size 7, hence m6 = 0. Recall that
m0 � m1 � m2 � m3 � m4 � m5. We use Table B-4. If n > 5, from T 7

0 and T 7
2 we

get 2a+m0 � n+m5 so 2a � n−m0+m5 � n. By T 7
1 we have 2(m0+m1+m2) � 2a

so 2(m0 +m1 +m2) � n =
∑
imi hence m0 +m1 +m2 � m3 +m4 +m5. Therefore,

m0 = m1 = m2 = m3 = m4 = m5 = n/6 and n = 2a. By the determinant
condition, a is even so n is divisible by 4. Furthermore, n − b − c � n/3 from T 7

0

and that n − b − c � n/3 from T 7
2 . Hence dφ(y) = n/3. It follows that the Jordan

form of φ(xy) is (mJ6) where n = 6m. By Lemma 4.5, 2dφ(xy)
S = d

φ(xy)
A = n2/6;

hence dφ(xy)
S = n2/12. Then

dfHS =
n(n+ 1)

2
− n(n+ 2)

4
− n(n+ 3)

18
− bc− n2

12
=
n2

9
− n

6
− bc.

Observe that

−bc = − (b+ c)2

2
+
b2 + c2

2
= −2n2

9
− n2

18
+
d
φ(y)
A

2
= −5n2

18
+
d
φ(y)
A

2
.

In addition, dφ(y)
A � n2 + 2 − d

φ(x)
A − d

φ(xy)
A = n2 + 2 − n2/2 − n2/6 = n2/3 + 2.

Altogether,

dfHS � n2

9
− n

6
− 5n2

18
+
n2

6
+ 1 = −n

6
+ 1.

As dfHS � −2, we conclude that n � 18. As n is divisible by 12, we have n = 12.
If φ(H) preserves no symmetric bilinear form, −n/6 + 1 � dfHS � 0, which is
impossible.

For p > 7 we have only a weaker analogue of Proposition 4.8.

Proposition 4.9. Suppose that n > 6, p �= 7 and dφ(xy)
V = 0. Then either n = 12

and φ(H) preserves a symmetric bilinear form, or n = 8, p �= 2, 3, 7 and φ is as in
Lemma 3.14(1).

Proof. We use tests from Appendix B. Assume first that p �= 2, 3, 7. By T12 in
Table B-1, 2a � n. If n �= 3 then adding T4 to T5 we have that

∑
i>0mi = n � 2a.

Hence n = 2a. As n−a is even by the determinant condition, n is divisible by 4. In
addition, n = (m1 +m2 +m4) + (m3 +m5 +m6) implies m1 +m2 +m4 = n/2 and
m3 +m5 +m6 = n/2 in view of T4, T5. Observe that T6, T7 and T8 are equivalent
to n− b− c � mi +m7−i for i = 1, 2, 3 (as m0 = 0). Similarly, T14, T15 and T16 are
equivalent to mi+m7−i � n−b−c (here we do not need to assume n �= 8 as φ is not
equivalent to the representations in Lemma 3.14(1)). Hence mi+m7−i = n− b− c.
Summing these over i ∈ {1, 2, 4}, one obtains 3b + 3c = 2n, in particular, n is
divisible by 3 for n �= 4, 8 and n− b− c = n/3.

Suppose first that φ(G) preserves no symmetric bilinear form. Then dfHS � 0.
This can be expressed as

n(n+ 1)
2

− n(n+ 2)
4

− n(n+ 3)
18

− b(2n− 3b)
3

−
∑

1�i�3

mi(n− 3mi)
3

� 0,

whence (6 + 24b)n − n2 � 36(b2 + m2
1 + m2

2 + m2
4). Similarly, (6 + 24c)n − n2 �

36(c2 +m2
3 +m2

5 +m2
6). Adding these two inequalities, we get

12n+ 18n2 � 36(dφ(y)
A + d

φ(xy)
A ).
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By TA we have dφ(y)
A + d

φ(xy)
A � n2/2 + 2 so 6n+ 9n2 � 9n2 + 36 which is false for

n > 6.
If φ(G) is orthogonal then dfHS � −2, so the above computation gives 6n+9n2 �

9n2 + 72; hence n � 12. As n is divisible by 4 and 3, we have n = 12.
Let p = 2. We use Table B-2. If n �= 3 then from T 2

4 and T 2
5 we get 2a �

n − m0 = n. As p = 2, we always have 2a � n, so n = 2a. In addition, n =
(m1+m2+m4)+(m3+m5+m6) impliesm1+m2+m4 = n/2 andm3+m5+m6 = n/2
in view of T 2

4 and T 2
5 . By T 2

1 , T 2
2 and T 2

3 , we have that mi +m7−i � n− b− c and
by T 2

6 , T 2
7 and T 2

8 that n− b− c � mi+m7−i for i = 1, 2, 3. Hence 3(n− b− c) = n.
The formula for computing dfS makes no difference with that for p > 7, so the
above argument works again and yields that n � 12 and φ(G) preserves symmetric
bilinear form. As n is divisible by 6, n = 12.

Let p = 3. We use Table B-3. Then 2a � n by T 3
9 and n � 2a by T 3

4 and T 3
5 . So

n = 2a. As above, n is divisible by 4. In addition, n = (m1 + m2 + m4) + (m3 +
m5 + m6) implies m1 + m2 + m4 = n/2 and m3 + m5 + m6 = n/2 in view of T 3

4

and T 3
5 . By T 3

6 , T 3
7 and T 3

8 we have that n − b − c � mi + m7−i for i = 1, 2, 3
and always n � 3(n − b − c). Hence 3(n − b − c) = n and b + c = 2n/3. As
n/3 = n− b− c � b � c for p = 3, we have that b = c = n/3. So the Jordan form of
φ(y) is (bJ3) and 3b = n. So n is divisible by 12. Observe that T 3

6 , T 3
7 and T 3

8 are
equivalent to dφ(y)

V = n − b − c � mi +m7−i for i = 1, 2, 3. So mi +m7−i � n/3.
As

∑
imi = n, we deduce that mi +m7−i = n/3. As 2dφ(y)

S = d
φ(y)
A + b by Lemma

4.5, we have dφ(y)
S = (n2 + n)/6. Therefore,

dfHS =
n(n+ 1)

2
− n(n+ 2)

4
− n2 + n

6
−

∑
1�i�3

mim7−i =
n2 − 2n

12
−

∑
1�i�3

mim7−i.

However,
∑

1�i�3mim7−i =
∑

1�i�3(mi + m7−i)2/2 − (
∑

1�i�6m
2
i )/2 = n2/6 −

d
φ(xy)
A /2. As dφ(xy)

A + d
φ(y)
A + d

φ(x)
A � n2 + 2 and dφ(x)

A = n2/2 and dφ(y)
A = n2/3, we

have that dφ(xy)
A � n2 + 2 − n2/2 − n2/3 = n2/6 + 2 whence dφ(xy)

A /2 � n2/12 + 1.
Therefore, dfHS = (n2 − 2n)/12 − n2/6 + d

φ(xy)
A /2 � −n/6 + 1. If φ(H) preserves a

symmetric bilinear form that −2 � −n/6+1, whence n � 18 so n = 12. Otherwise,
dfHS � 0 and n � 6 which is false.

Proposition 4.10. If dφ(y) = 2 (respectively, 1) then n < 12 (respectively, 8). If
dφ(y) = 2 and the minimum polynomial of φ(xy) is of degree 6 then n < 10.

Proof. Set X = φ(x) and Y = φ(y). Observe that cX � n2/2, cXY � n2/7 (see the
proof of Lemma 4.7). By formula (9) cY � 2+n2−cX−cXY � 2+5n2/14. As dY = 2
(or, respectively, 1), we have cY � 4 + (n− 2)2/2 (respectively, 1 + (n− 1)2/2)
so 4 + (n− 2)2/2 � 2 + 5n2/14 (respectively, 1 + (n− 1)2/2 � 2 + 5n2/14). Equiv-
alently, n2 − 14n + 28 � 0 (respectively, 2n2 − 14n − 7 � 0) whence n < 12
(respectively, n < 8).

For the additional claim, as the minimum polynomial of XY is of degree at
most 6, we have cXY � n2/6 whence cY � 2 + n2 − cX − cXY � 2 + n2/3. So
4+(n− 2)2/2 � 2+n2/3, whence n2 −12n+24 � 0. This implies that n < 10.

Lemma 4.11. Let φ : H237 → GL(n, F ) be a rigid representation. Suppose that φ(y)
and φ(xy) are real. Then φ(H237) preserves a symmetric bilinear form and n � 8.
In addition, n � 6 for p = 2, and n � 7 for p = 3 or 7.
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Proof. By Lemma 2.12(2), φ(H237) preserves a non-degenerate symmetric or alter-
nating bilinear form f . Assume n > 2. By Lemma 2.7, the minimum polynomial of
φ(y) is of degree 3. In particular, dφ(y) > 0. As φ is rigid, dfHA = −2. Let p �= 3, 7. By
Proposition 4.6, 2dfHS +dφ(y)+dφ(xy) = −2 whence dfHS � −2. By Lemma 2.18, f is
symmetric and dfHS = −2. Then dφ(y) +dφ(xy) = 2. So dφ(y) = 1 or 2. Let p �= 2. By
summing inequalities T17 – T22 in Table B-1 we get n � 6dφ(y) +dφ(xy). If dφ(y) = 1
then dφ(xy) = 1 and n � 7. (Lemma 3.8 gives an example with dφ(y) = dφ(xy) = 1
and n = 7.) If dφ(y) = 2 then dφ(xy) = 0 and n � 12. In this case cφ(xy) � n2/6
and cφ(y) = 4 + (n− 2)2/2 whence n2 − 12n+ 24 � 0 by formula (9). This implies
n � 9. In fact, n is even as b = c and dφ(y) = 2. So n � 8. (If n = 8, we have an
example [4, 4][2, 3, 3][0, 2, 1, 1, 1, 1, 2] in Lemma 3.14(1).)

Let p = 2. By summing inequalities T 2
1 , T 2

2 , T 2
3 in Table B-2, we get n �

3dφ(y) + dφ(xy). If dφ(y) = 1, then dφ(xy) = 1 and n � 4. If dφ(y) = 2, then n � 6.
Let p = 3. Let Jordφ(y) = diag(k1J1, k2J2, k3J3). Then dφ(y) = k1 + k2 + k3,

b = k2 + k3, c = k3. By Proposition 4.6, k1 + k3 + dφ(xy) � 2. As the minimum
polynomial of φ(y) is of degree 3, k3 > 0. Hence k3 = 1 or 2. By summing inequalities
T 3

11 – T 3
16, we have thatm1+m2+m3+m4+m5+m6 � 6c = 6k3 whence n−m0 � 6k3

and n � 6k3 +dφ(xy). If k3 = 1 then k1 +dφ(xy) � 1 whence n � 7. (See an example
for n = 7 in Lemma 3.8.) If k3 = 2 then k1 = 0 and dφ(xy) = 0 so n � 12. As above
we have n � 9. However, n = 2k2 +6 is even hence n � 8. (There is an example for
n = 6 in Lemma 3.7 for k3 = 2.)

Let p = 7 and let Jordφ(xy) = diag(k1J1, k2J2, k3J3, k4J4, k5J5, k6J6, k7J7).
Then by Proposition 4.6, k1 + k3 + k5 + k7 + dφ(y) � 2. In particular, dφ(y) � 2. If
dφ(y) = 1 then n � 7 by Lemma 4.10. (See Lemma 3.8 for an example for n = 7.)
Let dφ(y) = 2. Then k1 = k3 = k5 = k7 = 0. In particular, k7 = 0 means that the
minimum polynomial of φ(xy) is of degree at most 6, hence equal to 6 in view of
Lemma 4.7 (provided n > 5). By Lemma 4.10, n < 10 so k6 = 1 and then k2 � 1.
If n > 6 then k2 = 1, n = 8 and Jordφ(xy) = diag(J2, J6). By Lemma 2.27, f is
symplectic, hence dfHS � 0.

Proposition 4.12. Let H = H237 and φ : H → GL(n, F ) be a rigid representation.
Suppose that φ(y) and φ(xy) are real. Then one of the following holds:

(1) n = p = 2 and φ(H) ∼= SL(2, 8);
(2) n = 3, p �= 2 and φ(H) ∼= PSL(2, p) ∼= O′(3, p);
(3) n = 4 and φ(H) ∼= SL(2, p) ◦ SL(2, p) if p = p and PSL(2, p3) otherwise;
(4) n = 5, p > 3 and φ(H) ∼= PSL(2, p);
(5) n = 6, p �= 2, 7 and φ(H) ∼= SL(3, 2);
(6) n = 7, p �= 2 and φ(H) ∼= SL(2, 8);
(7) n = 8, p �= 2, 3, 7 and φ(H) ∼= SL(2, p) ◦ SL(2, p) if p = p and PSL(2, p3)

otherwise.

Proof. By Lemma 4.11, n � 8. The existence of the representations in (1) – (7)
follows from Lemma 3.3 for n = 2, Lemma 3.5 for n = 3, Lemma 3.13 for n = 4,
Lemma 3.5 for n = 5, Lemma 3.7 for n = 6, Lemma 3.8 for n = 7 and Lemma 3.14
for n = 8. In order to show that φ is one of these representations it suffices to ob-
serve, in view of Theorem 2.10, that the multiplicity vector [mφ(x)], [mφ(y)], [mφ(xy)]
coincides with a multiplicity vector provided in the above lemmas. This can be
easily done by using the determinant conditions and the adjoint test. Let, say,
n = 6, p �= 2. Then [mφ(x)] = [4, 2] or [2, 4] so the adjoint test combined with the
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determinant conditions implies [mφ(y)] = [2, 2, 2] and [mφ(xy)] = [0, 1, 1, 1, 1, 1, 1] if
for p �= 7, and [1, 1, 1, 1, 1, 1, 0] for p = 7. The option [mφ(x)] = [2, 4] contradicts
tests T4, T 3

4 and T 7
1 in Tables B-1, B-3 and B-4, respectively. If p = 7, the option

[mφ(x)] = [4, 2] contradicts test T 7
0 in Table B-4, otherwise the multiplicity vector in

question coincides with that in Lemma 3.7. Let n = 6, p = 2. Then [mφ(x)] could be
[4, 2] or [3, 3]. At the former case [mφ(y)] = [2, 2, 2] and [mφ(xy)] = [0, 1, 1, 1, 1, 1, 1] is
the only option which however contradicts test t25 in Table B-2. Let [mφ(x)] = [3, 3].
The option [mφ(y)] = [4, 1, 1] contradicts the adjoint test, so [mφ(y)] = [2, 2, 2] by
the determinant condition. As φ is rigid, cφ(xy) = 8 which cannot hold if φ(xy) is
real.

For n = 7, 8 we can argue similarly, but we wish to provide a more conceptual
argument. By Lemma 4.11, p �= 2, 3, 7 if n = 8 and p �= 2 if n = 7. Furthermore, we
have seen in the first paragraph of the proof of Lemma 4.11 that (dφ(y), dφ(xy)) =
(1, 1) if n = 7, p �= 3 and (2, 0) if n = 8. If n = 7, p �= 3 then [mφ(y)] = [1, 3, 3]
hence the only option left by the adjoint test and the determinant condition is
[4, 3][1, 3, 3][1, 1, 1, 1, 1, 1, 1] which occurs in Lemma 3.8. If n = 7, p = 3 then k3 = 1
in the proof of Lemma 4.11. It is easy to rule out the option k1 = 1 so k1 = 0
and m0 = 1. The adjoint test and the determinant condition left us with the
only option [4, 3][3, 3, 1][1, 1, 1, 1, 1, 1, 1] which occurs in Lemma 3.8. If n = 8 then
[mφ(y)] = [2, 3, 3] and dφ(xy) = 0. Then the result follows from Proposition 4.9.

5. Non-Hurwitz irreducible groups

In this section we assume that G ⊂ GL(n, F ) is an irreducible subgroup which
preserves no non-zero quadratic form. This is equivalent to saying that G fixes no
non-zero element of S or that dGS = 0 or that G is contained in no orthogonal group.

We start from arbitrary elements X,Y, Z ∈ SL(n, F )) such that X2 = Y 3 =
Z7 = Id and detX = detY = detZ = 1. (The latter condition is often referred as
the determinant condition.) The conjugacy classes of these elements are described
by multiplicity vectors of shape [a, n−a][n−b−c, b, c, ][m0,m1,m2,m3,m4,m5,m6]
where m0+· · ·+m7 = n. If G = φ(H237) is the image of a representation φ such that
X = φ(x), Y = φ(y) and Z = φ(xy) then the multiplicity vector satisfies conditions
TA, TS and TE as well as the conditions in the tables in Appendix B. Our aim is
to write down all such vectors. So we arrive at the following algorithm. We look
through all multiplicity vectors and discard those which do not satisfy any of the
above condition. Vectors we shall be left with are called admissible. This approach
makes it convenient to say that a vector passes test TA (or TS etc.) if it satisfies TA.
Thus, a vector is called admissible if it satisfies the determinant condition and passes
all the tests TA, TS and TE as well as those recorded in Appendix B (which consists
of Tables B-1, B-2, B-3, B-4, depending on p). We emphasize that tests TA, TS and
TE consist of applying Scott’s formula to the adjoint module, symmetric square
and exterior square of the representation module V , while the tests in the tables of
Appendix B are produced by applying Scott’s formula to the tensor product of V
with the modules constructed in Section 3.

Example. Vector [2, 3][3, 1, 1][1, 1, 1, 0, 0, 1, 1] does not satisfy the determinant con-
dition as detX = −1. Vector [3, 2][3, 1, 1][1, 1, 1, 0, 0, 1, 1] does not pass test T0 in
Table B-1.
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Recall that test TE can be omitted for p �= 2 as every vector passed tests TS
and T0 passes TE . Similarly, if p = 2 then test TS is not useful. This follows from
Proposition 4.6 which describes the dependence between tests TA, TS , T0 and TE .

The tables in Appendix C–Appendix F list all admissible multiplicity vectors
for certain values of n (according to the value of p). To make the tables shorter we
have been forced to omit the vectors which can be obtained from a vector given in
a table by the substitution ω → ω2 (that is, up to permuting b and c) and ε → εi

(which is equivalent to permuting m1,m2,m3,m4,m5,m6 by powers of (132645)).
(It would be incorrect to use other permutations.)

The above algorithm has been implemented as a computer program, so the tables
in Appendix C–Appendix F have been obtained as the output of the program. In
principle, the necessary computations can be performed manually, as our main
results concern matrices of size at most 40.

Proof of Theorem 1.2. If n = 2 then p = 2 and the result follows from Lemma 3.3.
For n = 3 consult [6, Theorem 1]. For n = 4, 5, 6, 7, 10 the result is contained in
[6, Theorem 2], except for the case n = 6, p = 2. Let mV = [a, n − a][n − b −
c, b, c][m0,m1,m2,m3,m4,m5,m6] be the multiplicity vector of φ(x), φ(y), φ(xy).
Then it is admissible. For n < 20 the list of admissible vectors is provided by Tables
C-1, D-1, E-1, F-1 (depending on p). These tables contain no entry for n = 10, 11
which tells us that there is no representation in question. In addition, Table D-1
contains no entry for n = 8, 9, Table E-1 contains no entry for n = 13, 14 and Table
F-1 contains no entry for n = 12, 17, 18 which leads to the similar conclusion for
p = 2, n = 8, 9; p = 3, n = 13, 14; and p = 7, n = 8, 9, 12, 17, 18.

If p = 2 then the entries in Table D-1 for n = 6, 13 are of rigidity index 0. If
p �= 2, 3 then for n = 8, 9 and 13 the entries in Tables C-1 and F-1 are of rigidity
index 0 which tells us that φ is rigid if it exists. The existence of φ for all the cases
is proved in Section 3. So for these cases the theorem follows from the results of
Section 3.

Remark. We do not identify rigid representations of dimension 14 so the question
of their existence remains open.

Proposition 5.1. The group G = PSp(6, 3) is not Hurwitz.

Proof. By [1], G has a complex irreducible representation of dimension 13 whose
image preserves no bilinear form. By Theorem 1.2, G is not Hurwitz.

Proposition 5.2. The groups G = Sp(6, q) with q even are not Hurwitz.

Proof. Suppose the contrary. Let φ : H237 → Sp(6, q) be a surjective homomor-
phism and set X = φ(x), Y = φ(y). Let V be the natural module for Sp(6, q). By
Lemma 2.7 dY > 0. So dX � 3, dY �= 1, 3 (as Y is real). By formula (5) dY < 4. So
dY = 2, and hence dXY � 1 by (5). As XY is real, dXY = 0. As cX+cY +cXY � 38,
cY = 12 and cX � 18, we have that cXY � 8. If some eigenvalue ε �= 1 of XY is of
multiplicity 2 then cXY � 10. Hence cXY = 6 so each eigenvalue is of multiplicity 1
and the multiplicity vector of XY is [0, 1, 1, 1, 1, 1, 1]. By formula T 2

4 in Table B-2,
dX = 3. So the multiplicity vector of X,Y,XY is [3, 3][2, 2, 2][0, 1, 1, 1, 1, 1, 1].

Let F 2 be an algebraically closed field of characteristic 2. We first observe that
Sp(6, F 2) contains a unique conjugacy class of elements of order 3 and 7 with the
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above multiplicity vector. By Witt’s theorem it suffices to show that there are bases
of F

6

2 with Gram matrix ( 0 Id
Id 0 ) such that Y makes shape diag(ω, ω, 1, 1, ω2, ω2),

and XY makes shape diag(ε, ε2, ε3, ε4, ε5, ε6)). Indeed, it is easy to observe that
every element g ∈ Sp(6, F 2) of odd order preserves a totally isotropic subspace W
of dimension 3. Moreover, W can be chosen so that under certain basis b1, b2, b3 of
W the matrix of Y |W would be diag(ω, ω, 1) and diag(ε, ε2, ε3) for XY |W . It is well
known that b1, b2, b3 can be complemented to a basis of F

6

2 (called a Witt basis)
with the above Gram matrix. This justifies the claim.

By [1] (see the character table of Sp(6, 2)), the conjugacy classes of elements in
classes 3C and 7A have the above multiplicity vectors. It follows that Y and XY
are conjugate in Sp(6, F ) to elements of Sp(6, 2) from classes 3C and 7A.

By Steinberg’s theorem [18, Theorem 49], every irreducible F 2-representation of
Sp(6, 2) extends to a representation of Sp(6, F 2) and hence of Sp(6, q). In particular,
as Sp(6, 2) has an irreducible representation of degree 8 (see [2]), this also true for
Sp(6, F 2) and Sp(6, q). Denote the representation of Sp(6, q) of degree 8 by τ . The
trace of τ(Y ) equals 2 and the trace of τ(XY ) equals 1 as is for the restriction
of τ to Sp(6, 2); see [2]. Therefore, dτ(Y ) = 4 and dτ(XY ) = 2. As dτ(X) � 4, this
contradicts formula (5).

The results of the previous sections are valid for almost arbitrary q. Here we
consider more special cases.

Definition 5.3. An element g ∈ GL(n, F ) of order 7 (and its conjugacy class) is
called {

rational , if p �= 7 and g is conjugate in GL(n, F ) to gi for 1 � i � 6;
semirational, if p �= 7 and g is conjugate in GL(n, F ) to g2.

If g ∈ GL(n, F ) is unipotent, its conjugacy class always meets GL(n, q) and
U(n, q). The condition for Sp(n, q) and O(n, q) is recorded in Lemma 2.27. If g is
semisimple then the similarity class of g does not always meet G. This depends
on certain conditions on q which can be described in terms of symmetries of the
eigenvalue multiplicities or, equivalently, in terms of symmetries of the multiplicity
vector of g. We only need to state the conditions for g of order 3 or 7. To do this,
we introduce a function s(g) called the symmetry type of g. If |g| = 3, we define
s(g) = 2 if g is real and 1 otherwise. Let |g| = 7. We set s(g) = 6 if g is rational,
otherwise s(g) = 3, 2, 1 if g is, respectively, semirational, real or neither of these.

In order to tabulate the information let g, h ∈ GL(n, F ) and |g| = 3, |h| = 7.
Table 3 (which is a rearrangement of [6, Table 5]) indicates conditions on s(g), s(h)
which guarantee that the similarity classes of g and h meet G. We use ∗ to express
the absence of any condition; for example, (∗, 6) means that h is rational, and s(g)
may be 1 or 2. Observe that if [n − b − c, b, c] and [m0,m1,m2,m3,m4,m5,m6]
are the multiplicity vectors of g, h, respectively, then the symmetry type of (g, h)
is expressed in terms of these vectors as follows. We have s(g) = 2 if and only if
b = c. We have s(h) = 6 if and only if m1 = · · · = m6; s(h) = 3 if and only if
m1 = m2 = m4 �= m3 = m5 = m6; s(h) = 2 if and only if mi = m7−i (i = 1, 2, 3)
but not all mi coincide. In the column headed by Sp(n, q) the entry with − refers
to Lemma 2.27.
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Lemma 5.4. Let 1 �= g, h ∈ G where G ∈ {GL(n, q), U(n, q),Sp(n, q)}. Suppose that
g3 = 1 and h7 = 1. Then (s(g), s(h)) takes one of the values indicated in Table 3.

Observe that 26k ≡ 1 (mod 21), 26k+1 ≡ 2 (mod 21), 26k+2 ≡ 4 (mod 21), 26k+3 ≡
8 (mod 21), 26k−2 ≡ −5 (mod 21) and 26k−1 ≡ −10 (mod 21). Therefore, if q is even
then one has to use only 1st, 3rd, 5th and 7th rows of Table 3.

Table 3: Symmetry types of elements of order 3 and 7 in classical groups.

q GL(n, q) U(n, q) Sp(n, q) and

O(n, q)

q ≡ 1 (mod 21) (∗, ∗) (2, 2) or (2, 6) (2, 2) or (2, 6)

q ≡ −1 (mod 21) (2, 2) or (2, 6) (∗, ∗) (2, 2) or (2, 6)

q ≡ 2,−10 (mod 21) (2, 3) or (2, 6) (∗, 6) (2, 6)

q ≡ −2, 10 (mod 21) (∗, 6) (2, 3) or (2, 6) (2, 6)

q ≡ 4,−5 (mod 21) (∗, 3) or (∗, 6) (2, 6) (2, 6)

q ≡ −4, 5 (mod 21) (2, 6) (∗, 3) or (∗, 6) (2, 6)

q ≡ 8 (mod 21) (2, ∗) (∗, 2) or (∗, 6) (2, 2) or (2, 6)

q ≡ −8 (mod 21) (∗, 2) or (∗, 6) (2, ∗) (2, 2) or (2, 6)

q = 36k (∗, ∗) (∗, 2) or (∗, 6) (−, 2) or (−, 6)

q = 36k+3 (∗, 2) or (∗, 6) (∗, ∗) (−, 2) or (−, 6)

q = 36k±1 (∗, 6) (∗, 3) or (∗, 6) (−, 6)

q = 36k±2 (∗, 3) or (∗, 6) (∗, 6) (−, 6)

q ≡ 0 (mod 7) (∗, ∗) (2, ∗) (2,−)

Let p �= 2, 3, 7. A vector [a, n − a][n − b − c, b, c][m0,m1,m2,m3,m4,m5,m6] is
called admissible if it passes all tests T0 - T30 of Table B-1 and tests TA and TS . In
order to take account of the symmetry type, we introduce the following notation. For
s ∈ {1, 2}, and t ∈ {1, 2, 3, 6} we denote by N(s, t) the set of all natural numbers n
such that there is no admissible multiplicity vector which symmetry type is (ks, lt)
for some integers k, l. For instance, n = 12 belongs to N(2, 2), N(2, 3), N(2, 6),
N(1, 6), N(1, 3) and does not belong to N(1, 1) and N(2, 1) as for n = 12 the
admissible vectors are of symmetry type (2,1); see Table C-1. Similarly, the entries
for n = 15 are of symmetry type (1,6) or (2,1) so 15 belongs to N(2, 6), N(2, 2) and
N(2, 3) and does not belong to N(1, 1), N(2, 1), N(1, 3) and N(1, 6). Observe that
N(s, t) ⊆ N(2, 6). If p = 2 we denote a similar set by N2(s, t). If p = 3 or 7, we use
notation N3(∗, t) or N7(s, ∗) for a similar purpose. (We did not define the notion
of similarity type for unipotent elements. So n ∈ N3(∗, t) means that there is no
admissible multiplicity vector which symmetry type is (∗, lt) for some integer l.)
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In fact, the main use of the tables in Appendix C–Appendix F is for deducing the
following lemma.

Lemma 5.5. Assume 12 � n � 40 and n �= 13.
(1) Let n ∈ N(2, 6). Then n ∈ {12, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 31}.
(2) Let n ∈ N(1, 6). Then n ∈ {12, 16, 17, 18, 23, 24}.
(3) Let n ∈ N(2, 3). Then n � 19 or n = 23.
(4) Let n ∈ N(1, 3). Then n ∈ {12, 23}.
(5) Let n ∈ N(2, 2). Then n � 19 or n = 22.
(6) Let n ∈ N(1, 2). Then n ∈ {12, 16, 17, 18}.
(7) Let n ∈ N(2, 1). Then n = 14.
(8) Let n ∈ N2(2, 6). Then n < 21 or n ∈ {22, 23, 24, 25, 26, 30, 31, 32, 38}.
(9) Let n ∈ N2(1, 6). Then n ∈ {12, 16, 17, 18, 19, 22, 23, 24, 25, 31}.

(10) Let n ∈ N2(2, 3). Then n < 18 or n ∈ {19, 22, 23, 24, 25}.
(11) Let n ∈ N2(1, 3). Then n ∈ {12, 16, 17, 19, 22, 23}.
(12) Let n ∈ N2(2, 2). Then n � 20 or n = 22, 23.
(13) Let n ∈ N2(2, 1). Then n = 14.
(14) Let n ∈ N2(1, 2). Then n = 12, 16, 17, 18.
(15) Let n ∈ N3(∗, 6). Then n < 20 or n ∈ {22, 23, 24, 25, 31}.
(16) Let n ∈ N3(∗, 3). Then n < 17 or n ∈ {18, 19, 22, 23, 25}.
(17) Let n ∈ N3(∗, 2). Then n < 20 or n ∈ {22, 31}.
(18) Let n ∈ N7(2, ∗). Then n < 20 or n = 22.

Proof. This is achieved by inspection of the tables in Appendix C–Appendix F.

Remark. The restriction n � 40 in Lemma 5.5 is sufficient in order to prove our
results. However, we could show that N(2, 6) hence N(s, t) contains no entries for
n > 40.

In order to make transparent the matter of significance of Lemma 5.5 for deter-
mining non-Hurwitz groups, we record the following statement.

Lemma 5.6. Let φ : H237 → SL(n, q) (respectively, H237 → SU(n, q)) be an ab-
solutely irreducible representation. Suppose that φ(H) preserves no non-zero sym-
metric bilinear form. Then n �∈ N(s, t) for N(s, t) positioned in the row with the
above q in the second (respectively, third) column of Table 4. In particular, SL(n, q)
(respectively, SU(n, q)) is not Hurwitz if n ∈ N(s, t).

Proof. The multiplicity vector of φ(x), φ(y), φ(xy) is obviously admissible. As q is
given, its symmetry type (s, t), say, should agree with Table 3. So n �∈ N(s, t) by
the definition of N(s, t).

Proof of Theorem 1.3. By Lemma 5.6, we only have to determine the sets N(s, t),
N2(s, t), N3(∗, t) and N7(s, ∗) to fill the appropriate boxes in Tables 1 and 2. This
has been done in Lemma 5.5.

Corollary 5.7. (1) The group SL(n, 2) is not Hurwitz for n < 18 and n ∈
{19, 22, 23, 24, 25}.

(2) SL(n, 3) is not Hurwitz for n < 20 and n ∈ {22, 23, 24, 25, 31}.
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Table 4: Symmetry types and admissible multiplicity vectors.

SL(n, q) SU(n, q)

q ≡ 1 (mod 21) odd N(1, 1) N(2, 2)

q ≡ −1 (mod 21) odd N(2, 2) N(1, 1)

q ≡ 2,−10 (mod 21) odd N(2, 3) N(1, 6)

q ≡ −2, 10 (mod 21) odd N(1, 6) N(2, 3)

q ≡ 4,−5 (mod 21) odd N(1, 3) N(2, 6)

q ≡ −4, 5 (mod 21) odd N(2, 6) N(1, 3)

q ≡ 8 (mod 21) odd N(2, 1) N(1, 2)

q ≡ −8 (mod 21) odd N(1, 2) N(2, 1)

q = 36k N3(∗, 1) N3(∗, 2)

q = 36k+3 N3(∗, 2) N(∗, 1)

q = 36k±1 N3(∗, 6) N3(∗, 3)

q = 36k±2 N3(∗, 3) N3(∗, 6)

q ≡ 0 (mod 7) N7(1, ∗) N7(2, ∗)

q = 26k ≡ 1 (mod 21) N2(1, 1) N2(2, 2)

q = 26k±1 ≡ 2,−10 (mod 21) N2(2, 3) N2(1, 6)

q = 26k±2 ≡ 4,−5 (mod 21) N2(1, 3) N2(2, 6)

q = 26k+3 ≡ 8 (mod 21) N2(2, 1) N2(1, 2)

Proof of Theorem 1.4. Set G = φ(H). Let p �= 2, 3, 7. If q �≡ ±1 (mod 7) then the
symmetry type of Hurwitz generators for G is (2,6), otherwise (2, 2) or (2,6); see
Table 3. Therefore, n �∈ N(2, 6) in the former case and n �∈ N(2, 2) in the latter
case. As n is even, this coincides with what is recorded in statement (1) of the
theorem. Let p = 3. Then n �∈ N3(∗, 2) if q = 33l (which is a power of 27) otherwise
n �∈ N3(∗, 6). Let p = 7. Then n �∈ N7(2, ∗). Of course, in all the cases we have to
choose even n. This implies the theorem for odd p.
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Let p = 2. The case n = 6 has been settled in Proposition 5.2. Part (3) is
contained in Theorem 2.28 which also contains (2) for n = 10. Suppose that q �≡
1 (mod 7) or, equivalently, q = 26k±1 or q = 26k±2. Then the multiplicity vector
in question must be of (2,6) symmetry. Inspection of Table D-4 shows that n �=
18, 24 unless G preserves a quadratic form. (Theorem 2.28 follows from Table D-4
as well.) In addition, we show that φ cannot exist if n = 12 or 16. Let mV be
the multiplicity vector of φ(x), φ(y), φ(xy). Let n = 12. Suppose first that mV =
[6, 6][4, 4, 4][0, 2, 2, 2, 2, 2, 2]. Then dfA = 0, 2dfS = dfA − dy − dz = −4, dfS = −2,
dfV = 2, dfE = −4 which contradicts Lemma 2.18. The same holds if [6, 6] is
replaced by [7, 5]. For other choices of mV we have that dfA < −2. Let n = 16.
Suppose first that mV = [8, 8][4, 6, 6][4, 2, 2, 2, 2, 2, 2]. Then dfA = 256− 128− 16−
72− 16− 24 = 0, 2dfS = dfA − dy − dz = −8, dfS = −4, which is false. The option
mV = [8, 8][6, 5, 5][4, 2, 2, 2, 2, 2, 2] contradicts T 2

0 .

Remark. One can expect that Lemma 2.27(3) is useful to improve these results. In-
deed, one can observe that a few entries of symmetry (2,2) and (2,6) in Appendix E
and Appendix F do not satisfy Lemma 2.27(3). However, this does not affect the
final list of n in Theorem 1.4.

Proof of Theorem 1.5. Table G-1 contains no entry with n = 10. If p = 3 then
Table G-3 contains no entry with n = 8, 10, 11, 14, 17. If p = 7 then Table G-5
contains no entry with n = 9, 10, 11, 13, 16, 18. So for these values of n the result
follows.

Proof of Corollary 1.6. Suppose the contrary. Let first q = 7k. By Theorem 1.4,
Sp(8, q) is not Hurwitz (Theorem 1.4), so there is a surjective homomorphism
H̃ → Sp(8, q) where H̃ is a 2-fold covering of H237 (see Section 3). This leads
to an irreducible representation θ : H̃ → Sp(8, F ) such that θ(H̃) ∼= Sp(8, q) (where
F is an algebraically closed field of characteristic 7). Let φ : H̃ → GL(2, F ) be
the representation described in Lemma 3.3(3). Then φ ⊗ θ is an irreducible rep-
resentation of dimension 16. As Z(H̃) belongs to the kernel of φ ⊗ θ, this can be
viewed as a representation of H237. It is irreducible and (φ⊗θ)(H̃) is isomorphic to
a central product Sp(8, q) ◦SL(2, 7). Observe that θ(H̃) and φ(H̃) preserve bilinear
forms with skew symmetric Gram matrices A,B, say. Hence (φ ⊗ θ)(H̃) preserves
a bilinear form with matrix A ⊗ B which is symmetric. This contradicts Theorem
1.5.

Let q = 3k. By Theorem 1.5 groups Ω±(8, q) are not Hurwitz. As Ω−(8, q) is
centerless, we are left with examining the case where there is a surjective represen-
tation θ : H̃ → Ω+(8, q) ⊂ O(8, F ). Let φ : H̃ → SL(2, F ) and τ = φ⊗ θ. As in the
previous paragraph, τ(H̃) preserves a skew symmetric bilinear form hence τ(H̃) is
contained in Sp(16, F ). As τ(x̃2) = Id, one can view τ as a representation of H,
which contradicts Theorem 1.4.

Let n = 10. Let G denote G+ = Ω+(10, q) or G− = Ω−(10, q). If q is even
then the result is contained in Theorem 1.4(2). Let q be odd. If − Id �∈ G then the
result follows from Theorem 1.5. So assume that − Id ∈ G. Suppose that G/Z(G)
is Hurwitz. Then there is a surjective homomorphism θ : H̃ → G. Let φ : H̃ →
SL(2, F ) (as above) and τ = φ⊗ θ. Then τ(H̃) preserves a skew symmetric bilinear
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form hence τ(H̃) is contained in Sp(20, F ). As above, this contradicts Theorem
1.4(1). (Observe that − Id ∈ G+ if q ≡ 1 (mod 4), otherwise − Id ∈ G−; see [11,
Proposition 2.5.13].)

Remark. For p = 7, Corollary 1.6 can be proved straightforwardly. For this one
has to observe that the Jordan normal form of θ(xy) does not have block J7 by
Lemma 2.27. Computing dfA and dfE one gets a contradiction.

Proof of Theorem 1.7. Suppose first that p �= 3, 7. Then the symmetry type of
the multiplicity vector in question is (2,6). Tables G-1, G-2 contain no entry of
this symmetry for n = 9, 11, 17, 18, 24. So the result follows. Let p = 3. Then the
symmetry type is (∗, 6). Tables G-3 and G-4 contain no entry with (∗, 6) symmetry
for n = 8, 9, 10, 11, 16, 17, 18, 23, 24. This yields the result for p = 3. (The values
n = 8, 11, 17 have been excluded from the statement as they have already occurred
in Theorem 1.5.)

Proof of Theorem 1.8. Suppose the contrary. Then SL(n, 2) and SL(n, 3) are Hur-
witz. By Corollary 5.7, at least one of these groups is not Hurwitz for n < 20,
22 � n � 26 and n = 30, 31, 32. To treat the other cases let X,Y ∈ G be such that
X2 = Y 3 = (XY )7 = Id. Let m be the multiplicity vector for the triple X,Y,XY .
Then m is of (2, 6) symmetry type, and similarly for X (mod p), Y (mod p) and
XY (mod p) for p = 2. If p = 3, 7 then the symmetry types are (∗, 6) and (2, ∗), re-
spectively. This tells us that SL(n, 2) and SL(n, 3) have (2, 3, 7)-generators of (2, 6)
and (∗, 6), respectively. Therefore, the values n = 20, 26, 38 can be discarded as
the rows of Tables D-2 and D-3 for n = 20, 26 and 38 contain no vector of (2, 6)
symmetry.

Let n = 29. According to Table C-2, there are exactly 2 options for multiplic-
ity vectors of (2, 6)-symmetry type, namely, [13, 16][9, 10, 10][5, 4, 4, 4, 4, 4, 4] and
[15, 14][9, 10, 10][5, 4, 4, 4, 4, 4, 4]. The second option has to be discarded as the rows
of Table E-2 for n = 29 contain no vector of (∗, 6) symmetry and with the X-entry
[15, 14]. Consider the option with X-entry [13, 16]. Then X is conjugate in GL(n,Z)
to a matrix of shape diag(−1, . . . ,−1, 1, . . . , 1,M, . . . ,M) where M = ( 0 1

1 0 ) and
M, 1 or −1 may not occur. Let r, s, t be the number of occurrences of M , −1
and 1, respectively. Then the multiplicity vector of X is [r + t, r + s]. Obviously,
JordX (mod 2) is diag(rJ2, (s+ t)J1), and the multiplicity vector of this matrix is
[r + s + t, r]. If [r + t, r + s] = [13, 16] then r + s + t � 16. Hence the multiplicity
vector of X (mod 2) cannot be [15, 14], which is the only option allowed by Table
D-2.

Let n = 37. Table C-3 gives us the following options for the multiplicity vector,
namely, [17, 20] [11, 13, 13][7, 5, 5, 5, 5, 5, 5], [17, 20][13, 12, 12][7, 5, 5, 5, 5, 5, 5] and
[19, 18] [11, 13, 13] [7, 5, 5, 5, 5, 5, 5]. As [19, 18][11, 13, 13][7, 5, 5, 5, 5, 5, 5] is the only
vector of symmetry (2,6) for n = 37 in Table D-3, we immediately dispose of the
second option, while the first option can be ruled out as was done for n = 29.
Indeed, r + s + t � 20 so the multiplicity vector of X (mod 2) cannot be [19, 18].
So we are left with the third option. However, the multiplicity vector of X (mod 3)
cannot be [19, 18] by Table E-4.
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6. Tables

Here we explain how to read the tables given below.

In Appendix A, Tables A-1 to A-4 list multiplicity vectors for rigid represen-
tations described in Section 3. It is partitioned into Tables A-1 (p �= 2, 3, 7), A-2
(p = 2), A-3 (p = 3) and A-4 (p = 7). Recall that p = p if p(p2 − 1) is divisible by
7; otherwise p = p3.

Tables B-1 to B-4 of Appendix B list formulas to be satisfied by the multiplicity
vectors of irreducible representations ofH237. The restriction on n in the 3rd column
is for the reader’s guidance only. In fact, the right restriction is weaker, and can be
extracted from the lemma indicated in the ‘reference’ column.

The tables in Appendix C–Appendix F list admissible multiplicity vectors of cer-
tain dimensions, that is, those which pass the tests TA, TS , TE and the tests from
Tables B. (Test TE is used only for p = 2; see the remark after Proposition 4.6.) In
all these tables except D-4 passing TS means that dfS � 0 and passing TE means
that dfE � 0. So the tables are used for showing that H237 does not have irreducible
representations with certain multiplicity vectors preserving no symmetric bilinear
form. (See Proposition 2.18 and the comments following it.) In contrast, Table D-4
has been created assuming that test TS means dfS � −1 and TE means dfE � −2.
In addition, we require each multiplicity vector to be of (2, 2) or (2, 6) symmetry
according with Table 3. Thus, in this case we call a multiplicity vector admissible
‘symplectic’ if it is of (2, 2) or (2, 6) symmetry and passes tests T 2

0 - T 2
16 of Table

B-2 and tests TA, TS , TE . Table D-4 is used for showing that H237 does not have
irreducible representations with certain multiplicity vectors in characteristic 2 pre-
serving a symmetric bilinear form and no alternating bilinear form. Observe that
Lemma 2.27 has not been used for producing Table D-4; however, every entry of
this table satisfies Lemma 2.27.

In Appendix G, Tables G-1 to G-5 list admissible ‘orthogonal’ multiplicity vec-
tors. If p �= 2, 3, 7 then a multiplicity vector

mV = [mφ(x)
V ][mφ(y)

V ][mφ(xy)
V ]

is called admissible ‘orthogonal’ if it is of (2, 2) or (2, 6) symmetry, passes tests TA,
T0 - T30 and dfS � −2. If p = 3 (respectively, 7) then a multiplicity vector is called
admissible orthogonal if it is of (∗, 2) (respectively, (2, ∗)) symmetry, passes tests
TA, T 3

0 – T 3
22 (respectively, T 7

0 - T 3
5 ) and dfS � −2 and, additionally, the respective

Jordan form of φ(y) (respectively, φ(xy) satisfies the condition of Lemma 2.27.

We observe that the tables in Appendix A in fact contain all rigid irreducible
representations in dimension less than 14. Indeed, if both φ(y), φ(xy) are real, this
follows from Proposition 4.12. If φ(y) or φ(xy) is not real then φ(H237) preserves
no symmetric bilinear form (Lemma 2.27). Therefore, the multiplicity vector of φ
is admissible. This means that the multiplicity vector of φ appears in the tables
in Appendix C–Appendix F. By inspection of these tables, there are no other ad-
missible multiplicity vector for n < 14 except those in the tables of Appendix A.
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Appendix: the tables

Appendix A. Multiplicity vectors for rigid representations of H237

Table A-1: 1 < n � 13 and p �= 2, 3, 7.

no. dim multiplicity vector p image
1 3 [1, 2] [1, 1, 1] [1, 1, 0, 0, 0, 0, 1] PSL2(p)
2 3 [1, 2] [1, 1, 1] [1, 0, 1, 0, 0, 1, 0] PSL2(p)
3 3 [1, 2] [1, 1, 1] [1, 0, 0, 1, 1, 0, 0] PSL2(p)
4 3 [1, 2] [1, 1, 1] [0, 1, 1, 0, 1, 0, 0] SL(3, 2)
5 3 [1, 2] [1, 1, 1] [0, 0, 0, 1, 0, 1, 1] SL(3, 2)
6 4 [2, 2] [2, 1, 1] [0, 1, 1, 0, 0, 1, 1] (7, p2 − 1) = 1 PSL2(p3)
6′ 4 [2, 2] [2, 1, 1] [0, 1, 1, 0, 0, 1, 1] (7, p2 − 1) �= 1 SL2(p) ◦ SL2(p)
7 4 [2, 2] [2, 1, 1] [0, 1, 0, 1, 1, 0, 1] (7, p2 − 1) = 1 PSL2(p3)
7′ 4 [2, 2] [2, 1, 1] [0, 1, 0, 1, 1, 0, 1] (7, p2 − 1) �= 1 SL2(p) ◦ SL2(p)
8 4 [2, 2] [2, 1, 1] [0, 0, 1, 1, 1, 1, 0] (7, p2 − 1) = 1 PSL2(p3)
8′ 4 [2, 2] [2, 1, 1] [0, 0, 1, 1, 1, 1, 0] (7, p2 − 1) �= 1 SL2(p) ◦ SL2(p)
9 5 [3, 2] [1, 2, 2] [1, 0, 1, 1, 1, 1, 0] PSL2(p)
10 5 [3, 2] [1, 2, 2] [1, 1, 0, 1, 1, 0, 1] PSL2(p)
11 5 [3, 2] [1, 2, 2] [1, 1, 1, 0, 0, 1, 1] PSL2(p)
12 6 [4, 2] [2, 2, 2] [0, 1, 1, 1, 1, 1, 1] SL3(2)
13 7 [3, 4] [1, 3, 3] [1, 1, 1, 1, 1, 1, 1] PSL(2, 8)
14 8 [4, 4] [2, 3, 3] [1, 1, 1, 0, 2, 1, 2] SL2(p) ◦ SL2(7)
15 8 [4, 4] [2, 3, 3] [1, 2, 1, 1, 1, 2, 0] SL2(p) ◦ SL2(7)
16 8 [4, 4] [2, 3, 3] [1, 1, 2, 2, 1, 0, 1] SL2(p) ◦ SL2(7)
17 8 [4, 4] [2, 3, 3] [0, 2, 1, 1, 1, 1, 2] (7, p2 − 1) = 1 PSL2(p3)
17′ 8 [4, 4] [2, 3, 3] [0, 2, 1, 1, 1, 1, 2] (7, p2 − 1) �= 1 SL2(p) ◦ SL2(p)
18 8 [4, 4] [2, 3, 3] [0, 1, 2, 1, 1, 2, 1] (7, p2 − 1) = 1 PSL2(p3)
18′ 8 [4, 4] [2, 3, 3] [0, 1, 2, 1, 1, 2, 1] (7, p2 − 1) �= 1 SL2(p) ◦ SL2(p)
19 8 [4, 4] [2, 3, 3] [0, 1, 1, 2, 2, 1, 1] (7, p2 − 1) = 1 PSL2(p3)
19′ 8 [4, 4] [2, 3, 3] [0, 1, 1, 2, 2, 1, 1] (7, p2 − 1) �= 1 SL2(p) ◦ SL2(p)
20 8 [4, 4] [2, 3, 3] [1, 2, 1, 2, 0, 1, 1] SL2(p) ◦ SL2(7)
21 8 [4, 4] [2, 3, 3] [1, 0, 2, 1, 1, 1, 2] SL2(p) ◦ SL2(7)
22 8 [4, 4] [2, 3, 3] [1, 1, 0, 1, 2, 2, 1] SL2(p) ◦ SL2(7)
23 9 [5, 4] [3, 3, 3] [1, 2, 2, 2, 1, 1, 0] PSL2(p) × SL3(2)
24 9 [5, 4] [3, 3, 3] [1, 1, 2, 1, 2, 0, 2] PSL2(p) × SL3(2)
25 9 [5, 4] [3, 3, 3] [1, 1, 2, 2, 0, 1, 2] PSL2(p) × SL3(2)
26 9 [5, 4] [3, 3, 3] [1, 2, 0, 2, 1, 2, 1] PSL2(p) × SL3(2)
27 9 [5, 4] [3, 3, 3] [1, 2, 1, 0, 2, 2, 1] PSL2(p) × SL3(2)
28 9 [5, 4] [3, 3, 3] [1, 0, 1, 1, 2, 2, 2] PSL2(p) × SL3(2)
29 13 [7, 6] [4, 3, 6] [1, 2, 2, 2, 2, 2, 2] PSL2(27)
30 13 [7, 6] [4, 6, 3] [1, 2, 2, 2, 2, 2, 2] PSL2(27)
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Table A-2: 1 < n � 13 and p = 2.

no. dim multiplicity vector image
1 2 [1, 1] [0, 1, 1] [0, 1, 0, 0, 0, 0, 1] SL2(8)
2 2 [1, 1] [0, 1, 1] [0, 0, 1, 0, 0, 1, 0] SL2(8)
3 2 [1, 1] [0, 1, 1] [0, 0, 0, 1, 1, 0, 0] SL2(8)
4 3 [2, 1] [1, 1, 1] [0, 1, 1, 0, 1, 0, 0] SL3(2)
5 3 [2, 1] [1, 1, 1] [0, 0, 0, 1, 0, 1, 1] SL3(2)
6 4 [2, 2] [2, 1, 1] [0, 1, 1, 0, 0, 1, 1] SL2(8)
7 4 [2, 2] [2, 1, 1] [0, 1, 0, 1, 1, 0, 1] SL2(8)
8 4 [2, 2] [2, 1, 1] [0, 0, 1, 1, 1, 1, 0] SL2(8)
9 6 [3, 3] [2, 2, 2] [1, 1, 1, 2, 0, 1, 0] SL2(8) × SL3(2)
10 6 [3, 3] [2, 2, 2] [1, 0, 1, 0, 2, 1, 1] SL2(8) × SL3(2)
11 6 [3, 3] [2, 2, 2] [1, 0, 1, 1, 1, 0, 2] SL2(8) × SL3(2)
12 6 [3, 3] [2, 2, 2] [1, 2, 0, 1, 1, 1, 0] SL2(8) × SL3(2)
13 6 [3, 3] [2, 2, 2] [1, 1, 0, 0, 1, 2, 1] SL2(8) × SL3(2)
14 6 [3, 3] [2, 2, 2] [1, 1, 2, 1, 0, 0, 1] SL2(8) × SL3(2)
15 13 [7, 6] [4, 3, 6] [1, 2, 2, 2, 2, 2, 2] PSL2(27)
16 13 [7, 6] [4, 6, 3] [1, 2, 2, 2, 2, 2, 2] PSL2(27)

Table A-3: 1 < n � 13 and p = 3.

no. dim multiplicity vector image
1 3 [1, 2][1, 1, 1][1, 1, 0, 0, 0, 0, 1] PSL2(27)
2 3 [1, 2][1, 1, 1][1, 0, 1, 0, 0, 1, 0] PSL2(27)
3 3 [1, 2][1, 1, 1][1, 0, 0, 1, 1, 0, 0] PSL2(27)
4 3 [1, 2][1, 1, 1][0, 1, 1, 0, 1, 0, 0] SL3(2)
5 3 [1, 2][1, 1, 1][0, 0, 0, 1, 0, 1, 1] SL3(2)
6 4 [2, 2][2, 1, 1][0, 1, 1, 0, 0, 1, 1] PSL2(27)
7 4 [2, 2][2, 1, 1][0, 1, 0, 1, 1, 0, 1] PSL2(27)
8 4 [2, 2][2, 1, 1][0, 0, 1, 1, 1, 1, 0] PSL2(27)
9 6 [4, 2][2, 2, 2][0, 1, 1, 1, 1, 1, 1] SL3(2)

10 7 [3, 4][3, 3, 1][1, 1, 1, 1, 1, 1, 1] SL2(8)
11 8 [4, 4][3, 3, 2][1, 2, 1, 2, 0, 1, 1] SL2(27) ◦ SL2(7)
12 8 [4, 4][3, 3, 2][1, 0, 2, 1, 1, 1, 2] SL2(27) ◦ SL2(7)
13 8 [4, 4][3, 3, 2][1, 1, 0, 1, 2, 2, 1] SL2(27) ◦ SL2(7)
14 8 [4, 4][3, 3, 2][1, 1, 1, 0, 2, 1, 2] SL2(27) ◦ SL2(7)
15 8 [4, 4][3, 3, 2][1, 2, 1, 1, 1, 2, 0] SL2(27) ◦ SL2(7)
16 8 [4, 4][3, 3, 2][1, 1, 2, 2, 1, 0, 1] SL2(27) ◦ SL2(7)
17 9 [5, 4][3, 3, 3][1, 2, 2, 2, 1, 1, 0] PSL2(27) × SL3(2)
18 9 [5, 4][3, 3, 3][1, 1, 2, 1, 2, 0, 2] PSL2(27) × SL3(2)
19 9 [5, 4][3, 3, 3][1, 1, 2, 2, 0, 1, 2] PSL2(27) × SL3(2)
20 9 [5, 4][3, 3, 3][1, 2, 0, 2, 1, 2, 1] PSL2(27) × SL3(2)
21 9 [5, 4][3, 3, 3][1, 2, 1, 0, 2, 2, 1] PSL2(27) × SL3(2)
22 9 [5, 4][3, 3, 3][1, 0, 1, 1, 2, 2, 2] PSL2(27) × SL3(2)
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Table A-4: 1 < n � 13 and p = 7.

no. dim multiplicity vector image
1 3 [1, 2] [1, 1, 1] [1, 1, 1, 0, 0, 0, 0] PSL2(7)
2 5 [3, 2] [1, 2, 2] [1, 1, 1, 1, 1, 0, 0] PSL2(7)
3 7 [3, 4] [1, 3, 3] [1, 1, 1, 1, 1, 1, 1] SL2(8)
4 13 [7, 6] [4, 3, 6] [2, 2, 2, 2, 2, 2, 1] PSL(2, 27)
5 13 [7, 6] [4, 6, 3] [2, 2, 2, 2, 2, 2, 1] PSL(2, 27)

Appendix B. Testing inequalities

Table B-1: p �= 2, 3, 7.

ref. testing inequality warning reference
T0 a+m0 � b+ c n > 1 formula (5)
T1 m0 +m1 +m6 � a n �= 3 Lemma 3.5
T2 m0 +m2 +m5 � a n �= 3 Lemma 3.5
T3 m0 +m3 +m4 � a n �= 3 Lemma 3.5
T4 m1 +m2 +m4 � a n �= 3 Lemma 3.6
T5 m3 +m5 +m6 � a n �= 3 Lemma 3.6
T6 m1 +m2 +m5 +m6 � b+ c n �= 4 Lemma 3.13
T7 m1 +m3 +m4 +m6 � b+ c n �= 4 Lemma 3.13
T8 m2 +m3 +m4 +m5 � b+ c n �= 4 Lemma 3.13
T9 a+ b+ c � n+m1 +m6 n �= 5 Lemma 3.5
T10 a+ b+ c � n+m2 +m5 n �= 5 Lemma 3.5
T11 a+ b+ c � n+m3 +m4 n �= 5 Lemma 3.5
T12 2a � n+m0 n �= 6 Lemma 3.7
T13 2b+ 2c � n+ a n �= 7 Lemma 3.8
T14 b+ c+m1 +m6 � n+m0 n �= 8 Lemma 3.14
T15 b+ c+m2 +m5 � n+m0 n �= 8 Lemma 3.14
T16 b+ c+m3 +m4 � n+m0 n �= 8 Lemma 3.14
T17 b+ c+m1 +m3 � n+m4 n �= 8 Lemma 3.14
T18 b+ c+m2 +m6 � n+m1 n �= 8 Lemma 3.14
T19 b+ c+m4 +m5 � n+m2 n �= 8 Lemma 3.14
T20 b+ c+m4 +m6 � n+m3 n �= 8 Lemma 3.14
T21 b+ c+m1 +m5 � n+m6 n �= 8 Lemma 3.14
T22 b+ c+m2 +m3 � n+m5 n �= 8 Lemma 3.14
T23 a+m1 +m2 +m3 � n+m6 n �= 9 Lemma 3.15
T24 a+m2 +m4 +m6 � n+m5 n �= 9 Lemma 3.15
T25 a+m2 +m3 +m6 � n+m4 n �= 9 Lemma 3.15
T26 a+m1 +m3 +m5 � n+m2 n �= 9 Lemma 3.15
T27 a+m1 +m4 +m5 � n+m3 n �= 9 Lemma 3.15
T28 a+m4 +m5 +m6 � n+m1 n �= 9 Lemma 3.15
T29 a+ 2c � n+ b+m0 n �= 13 Lemma 3.9
T30 a+ 2b � n+ c+m0 n �= 13 Lemma 3.9
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Table B-2: p = 2.

no. testing inequality warning reference
T 2

0 a+m0 � b+ c n > 1 formula (5)
T 2

1 b+ c+m1 +m6 � n n �= 2 Lemma 3.5
T2 b+ c+m2 +m5 � n n �= 2 Lemma 3.5
T 2

3 b+ c+m3 +m4 � n n �= 2 Lemma 3.5
T 2

4 a+m1 +m2 +m4 � n n �= 3 Lemma 3.6
T 2

5 a+m3 +m5 +m6 � n n �= 3 Lemma 3.6
T 2

6 m1 +m2 +m5 +m6 � b+ c n �= 4 Lemma 3.13
T 2

7 m1 +m3 +m4 +m6 � b+ c n �= 4 Lemma 3.13
T 2

8 m2 +m3 +m4 +m5 � b+ c n �= 4 Lemma 3.13
T 2

9 m3 � m4 +m6 n �= 6 Lemma 3.14
T 2

10 m4 � m1 +m3 n �= 6 Lemma 3.14
T 2

11 m6 � m1 +m5 n �= 6 Lemma 3.14
T 2

12 m1 � m2 +m6 n �= 6 Lemma 3.14
T 2

13 m5 � m2 +m3 n �= 6 Lemma 3.14
T 2

14 m2 � m4 +m5 n �= 6 Lemma 3.14
T15 a+ 2c � n+ b+m0 n �= 13 Lemma 3.9
T 2

16 a+ 2b � n+ c+m0 n �= 13 Lemma 3.9

Table B-3: p = 3.

no. testing inequality warning reference
T 3

0 a+m0 � b+ c n > 1 formula (5)
T 3

1 m0 +m1 +m6 � a n �= 3 Lemma 3.5
T 3

2 m0 +m2 +m5 � a n �= 3 Lemma 3.5
T 3

3 m0 +m3 +m4 � a n �= 3 Lemma 3.5
T 3

4 m1 +m2 +m4 � a n �= 3 Lemma 3.6
T 3

5 m3 +m5 +m6 � a n �= 3 Lemma 3.6
T 3

6 m1 +m2 +m5 +m6 � b+ c n �= 4 Lemma 3.13
T 3

7 m1 +m3 +m4 +m6 � b+ c n �= 4 Lemma 3.13
T 3

8 m2 +m3 +m4 +m5 � b+ c n �= 4 Lemma 3.13
T 3

9 2a � n+m0 n �= 6 Lemma 3.7
T 3

10 n � a+ 2c n �= 7 Lemma 3.8
T 3

11 m1 +m3 � m4 + c n �= 8 Lemma 3.14
T 3

12 m2 +m6 � m1 + c n �= 8 Lemma 3.14
T 3

13 m4 +m5 � m2 + c n �= 8 Lemma 3.14
T 3

14 m4 +m6 � m3 + c n �= 8 Lemma 3.14
T 3

15 m1 +m5 � m6 + c n �= 8 Lemma 3.14
T 3

16 m2 +m3 � m5 + c n �= 8 Lemma 3.14
T 3

17 a+m1 +m2 +m3 � n+m6 n �= 9 Lemma 3.15
T 3

18 a+m2 +m4 +m6 � n+m5 n �= 9 Lemma 3.15
T 3

19 a+m2 +m3 +m6 � n+m4 n �= 9 Lemma 3.15
T 3

20 a+m1 +m3 +m5 � n+m2 n �= 9 Lemma 3.15
T 3

21 a+m1 +m4 +m5 � n+m3 n �= 9 Lemma 3.15
T 3

22 a+m4 +m5 +m6 � n+m1 n �= 9 Lemma 3.15
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Table B-4: p = 7.

no. testing inequality warning
T 7

0 a+m0 � b+ c n > 1 formula (5)
T 7

1 m0 +m1 +m2 � a n �= 3 Lemma 3.5
T 7

2 a+ b+ c � n+m5 +m6 n �= 5 Lemma 3.5
T 7

3 2b+ 2c � n+ a n �= 7 Lemma 3.8
T 7

4 a+ 2c � n+ b+m6 n �= 13 Lemma 3.9
T 7

5 a+ 2b � n+ c+m6 n �= 13 Lemma 3.9

NOTE: In all the tables below we omit multiplicity vectors that can be
obtained from each other by substitutions ω → ω2 and ε→ εi for 1 � i � 6.

Appendix C. Admissible multiplicity vectors for p �= 2, 3, 7

Table C-1: 1 < n < 20.

n multiplicity vector rid. index symm. type
3 [1, 2][1, 1, 1][1, 1, 0, 0, 0, 0, 1] 0 (2,2)
3 [1, 2][1, 1, 1][0, 1, 1, 0, 1, 0, 0] 0 (2,3)
8 [4, 4][2, 3, 3][1, 2, 1, 2, 0, 1, 1] 0 (2,1)
9 [5, 4][3, 3, 3][1, 2, 2, 2, 1, 1, 0] 0 (2,1)
12 [6, 6][4, 4, 4][1, 1, 2, 1, 3, 2, 2] 2 (2,1)
12 [6, 6][4, 4, 4][2, 1, 2, 3, 1, 1, 2] 2 (2,1)
13 [7, 6][4, 3, 6][1, 2, 2, 2, 2, 2, 2] 0 (1,6)
14 [6, 8][5, 3, 6][2, 2, 2, 2, 2, 2, 2] 0 (1,6)
15 [7, 8][4, 4, 7][3, 2, 2, 2, 2, 2, 2] 0 (1,6)
15 [7, 8][5, 5, 5][2, 1, 3, 2, 2, 2, 3] 4 (2,1)
16 [8, 8][6, 5, 5][2, 1, 2, 2, 3, 3, 3] 4 (2,1)
16 [8, 8][5, 4, 7][2, 2, 2, 3, 3, 2, 2] 2 (1,2)
16 [8, 8][4, 6, 6][2, 1, 2, 2, 3, 3, 3] 2 (2,1)
16 [8, 8][6, 5, 5][2, 1, 3, 1, 3, 2, 4] 0 (2,1)
16 [8, 8][5, 4, 7][2, 1, 2, 2, 3, 3, 3] 0 (1,1)
16 [8, 8][5, 4, 7][3, 1, 2, 3, 2, 3, 2] 0 (1,1)
16 [8, 8][5, 4, 7][3, 1, 3, 2, 2, 2, 3] 0 (1,1)
17 [9, 8][5, 6, 6][2, 2, 2, 3, 2, 3, 3] 6 (2,3)
17 [9, 8][5, 6, 6][2, 1, 3, 3, 3, 2, 3] 4 (2,1)
17 [9, 8][5, 6, 6][3, 1, 2, 2, 3, 3, 3] 4 (2,1)
17 [9, 8][5, 6, 6][2, 2, 2, 2, 3, 4, 2] 4 (2,1)
17 [9, 8][6, 4, 7][2, 2, 2, 3, 2, 3, 3] 2 (1,3)
17 [9, 8][5, 6, 6][1, 2, 3, 4, 2, 2, 3] 2 (2,1)
17 [9, 8][5, 6, 6][3, 1, 2, 3, 2, 2, 4] 2 (2,1)
17 [9, 8][6, 4, 7][2, 1, 3, 3, 3, 2, 3] 0 (1,1)
17 [9, 8][6, 4, 7][2, 2, 2, 2, 3, 4, 2] 0 (1,1)
18 [10, 8][6, 6, 6][2, 2, 3, 4, 2, 2, 3] 4 (2,1)
18 [10, 8][6, 6, 6][2, 1, 3, 3, 2, 3, 4] 2 (2,1)
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18 [10, 8][6, 6, 6][2, 2, 2, 5, 2, 3, 2] 0 (2,1)
18 [8, 10][5, 5, 8][2, 2, 3, 3, 3, 3, 2] 0 (1,2)
18 [10, 8][5, 5, 8][3, 2, 2, 3, 2, 3, 3] 0 (1,3)
18 [10, 8][6, 6, 6][2, 1, 2, 4, 3, 2, 4] 0 (2,1)
18 [8, 10][6, 6, 6][2, 1, 3, 2, 4, 2, 4] 0 (2,1)
19 [9, 10][7, 6, 6][2, 2, 3, 2, 4, 3, 3] 6 (2,1)
19 [9, 10][7, 6, 6][3, 2, 2, 2, 3, 3, 4] 6 (2,1)
19 [9, 10][6, 5, 8][3, 2, 3, 3, 3, 3, 2] 4 (1,2)
19 [9, 10][5, 7, 7][2, 2, 3, 2, 4, 3, 3] 4 (2,1)
19 [9, 10][5, 7, 7][3, 2, 2, 2, 3, 3, 4] 4 (2,1)
19 [9, 10][6, 5, 8][1, 3, 3, 3, 3, 3, 3] 2 (1,6)
19 [9, 10][6, 5, 8][4, 2, 2, 3, 2, 3, 3] 2 (1,3)
19 [9, 10][7, 6, 6][3, 1, 3, 2, 4, 2, 4] 2 (2,1)
19 [9, 10][6, 5, 8][2, 2, 3, 2, 4, 3, 3] 2 (1,1)
19 [9, 10][6, 5, 8][3, 2, 2, 2, 3, 3, 4] 2 (1,1)
19 [9, 10][6, 5, 8][2, 1, 4, 3, 3, 3, 3] 0 (1,1)
19 [9, 10][6, 5, 8][2, 2, 2, 3, 4, 4, 2] 0 (1,1)

Table C-2: Admissible multiplicity vectors with symmetries
(2, 6), (1, 6), (2, 3), (2, 2), (1, 3), and (1, 2) for 19 < n < 32

(for n = 31 the vectors with symmetries (1, 2) and (1, 3) are not included).

n multiplicity vector rid. index symm. type
20 [10, 10][6, 7, 7][2, 3, 3, 3, 3, 3, 3] 10 (2,6)
20 [10, 10][5, 6, 9][2, 3, 3, 3, 3, 3, 3] 2 (1,6)
20 [10, 10][7, 5, 8][2, 3, 3, 3, 3, 3, 3] 6 (1,6)
21 [11, 10][7, 7, 7][3, 3, 3, 3, 3, 3, 3] 12 (2,6)
21 [11, 10][6, 6, 9][3, 3, 3, 3, 3, 3, 3] 6 (1,6)
21 [9, 12][6, 6, 9][3, 3, 3, 3, 3, 3, 3] 2 (1,6)
22 [10, 12][7, 6, 9][4, 3, 3, 3, 3, 3, 3] 6 (1,6)
22 [10, 12][7, 6, 9][2, 3, 3, 4, 4, 3, 3] 4 (1,2)
22 [12, 10][7, 6, 9][2, 3, 3, 4, 4, 3, 3] 4 (1,2)
22 [12, 10][6, 8, 8][4, 2, 2, 4, 2, 4, 4] 2 (2,3)
23 [11, 12][7, 8, 8][3, 3, 3, 4, 4, 3, 3] 12 (2,2)
23 [11, 12][6, 7, 10][3, 3, 3, 4, 4, 3, 3] 4 (1,2)
23 [11, 12][8, 6, 9][3, 3, 3, 4, 4, 3, 3] 8 (1,2)
24 [12, 12][6, 9, 9][3, 3, 3, 4, 3, 4, 4] 8 (2,3)
24 [12, 12][8, 8, 8][3, 3, 3, 4, 3, 4, 4] 14 (2,3)
24 [12, 12][7, 7, 10][3, 3, 3, 4, 3, 4, 4] 8 (1,3)
24 [12, 12][9, 6, 9][3, 3, 3, 4, 3, 4, 4] 8 (1,3)
24 [12, 12][7, 7, 10][3, 3, 3, 4, 3, 4, 4] 8 (1,3)
24 [12, 12][8, 8, 8][4, 3, 3, 4, 4, 3, 3] 14 (2,2)
24 [12, 12][8, 8, 8][2, 3, 4, 4, 4, 4, 3] 12 (2,2)
24 [12, 12][7, 7, 10][4, 3, 3, 4, 4, 3, 3] 8 (1,2)
24 [12, 12][7, 7, 10][2, 3, 4, 4, 4, 4, 3] 6 (1,2)
25 [13, 12][8, 7, 10][1, 4, 4, 4, 4, 4, 4] 4 (1,6)
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25 [13, 12][7, 9, 9][4, 3, 3, 4, 3, 4, 4] 12 (2,3)
25 [13, 12][7, 9, 9][3, 3, 4, 4, 4, 4, 3] 12 (2,2)
25 [13, 12][9, 8, 8][3, 3, 4, 4, 4, 4, 3] 14 (2,2)
25 [13, 12][6, 8, 11][4, 3, 3, 4, 3, 4, 4] 2 (1,3)
25 [13, 12][8, 7, 10][4, 3, 3, 4, 3, 4, 4] 10 (1,3)
25 [13, 12][8, 7, 10][3, 3, 4, 4, 4, 4, 3] 10 (1,2)
25 [13, 12][8, 7, 10][3, 3, 3, 5, 5, 3, 3] 6 (1,2)
25 [11, 14][8, 7, 10][3, 3, 4, 4, 4, 4, 3] 6 (1,2)
26 [12, 14][8, 9, 9][2, 4, 4, 4, 4, 4, 4] 12 (2,6)
26 [14, 12][8, 9, 9][2, 4, 4, 4, 4, 4, 4] 12 (2,6)
26 [12, 14][7, 8, 11][2, 4, 4, 4, 4, 4, 4] 8 (1,6)
26 [14, 12][7, 8, 11][2, 4, 4, 4, 4, 4, 4] 4 (1,6)
26 [12, 14][9, 7, 10][2, 4, 4, 4, 4, 4, 4] 8 (1,6)
26 [14, 12][9, 7, 10][2, 4, 4, 4, 4, 4, 4] 8 (1,6)
26 [12, 14][8, 9, 9][5, 3, 3, 4, 3, 4, 4] 12 (2,3)
26 [12, 14][7, 8, 11][5, 3, 3, 4, 3, 4, 4] 4 (1,3)
26 [12, 14][9, 7, 10][5, 3, 3, 4, 3, 4, 4] 8 (1,3)
26 [14, 12][7, 8, 11][5, 3, 3, 4, 3, 4, 4] 4 (1,3)
26 [12, 14][8, 9, 9][4, 3, 4, 4, 4, 4, 3] 14 (2,2)
26 [14, 12][8, 9, 9][4, 3, 4, 4, 4, 4, 3] 14 (2,2)
26 [12, 14][7, 8, 11][4, 3, 4, 4, 4, 4, 3] 6 (1,2)
26 [12, 14][9, 7, 10][4, 3, 4, 4, 4, 4, 3] 10 (1,2)
27 [13, 14][7, 10, 10][3, 4, 4, 4, 4, 4, 4] 12 (2,6)
27 [13, 14][9, 9, 9][3, 4, 4, 4, 4, 4, 4] 18 (2,6)
27 [15, 12][9, 9, 9][3, 4, 4, 4, 4, 4, 4] 14 (2,6)
27 [13, 14][8, 8, 11][3, 4, 4, 4, 4, 4, 4] 12 (1,6)
27 [15, 12][8, 8, 11][3, 4, 4, 4, 4, 4, 4] 8 (1,6)
27 [13, 14][10, 7, 10][3, 4, 4, 4, 4, 4, 4] 12 (1,6)
27 [15, 12][9, 9, 9][3, 3, 3, 5, 3, 5, 5] 8 (2,3)
27 [15, 12][7, 10, 10][3, 3, 3, 5, 3, 5, 5] 2 (2,3)
27 [13, 14][9, 9, 9][5, 3, 4, 4, 4, 4, 3] 16 (2,2)
27 [13, 14][9, 9, 9][3, 3, 4, 5, 5, 4, 3] 14 (2,2)
27 [13, 14][9, 9, 9][3, 3, 5, 4, 4, 5, 3] 14 (2,2)
27 [13, 14][8, 8, 11][6, 3, 3, 4, 3, 4, 4] 6 (1,3)
27 [15, 12][8, 8, 11][3, 3, 3, 5, 3, 5, 5] 2 (1,3)
27 [13, 14][8, 8, 11][5, 3, 4, 4, 4, 4, 3] 10 (1,2)
27 [13, 14][8, 8, 11][3, 3, 4, 5, 5, 4, 3] 8 (1,2)
27 [13, 14][8, 8, 11][3, 3, 5, 4, 4, 5, 3] 8 (1,2)
28 [14, 14][8, 10, 10][4, 4, 4, 4, 4, 4, 4] 18 (2,6)
28 [14, 14][10, 9, 9][4, 4, 4, 4, 4, 4, 4] 20 (2,6)
28 [14, 14][9, 8, 11][4, 4, 4, 4, 4, 4, 4] 16 (1,6)
28 [12, 16][9, 8, 11][4, 4, 4, 4, 4, 4, 4] 8 (1,6)
28 [14, 17][7, 9, 12][4, 4, 4, 4, 4, 4, 4] 8 (1,6)
28 [14, 14][10, 6, 12][4, 4, 4, 4, 4, 4, 4] 2 (1,6)
28 [16, 12][8, 10, 10][4, 3, 3, 5, 3, 5, 5] 4 (2,3)
28 [14, 14][8, 10, 10][4, 3, 4, 5, 5, 4, 3] 14 (2,2)
28 [14, 14][8, 10, 10][4, 3, 5, 4, 4, 5, 3] 14 (2,2)
28 [14, 14][10, 9, 9][2, 4, 4, 5, 5, 4, 4] 14 (2,2)
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28 [14, 14][8, 10, 10][2, 4, 4, 5, 5, 4, 4] 14 (2,2)
28 [14, 14][10, 9, 9][4, 3, 4, 5, 5, 4, 3] 16 (2,2)
28 [14, 14][10, 9, 9][4, 3, 5, 4, 4, 5, 3] 16 (2,2)
28 [14, 14][9, 8, 11][4, 3, 4, 5, 5, 4, 3] 12 (1,2)
28 [14, 14][9, 8, 11][4, 3, 5, 4, 4, 5, 3] 12 (1,2)
28 [14, 14][9, 8, 11][2, 4, 4, 5, 5, 4, 4] 10 (1,2)
29 [13, 16][9, 10, 10][5, 4, 4, 4, 4, 4, 4] 16 (2,6)
29 [15, 14][9, 10, 10][5, 4, 4, 4, 4, 4, 4] 20 (2,6)
29 [13, 16][8, 9, 12][5, 4, 4, 4, 4, 4, 4] 8 (1,6)
29 [13, 16][10, 8, 11][5, 4, 4, 4, 4, 4, 4] 12 (1,6)
29 [15, 14][8, 9, 12][5, 4, 4, 4, 4, 4, 4] 12 (1,6)
29 [15, 14][9, 7, 13][5, 4, 4, 4, 4, 4, 4] 8 (1,6)
29 [15, 14][9, 10, 10][2, 4, 4, 5, 4, 5, 5] 14 (2,3)
29 [15, 14][9, 10, 10][5, 3, 3, 5, 3, 5, 5] 14 (2,3)
29 [15, 14][11, 9, 9][2, 4, 4, 5, 4, 5, 5] 12 (2,3)
29 [15, 14][7, 11, 11][5, 3, 3, 5, 3, 5, 5] 4 (2,3)
29 [15, 14][9, 10, 10][3, 4, 4, 5, 5, 4, 4] 18 (2,2)
29 [15, 14][11, 9, 9][3, 4, 4, 5, 5, 4, 4] 16 (2,2)
29 [15, 14][9, 10, 10][5, 3, 4, 5, 5, 4, 3] 16 (2,2)
29 [15, 14][9, 10, 10][5, 3, 5, 4, 4, 5, 3] 16 (2,2)
29 [15, 14][9, 10, 10][3, 3, 5, 5, 5, 5, 3] 14 (2,2)
29 [13, 16][9, 10, 10][3, 4, 4, 5, 5, 4, 4] 14 (2,2)
29 [15, 14][8, 9, 12][2, 4, 4, 5, 4, 5, 5] 6 (1,3)
29 [15, 14][10, 8, 11][2, 4, 4, 5, 4, 5, 5] 10 (1,3)
29 [15, 14][8, 9, 12][5, 3, 3, 5, 3, 5, 5] 6 (1,3)
29 [15, 14][10, 8, 11][3, 4, 4, 5, 5, 4, 4] 14 (1,2)
29 [13, 16][10, 8, 11][3, 4, 4, 5, 5, 4, 4] 10 (1,2)
29 [15, 14][8, 9, 12][3, 4, 4, 5, 5, 4, 4] 10 (1,2)
29 [13, 16][8, 9, 12][3, 4, 4, 5, 5, 4, 4] 6 (1,2)
30 [14, 16][10, 10, 10][6, 4, 4, 4, 4, 4, 4] 18 (2,6)
30 [16, 14][10, 10, 10][3, 4, 4, 5, 4, 5, 5] 18 (2,3)
30 [16, 14][8, 11, 11][3, 4, 4, 5, 4, 5, 5] 12 (2,3)
30 [16, 14][8, 11, 11][6, 3, 3, 5, 3, 5, 5] 6 (2,3)
30 [14, 16][10, 10, 10][4, 4, 4, 5, 5, 4, 4] 20 (2,2)
30 [16, 14][10, 10, 10][4, 4, 4, 5, 5, 4, 4] 20 (2,2)
30 [14, 16][10, 10, 10][4, 3, 5, 5, 5, 5, 3] 16 (2,2)
30 [16, 14][10, 10, 10][4, 3, 5, 5, 5, 5, 3] 16 (2,2)
30 [16, 14][8, 11, 11][4, 4, 4, 5, 5, 4, 4] 12 (2,2)
30 [14, 16][8, 11, 11][4, 4, 4, 5, 5, 4, 4] 12 (2,2)
30 [14, 16][10, 10, 10][2, 4, 5, 5, 5, 5, 4] 14 (2,2)
30 [16, 14][10, 10, 10][2, 4, 5, 5, 5, 5, 4] 14 (2,2)
30 [16, 14][7, 10, 13][3, 4, 4, 5, 4, 5, 5] 0 (1,3)
30 [16, 14][9, 9, 12][3, 4, 4, 5, 4, 5, 5] 12 (1,3)
30 [16, 14][11, 8, 11][3, 4, 4, 5, 4, 5, 5] 12 (1,3)
30 [14, 16][9, 9, 12][4, 4, 4, 5, 5, 4, 4] 14 (1,2)
30 [14, 16][11, 8, 11][4, 4, 4, 5, 5, 4, 4] 14 (1,2)
30 [16, 14][9, 9, 12][4, 4, 4, 5, 5, 4, 4] 14 (1,2)
30 [14, 16][9, 9, 12][4, 3, 5, 5, 5, 5, 3] 10 (1,2)
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30 [14, 16][9, 9, 12][2, 4, 5, 5, 5, 5, 4] 8 (1,2)
30 [16, 14][9, 9, 12][2, 4, 5, 5, 5, 5, 4] 8 (1,2)
31 [15, 16][11, 10, 10][4, 4, 4, 5, 4, 5, 5] 22 (2,3)
31 [15, 16][9, 11, 11][4, 4, 4, 5, 4, 5, 5] 20 (2,3)
31 [17, 14][9, 11, 11][4, 4, 4, 5, 4, 5, 5] 16 (2,3)
31 [15, 16][9, 11, 11][7, 3, 3, 5, 3, 5, 5] 8 (2,3)
31 [15, 16][11, 10, 10][5, 4, 4, 5, 5, 4, 4] 22 (2,2)
31 [15, 16][9, 11, 11][5, 4, 4, 5, 5, 4, 4] 20 (2,2)
31 [15, 16][11, 10, 10][3, 4, 5, 5, 5, 5, 4] 20 (2,2)
31 [15, 16][9, 11, 11][3, 4, 5, 5, 5, 5, 4] 18 (2,2)
31 [15, 16][11, 10, 10][5, 3, 5, 5, 5, 5, 3] 18 (2,2)
31 [17, 14][9, 11, 11][5, 4, 4, 5, 5, 4, 4] 16 (2,2)
31 [17, 14][11, 10, 10][3, 4, 5, 5, 5, 5, 4] 16 (2,2)
31 [15, 16][9, 11, 11][5, 3, 5, 5, 5, 5, 3] 16 (2,2)
31 [15, 16][11, 10, 10][3, 4, 4, 6, 6, 4, 4] 16 (2,2)
31 [17, 14][9, 11, 11][3, 4, 5, 5, 5, 5, 4] 14 (2,2)
31 [15, 16][9, 11, 11][3, 4, 4, 6, 6, 4, 4] 14 (2,2)

Table C-3: Admissible multiplicity vectors with
(2, 6) symmetry for 31 < n < 41.

n multiplicity vector rid. index
32 [16, 16][12, 10, 10][2, 5, 5, 5, 5, 5, 5] 16
32 [16, 16][10, 11, 11][2, 5, 5, 5, 5, 5, 5] 18
33 [15, 18][9, 12, 12][3, 5, 5, 5, 5, 5, 5] 14
33 [17, 16][9, 12, 12][3, 5, 5, 5, 5, 5, 5] 18
33 [17, 16][13, 10, 10][3, 5, 5, 5, 5, 5, 5] 18
33 [15, 18][11, 11, 11][3, 5, 5, 5, 5, 5, 5] 20
33 [17, 16][11, 11, 11][3, 5, 5, 5, 5, 5, 5] 24
34 [16, 18][10, 12, 12][4, 5, 5, 5, 5, 5, 5] 24
34 [18, 16][10, 12, 12][4, 5, 5, 5, 5, 5, 5] 24
34 [16, 18][12, 11, 11][4, 5, 5, 5, 5, 5, 5] 26
34 [18, 16][12, 11, 11][4, 5, 5, 5, 5, 5, 5] 26
35 [19, 16][11, 12, 12][5, 5, 5, 5, 5, 5, 5] 26
35 [19, 16][9, 13, 13][5, 5, 5, 5, 5, 5, 5] 16
35 [15, 20][11, 12, 12][5, 5, 5, 5, 5, 5, 5] 18
35 [17, 18][9, 13, 13][5, 5, 5, 5, 5, 5, 5] 20
35 [17, 18][13, 11, 11][5, 5, 5, 5, 5, 5, 5] 28
35 [17, 18][11, 12, 12][5, 5, 5, 5, 5, 5, 5] 30
36 [16, 20][10, 13, 13][6, 5, 5, 5, 5, 5, 5] 18
36 [20, 16][10, 13, 13][6, 5, 5, 5, 5, 5, 5] 18
36 [16, 20][12, 12, 12][6, 5, 5, 5, 5, 5, 5] 24
36 [18, 18][10, 13, 13][6, 5, 5, 5, 5, 5, 5] 26
36 [18, 18][12, 12, 12][6, 5, 5, 5, 5, 5, 5] 32
37 [17, 20][11, 13, 13][7, 5, 5, 5, 5, 5, 5] 24
37 [17, 20][13, 12, 12][7, 5, 5, 5, 5, 5, 5] 26
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37 [19, 18][11, 13, 13][7, 5, 5, 5, 5, 5, 5] 28
38 [18, 20][14, 12, 12][2, 6, 6, 6, 6, 6, 6] 18
38 [20, 18][14, 12, 12][2, 6, 6, 6, 6, 6, 6] 18
38 [18, 20][12, 13, 13][2, 6, 6, 6, 6, 6, 6] 20
38 [20, 18][12, 13, 13][2, 6, 6, 6, 6, 6, 6] 20
38 [18, 20][12, 13, 13][8, 5, 5, 5, 5, 5, 5] 26
39 [19, 20][11, 14, 14][3, 6, 6, 6, 6, 6, 6] 24
39 [19, 20][13, 13, 13][3, 6, 6, 6, 6, 6, 6] 30
39 [19, 20][15, 12, 12][3, 6, 6, 6, 6, 6, 6] 24
39 [21, 18][11, 14, 14][3, 6, 6, 6, 6, 6, 6] 20
39 [21, 18][13, 13, 13][3, 6, 6, 6, 6, 6, 6] 26
39 [21, 18][15, 12, 12][3, 6, 6, 6, 6, 6, 6] 20
40 [18, 22][12, 14, 14][4, 6, 6, 6, 6, 6, 6] 26
40 [18, 22][14, 13, 13][4, 6, 6, 6, 6, 6, 6] 28
40 [20, 20][10, 15, 15][4, 6, 6, 6, 6, 6, 6] 20
40 [20, 20][12, 14, 14][4, 6, 6, 6, 6, 6, 6] 34
40 [20, 20][14, 13, 13][4, 6, 6, 6, 6, 6, 6] 36
40 [20, 20][16, 12, 12][4, 6, 6, 6, 6, 6, 6] 26
40 [22, 18][12, 14, 14][4, 6, 6, 6, 6, 6, 6] 26
40 [22, 18][14, 13, 13][4, 6, 6, 6, 6, 6, 6] 28

Appendix D. Admissible multiplicity vectors for p = 2

Table D-1: 1 < n < 20.

n multiplicity vector rid. index symm. type
3 [2, 1][1, 1, 1][0, 1, 1, 0, 1, 0, 0] 0 (2,1)
6 [3, 3][2, 2, 2][1, 1, 1, 2, 0, 1, 0] 0 (2,1)

12 [6, 6][4, 4, 4][2, 1, 1, 1, 2, 2, 3] 2 (2,1)
13 [7, 6][4, 3, 6][1, 2, 2, 2, 2, 2, 2] 0 (1,6)
14 [7, 7][5, 3, 6][2, 2, 2, 2, 2, 2, 2] 2 (1,6)
15 [8, 7][4, 4, 7][3, 2, 2, 2, 2, 2, 2] 0 (1,6)
15 [8, 7][5, 5, 5][2, 1, 3, 2, 2, 2, 3] 4 (2,1)
16 [8, 8][5, 4, 7][2, 1, 2, 2, 3, 3, 3] 0 (1,1)
16 [8, 8][5, 4, 7][3, 1, 2, 3, 2, 3, 2] 0 (1,1)
16 [8, 8][5, 4, 7][3, 1, 3, 2, 2, 2, 3] 0 (1,1)
16 [8, 8][6, 5, 5][2, 1, 2, 2, 3, 3, 3] 4 (2,1)
17 [9, 8][6, 4, 7][2, 1, 3, 3, 3, 2, 3] 0 (1,1)
17 [9, 8][6, 4, 7][2, 2, 2, 2, 3, 4, 2] 0 (1,1)
17 [9, 8][5, 6, 6][3, 1, 2, 2, 3, 3, 3] 4 (2,1)
18 [9, 9][7, 4, 7][2, 2, 2, 2, 3, 3, 4] 0 (1,1)
18 [9, 9][5, 5, 8][3, 2, 2, 3, 2, 3, 3] 2 (1,3)
18 [9, 9][6, 6, 6][1, 2, 3, 2, 4, 3, 3] 4 (2,1)
18 [9, 9][6, 6, 6][3, 1, 3, 3, 3, 2, 3] 6 (2,1)
18 [9, 9][6, 6, 6][2, 2, 2, 2, 3, 3, 4] 6 (2,1)
18 [9, 9][6, 6, 6][3, 2, 2, 2, 3, 4, 2] 6 (2,1)
18 [9, 9][6, 6, 6][3, 2, 2, 3, 2, 3, 3] 8 (2,3)
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19 [10, 9][7, 6, 6][2, 2, 3, 2, 4, 3, 3] 6 (2,1)
19 [10, 9][6, 5, 8][3, 2, 3, 3, 3, 3, 2] 4 (1,2)
19 [10, 9][6, 5, 8][2, 2, 3, 2, 4, 3, 3] 2 (1,1)
19 [10, 9][6, 5, 8][3, 2, 2, 2, 3, 3, 4] 2 (1,1)

Table D-2: Admissible multiplicity vectors
with non-trivial symmetry for 19 < n < 33.

n multiplicity vector rid. index symm. type
20 [10, 10][7, 5, 8][2, 3, 3, 3, 3, 3, 3] 6 (1,6)
20 [11, 9][7, 5, 8][2, 3, 3, 3, 3, 3, 3] 4 (1,6)
21 [11, 10][7, 7, 7][3, 3, 3, 3, 3, 3, 3] 12 (2, 6)
21 [11, 10][6, 6, 9][3, 3, 3, 3, 3, 3, 3] 6 (1,6)
21 [12, 9][6, 6, 9][3, 3, 3, 3, 3, 3, 3] 2 (1,6)
22 [11, 11][7, 6, 9][4, 3, 3, 3, 3, 3, 3] 8 (1,6)
23 [11, 10][8, 6, 9][3, 3, 3, 4, 4, 3, 3] 8 (1, 2)
24 [12, 12][8, 8, 8][3, 3, 3, 4, 3, 4, 4] 14 (2, 3)
24 [12, 12][8, 8, 8][4, 3, 3, 4, 4, 3, 3] 14 (2, 2)
24 [12, 12][8, 8, 8][2, 3, 4, 4, 4, 4, 3] 12 (2, 2)
24 [12, 12][7, 7, 10][3, 3, 3, 4, 3, 4, 4] 8 (1, 3)
24 [12, 12][9, 6, 9][3, 3, 3, 4, 3, 4, 4] 8 (1, 3)
24 [12, 12][9, 6, 9][3, 3, 3, 4, 4, 3, 3] 8 (1, 2)
25 [13, 12][7, 9, 9][4, 3, 3, 4, 3, 4, 4] 12 (2, 3)
25 [13, 12][9, 8, 8][3, 3, 4, 4, 4, 4, 3] 14 (2, 2)
25 [13, 12][8, 7, 10][4, 3, 3, 4, 3, 4, 4] 14 (1, 3)
25 [14, 11][8, 7, 10][3, 3, 4, 4, 4, 4, 3] 6 (1, 2)
25 [13, 12][8, 7, 10][3, 3, 4, 4, 4, 4, 3] 10 (1, 2)
26 [14, 12][9, 7, 10][2, 4, 4, 4, 4, 4, 4] 8 (1, 6)
26 [13, 13][9, 7, 10][2, 4, 4, 4, 4, 4, 4] 10 (1, 6)
26 [13, 13][8, 9, 9][5, 3, 3, 4, 3, 4, 4] 14 (2, 3)
26 [14, 12][8, 9, 9][4, 3, 4, 4, 4, 4, 3] 14 (2, 2)
26 [13, 13][8, 9, 9][4, 3, 4, 4, 4, 4, 3] 16 (2, 2)
26 [14, 12][7, 8, 11][5, 3, 3, 4, 3, 4, 4] 4 (1, 3)
26 [13, 13][7, 8, 11][5, 3, 3, 4, 3, 4, 4] 6 (1, 3)
26 [13, 13][9, 7, 10][4, 3, 4, 4, 4, 4, 3] 12 (1, 2)
27 [15, 12][9, 9, 9][3, 4, 4, 4, 4, 4, 4] 14 (2, 6)
27 [14, 13][9, 9, 9][3, 4, 4, 4, 4, 4, 4] 18 (2, 6)
27 [15, 12][8, 8, 11][3, 4, 4, 4, 4, 4, 4] 8 (1, 6)
27 [14, 13][8, 8, 11][3, 4, 4, 4, 4, 4, 4] 12 (1, 6)
27 [15, 12][10, 7, 10][3, 4, 4, 4, 4, 4, 4] 12 (1, 6)
28 [14, 14][10, 9, 9][4, 4, 4, 4, 4, 4, 4] 20 (2, 6)
28 [14, 14][8, 10, 10][4, 4, 4, 4, 4, 4, 4] 18 (2, 6)
28 [15, 13][8, 10, 10][4, 4, 4, 4, 4, 4, 4] 16 (2, 6)
28 [15, 13][9, 8, 11][4, 4, 4, 4, 4, 4, 4] 14 (1, 6)
28 [14, 14][9, 8, 11][4, 4, 4, 4, 4, 4, 4] 16 (1, 6)
28 [14, 14][10, 6, 12][4, 4, 4, 4, 4, 4, 4] 2 (1, 6)
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29 [15, 14][9, 10, 10][5, 4, 4, 4, 4, 4, 4] 20 (2, 6)
29 [16, 13][8, 9, 12][5, 4, 4, 4, 4, 4, 4] 8 (1, 6)
29 [15, 14][8, 9, 12][5, 4, 4, 4, 4, 4, 4] 12 (1, 6)
29 [15, 14][9, 7, 13][5, 4, 4, 4, 4, 4, 4] 2 (1, 6)
29 [15, 14][11, 9, 9][3, 4, 4, 5, 5, 4, 4] 16 (2, 2)
29 [16, 13][10, 8, 11][3, 4, 4, 5, 5, 4, 4] 10 (1, 2)
30 [15, 15][ 9, 9, 12][6, 4, 4, 4, 4, 4, 4] 14 (1, 6)
30 [15, 15][10, 10, 10][3, 4, 4, 5, 4, 5, 5] 20 (2, 3)
30 [16, 14][10, 10, 10][3, 4, 4, 5, 4, 5, 5] 18 (2, 3)
30 [15, 15][12, 9, 9][3, 4, 4, 5, 4, 5, 5] 14 (2, 3)
30 [17, 13][10, 10, 10][3, 4, 4, 5, 4, 5, 5] 12 (2, 3)
30 [15, 15][12, 9, 9][3, 3, 3, 6, 3, 6, 6] 2 (2, 3)
30 [15, 15][10, 10, 10][4, 4, 4, 5, 5, 4, 4] 22 (2, 2)
30 [16, 14][10, 10, 10][4, 4, 4, 5, 5, 4, 4] 20 (2, 2)
30 [15, 15][10, 10, 10][4, 3, 5, 5, 5, 5, 3] 18 (2, 2)
30 [16, 14][10, 10, 10][4, 3, 5, 5, 5, 5, 3] 16 (2, 2)
31 [16, 15][11, 10, 10][4, 4, 4, 5, 4, 5, 5] 22 (2, 3)
31 [16, 15][11, 10, 10][3, 4, 5, 5, 5, 5, 4] 20 (2, 2)
31 [17, 14][11, 10, 10][3, 4, 5, 5, 5, 5, 4] 16 (2, 2)
32 [16, 16][11, 9, 12][2, 5, 5, 5, 5, 5, 5] 14 (1, 6)
32 [17, 15][11, 9, 12][2, 5, 5, 5, 5, 5, 5] 12 (1, 6)
32 [16, 16][10, 8, 14][2, 5, 5, 5, 5, 5, 5] 0 (1, 6)
32 [16, 16][10, 11, 11][5, 4, 4, 5, 4, 5, 5] 24 (2, 3)
32 [17, 15][10, 11, 11][5, 4, 4, 5, 4, 5, 5] 22 (2, 3)
32 [16, 16][12, 10, 10][2, 4, 4, 6, 4, 6, 6] 10 (2, 3)
32 [17, 15][12, 10, 10][2, 4, 4, 6, 4, 6, 6] 8 (2, 3)
32 [16, 16][10, 11, 11][4, 4, 5, 5, 5, 5, 4] 24 (2, 2)
32 [16, 16][12, 10, 10][4, 4, 5, 5, 5, 5, 4] 22 (2, 2)
32 [16, 16][10, 11, 11][6, 4, 4, 5, 5, 4, 4] 22 (2, 2)
32 [17, 15][10, 11, 11][4, 4, 5, 5, 5, 5, 4] 22 (2, 2)
32 [16, 16][10, 11, 11][6, 3, 5, 5, 5, 5, 3] 18 (2, 2)
32 [16, 16][12, 10, 10][4, 4, 4, 6, 6, 4, 4] 18 (2, 2)
32 [18, 14][10, 11, 11][4, 4, 5, 5, 5, 5, 4] 16 (2, 2)

Table D-3: Admissible multiplicity vectors
with (2, 6) symmetry for 32 < n < 41.

n multiplicity vector rid. index
33 [17, 16][13, 10, 10][3, 5, 5, 5, 5, 5, 5] 18
33 [18, 15][11, 11, 11][3, 5, 5, 5, 5, 5, 5] 20
33 [17, 16][11, 11, 11][3, 5, 5, 5, 5, 5, 5] 24
34 [17, 17][12, 11, 11][4, 5, 5, 5, 5, 5, 5] 28
34 [17, 17][10, 12, 12][4, 5, 5, 5, 5, 5, 5] 26
34 [18, 16][12, 11, 11][4, 5, 5, 5, 5, 5, 5] 26
34 [18, 16][10, 12, 12][4, 5, 5, 5, 5, 5, 5] 24
34 [18, 16][10, 12, 12][4, 5, 5, 5, 5, 5, 5] 18
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35 [18, 17][11, 12, 12][5, 5, 5, 5, 5, 5, 5] 30
35 [19, 16][11, 12, 12][5, 5, 5, 5, 5, 5, 5] 26
36 [20, 16][10, 13, 13][6, 5, 5, 5, 5, 5, 5] 18
36 [18, 18][10, 13, 13][6, 5, 5, 5, 5, 5, 5] 26
36 [18, 18][12, 12, 12][6, 5, 5, 5, 5, 5, 5] 32
37 [19, 18][11, 13, 13][7, 5, 5, 5, 5, 5, 5] 28
39 [20, 19][13, 13, 13][3, 6, 6, 6, 6, 6, 6] 30
39 [20, 19][15, 12, 12][3, 6, 6, 6, 6, 6, 6] 24
39 [21, 18][13, 13, 13][3, 6, 6, 6, 6, 6, 6] 26
39 [21, 18][15, 12, 12][3, 6, 6, 6, 6, 6, 6] 20
40 [22, 18][12, 14, 14][4, 6, 6, 6, 6, 6, 6] 26
40 [22, 18][14, 13, 13][4, 6, 6, 6, 6, 6, 6] 28
40 [21, 19][12, 14, 14][4, 6, 6, 6, 6, 6, 6] 32
40 [21, 19][14, 13, 13][4, 6, 6, 6, 6, 6, 6] 34
40 [20, 20][12, 14, 14][4, 6, 6, 6, 6, 6, 6] 34
40 [20, 20][14, 13, 13][4, 6, 6, 6, 6, 6, 6] 36
40 [20, 20][16, 12, 12][4, 6, 6, 6, 6, 6, 6] 26

Table D-4: Admissible symplectic multiplicity vectors
for p = 2 and 2 < n < 30.

n multiplicity vector rid. ind. symm. type Jordan form
6 [3, 3][2, 2, 2][0, 1, 1, 1, 1, 1, 1] 2 (2,6) (3J2)

14 [7, 7][4, 5, 5][2, 2, 2, 2, 2, 2, 2] 6 (2,6) (7J2)
18 [9, 9][6, 6, 6][2, 2, 3, 3, 3, 3, 2] 8 (2,2) (9J2)
20 [10, 10][6, 7, 7][2, 3, 3, 3, 3, 3, 3] 10 (2,6) (10J2)
20 [11, 9][6, 7, 7][2, 3, 3, 3, 3, 3, 3] 8 (2,6) (9J2, 2J1)
22 [11, 11][6, 8, 8][4, 3, 3, 3, 3, 3, 3] 10 (2,6) (11J2)
22 [11, 11][8, 7, 7][2, 3, 3, 4, 4, 3, 3] 10 (2,2) (11J2)
24 [12, 12][8, 8, 8][4, 3, 3, 4, 4, 3, 3] 14 (2,2) (12J2)
24 [12, 12][8, 8, 8][2, 3, 4, 4, 4, 4, 3] 12 (2,2) (12J2)
24 [13, 11][8, 8, 8][2, 3, 4, 4, 4, 4, 3] 10 (2,2) (11J2, 2J1)
26 [13, 13][8, 9, 9][2, 4, 4, 4, 4, 4, 4] 14 (2,6) (13J2)
26 [13, 13][10, 8, 8][2, 4, 4, 4, 4, 4, 4] 12 (2,6) (13J2)
26 [14, 12][8, 9, 9][2, 4, 4, 4, 4, 4, 4] 12 (2,6) (12J2, 2J1)
26 [13, 13][8, 9, 9][4, 3, 4, 4, 4, 4, 3] 16 (2,2) (13J2)
26 [14, 12][8, 9, 9][4, 3, 4, 4, 4, 4, 3] 14 (2,2) (12J2, 2J1)
28 [14, 14][10, 9, 9][4, 4, 4, 4, 4, 4, 4] 20 (2,6) (14J2)
28 [14, 14][8, 10, 10][4, 4, 4, 4, 4, 4, 4] 18 (2,6) (14J2)
28 [15, 13][8, 10, 10][4, 4, 4, 4, 4, 4, 4] 16 (2,6) (13J2, 2J1)
28 [14, 14][10, 9, 9][4, 3, 4, 5, 5, 4, 3] 16 (2,2) (14J2)
28 [14, 14][10, 9, 9][4, 3, 5, 4, 4, 5, 3] 16 (2,2) (14J2)
28 [14, 14][10, 9, 9][2, 4, 4, 5, 5, 4, 4] 14 (2,2) (14J2)
28 [15, 13][10, 9, 9][2, 4, 4, 5, 5, 4, 4] 12 (2,2) (13J2, 2J1)
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Appendix E. Admissible multiplicity vectors for p = 3

Table E-1: 1 < n < 20.

n multiplicity vector rid. index symm. type
3 [1, 2][1, 1, 1][0, 1, 1, 0, 1, 0, 0] 0 (*,3)
8 [4, 4][3, 3, 2][1, 2, 1, 2, 0, 1, 1] 0 (∗, 1)
9 [5, 4][3, 3, 3][1, 2, 2, 2, 1, 1, 0] 0 (∗, 1)
12 [6, 6][4, 4, 4][1, 1, 2, 1, 3, 2, 2] 2 (∗, 1)
12 [6, 6][4, 4, 4][2, 1, 1, 1, 2, 2, 3] 2 (∗, 1)
15 [7, 8][5, 5, 5][2, 1, 3, 2, 2, 2, 3] 4 (∗, 1)
16 [8, 8][6, 6, 4][2, 1, 2, 2, 3, 3, 3] 2 (∗, 1)
16 [8, 8][6, 5, 5][2, 1, 2, 2, 3, 3, 3] 4 (∗, 1)
17 [9, 8][6, 6, 5][2, 2, 2, 3, 2, 3, 3] 6 (∗, 3)
17 [9, 8][6, 6, 5][2, 1, 3, 3, 3, 2, 3] 4 (∗, 1)
17 [9, 8][6, 6, 5][2, 2, 2, 2, 3, 4, 2] 4 (∗, 1)
17 [9, 8][6, 6, 5][1, 2, 2, 2, 3, 3, 4] 2 (∗, 1)
18 [10, 8][6, 6, 6][2, 2, 2, 2, 3, 3, 4] 4 (∗, 1)
18 [10, 8][6, 6, 6][2, 1, 3, 3, 2, 3, 4] 2 (∗, 1)
18 [10, 8][6, 6, 6][2, 1, 2, 4, 3, 2, 4] 0 (∗, 1)
18 [10, 8][6, 6, 6][2, 1, 3, 2, 4, 2, 4] 0 (∗, 1)
18 [8, 10][6, 6, 6][2, 1, 3, 2, 4, 2, 4] 0 (∗, 1)
19 [9, 10][7, 6, 6][2, 2, 3, 2, 4, 3, 3] 6 (∗, 1)
19 [9, 10][7, 6, 6][3, 2, 2, 2, 3, 3, 4] 6 (∗, 1)
19 [9, 10][7, 7, 5][2, 2, 3, 2, 4, 3, 3] 4 (∗, 1)
19 [9, 10][7, 7, 5][3, 2, 2, 2, 3, 3, 4] 4 (∗, 1)
19 [9, 10][7, 7, 5][3, 1, 3, 2, 4, 2, 4] 2 (∗, 1)

Table E-2: Admissible multiplicity vectors
with symmetries (∗, 6), (∗, 3) and (∗, 2) for 19 < n < 30.

n multiplicity vector rid. index symm. type
20 [10, 10][7, 7, 6][2, 3, 3, 3, 3, 3, 3] 10 (∗, 6)
21 [11, 10][7, 7, 7][3, 3, 3, 3, 3, 3, 3] 12 (∗, 6)
23 [11, 12][8, 8, 7][3, 3, 3, 4, 4, 3, 3] 12 (∗, 2)
24 [12, 12][8, 8, 8][3, 3, 3, 4, 3, 4, 4] 14 (∗, 3)
24 [12, 12][9, 8, 7][3, 3, 3, 4, 3, 4, 4] 12 (∗, 3)
24 [12, 12][10, 7, 7][3, 3, 3, 4, 3, 4, 4] 8 (∗, 3)
24 [12, 12][8, 8, 8][4, 3, 3, 4, 4, 3, 3] 14 (∗, 2)
24 [12, 12][8, 8, 8][2, 3, 4, 4, 4, 4, 3] 12 (∗, 2)
25 [13, 12][9, 9, 7][3, 3, 4, 4, 4, 4, 3] 12 (∗, 2)
25 [13, 12][9, 8, 8][3, 3, 4, 4, 4, 4, 3] 14 (∗, 2)
26 [14, 12][10, 8, 8][2, 4, 4, 4, 4, 4, 4] 12 (∗, 6)
26 [12, 14][10, 8, 8][2, 4, 4, 4, 4, 4, 4] 12 (∗, 6)
26 [12, 14][10, 8, 8][5, 3, 3, 4, 3, 4, 4] 12 (∗, 3)
26 [12, 14][10, 8, 8][4, 3, 4, 4, 4, 4, 3] 14 (∗, 2)

74https://doi.org/10.1112/S1461157000001303 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001303


non-hurwitz groups

27 [13, 14][10, 10, 7][3, 4, 4, 4, 4, 4, 4] 12 (∗, 6)
27 [13, 14][10, 9, 8][3, 4, 4, 4, 4, 4, 4] 16 (∗, 6)
27 [13, 14][9, 9, 9][3, 4, 4, 4, 4, 4, 4] 18 (∗, 6)
27 [15, 12][9, 9, 9][3, 4, 4, 4, 4, 4, 4] 14 (∗, 6)
27 [15, 12][9, 9, 9][3, 3, 3, 4, 3, 4, 4] 8 (∗, 3)
27 [13, 14][9, 9, 9][5, 3, 4, 4, 4, 4, 3] 16 (∗, 2)
28 [14, 14][10, 10, 8][4, 4, 4, 4, 4, 4, 4] 18 (∗, 6)
28 [14, 14][10, 9, 9][4, 4, 4, 4, 4, 4, 4] 20 (∗, 6)
28 [14, 14][10, 10, 8][4, 3, 4, 5, 5, 4, 3] 14 (∗, 2)
28 [14, 14][10, 9, 9][4, 3, 4, 5, 5, 4, 3] 16 (∗, 2)
28 [14, 14][10, 10, 8][4, 3, 5, 4, 4, 5, 3] 14 (∗, 2)
28 [14, 14][10, 9, 9][4, 3, 5, 4, 4, 5, 3] 16 (∗, 2)
28 [14, 14][10, 10, 8][2, 4, 4, 5, 5, 4, 4] 12 (∗, 2)
28 [14, 14][10, 9, 9][2, 4, 4, 5, 5, 4, 4] 14 (∗, 2)
29 [13, 16][10, 10, 9][5, 4, 4, 4, 4, 4, 4] 16 (∗, 6)
29 [15, 14][11, 10, 8][2, 4, 4, 5, 4, 5, 5] 10 (∗, 3)
29 [15, 14][11, 9, 9][2, 4, 4, 5, 4, 5, 5] 12 (∗, 3)
29 [15, 14][10, 10, 9][2, 4, 4, 5, 4, 5, 5] 14 (∗, 3)
29 [13, 16][10, 10, 9][3, 4, 4, 5, 5, 4, 4] 14 (∗, 2)
29 [15, 14][11, 10, 8][3, 4, 4, 5, 5, 4, 4] 14 (∗, 2)
29 [15, 14][11, 9, 9][3, 4, 4, 5, 5, 4, 4] 16 (∗, 2)
29 [15, 14][10, 10, 9][3, 4, 4, 5, 5, 4, 4] 18 (∗, 2)

Table E-3: Admissible multiplicity vectors
with (∗, 3) and (∗, 6) symmetry for 29 < n < 34.

n multiplicity vector rid. index symm. type
30 [14, 16][10, 10, 10][6, 4, 4, 4, 4, 4, 4] 18 (*,6)
30 [16, 14][10, 10, 10][3, 4, 4, 5, 4, 5, 5] 18 (*,3)
30 [16, 14][11, 10, 9][3, 4, 4, 5, 4, 5, 5] 16 (*,3)
30 [16, 14][11, 11, 8][3, 4, 4, 5, 4, 5, 5] 12 (*,3)
31 [15, 16][11, 11, 9][4, 4, 4, 5, 4, 5, 5] 20 (*,3)
31 [15, 16][12, 10, 9][4, 4, 4, 5, 4, 5, 5] 18 (*,3)
31 [15, 16][12, 11, 8][4, 4, 4, 5, 4, 5, 5] 14 (*,3)
32 [16, 16][12, 11, 9][2, 5, 5, 5, 5, 5, 5] 14 (*,6)
32 [16, 16][12, 10, 10][2, 5, 5, 5, 5, 5, 5] 16 (*,6)
32 [16, 16][11, 11, 10][5, 4, 4, 5, 4, 5, 5] 24 (*,3)
33 [15, 18][12, 12, 9][3, 5, 5, 5, 5, 5, 5] 14 (*,6)
33 [17, 16][13, 11, 9][3, 5, 5, 5, 5, 5, 5] 16 (*,6)
33 [15, 18][12, 11, 10][3, 5, 5, 5, 5, 5, 5] 18 (*,6)
33 [17, 16][12, 12, 9][3, 5, 5, 5, 5, 5, 5] 18 (*,6)
33 [15, 18][11, 11, 11][3, 5, 5, 5, 5, 5, 5] 20 (*,6)
33 [17, 16][13, 10, 10][3, 5, 5, 5, 5, 5, 5] 18 (*,6)
33 [17, 16][12, 11, 10][3, 5, 5, 5, 5, 5, 5] 22 (*,6)
33 [17, 16][11, 11, 11][3, 5, 5, 5, 5, 5, 5] 24 (*,6)
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Table E-4: Admissible multiplicity vectors
with (∗, 6) symmetry for 33 < n < 40.

n multiplicity vector rid. index
34 [18, 16][12, 11, 11][4, 5, 5, 5, 5, 5, 5] 26
34 [16, 18][12, 11, 11][4, 5, 5, 5, 5, 5, 5] 26
34 [18, 16][12, 12, 10][4, 5, 5, 5, 5, 5, 5] 24
34 [16, 18][12, 12, 10][4, 5, 5, 5, 5, 5, 5] 24
34 [16, 18][13, 11, 10][4, 5, 5, 5, 5, 5, 5] 22
34 [16, 18][13, 12, 9][4, 5, 5, 5, 5, 5, 5] 18
35 [17, 18][12, 12, 11][5, 5, 5, 5, 5, 5, 5] 30
35 [17, 18][13, 11, 11][5, 5, 5, 5, 5, 5, 5] 28
35 [17, 18][13, 12, 10][5, 5, 5, 5, 5, 5, 5] 26
35 [17, 18][13, 13, 9][5, 5, 5, 5, 5, 5, 5] 20
35 [15, 20][12, 12, 11][5, 5, 5, 5, 5, 5, 5] 18
36 [18, 18][12, 12, 12][6, 5, 5, 5, 5, 5, 5] 32
36 [16, 20][12, 12, 12][6, 5, 5, 5, 5, 5, 5] 24
36 [16, 20][13, 12, 11][6, 5, 5, 5, 5, 5, 5] 22
36 [16, 20][13, 13, 10][6, 5, 5, 5, 5, 5, 5] 18
37 [17, 20][13, 12, 12][7, 5, 5, 5, 5, 5, 5] 26
37 [17, 20][13, 13, 11][7, 5, 5, 5, 5, 5, 5] 24
38 [18, 20][14, 13, 11][2, 6, 6, 6, 6, 6, 6] 16
38 [18, 20][14, 12, 12][2, 6, 6, 6, 6, 6, 6] 18
38 [18, 20][13, 13, 12][2, 6, 6, 6, 6, 6, 6] 20
38 [20, 18][14, 13, 11][2, 6, 6, 6, 6, 6, 6] 16
38 [20, 18][14, 12, 12][2, 6, 6, 6, 6, 6, 6] 18
38 [20, 18][13, 13, 12][2, 6, 6, 6, 6, 6, 6] 20
39 [19, 20][15, 14, 10][3, 6, 6, 6, 6, 6, 6] 16
39 [19, 20][15, 13, 11][3, 6, 6, 6, 6, 6, 6] 22
39 [19, 20][14, 14, 11][3, 6, 6, 6, 6, 6, 6] 24
39 [19, 20][15, 12, 12][3, 6, 6, 6, 6, 6, 6] 24
39 [19, 20][14, 13, 12][3, 6, 6, 6, 6, 6, 6] 28
39 [19, 20][13, 13, 13][3, 6, 6, 6, 6, 6, 6] 30
39 [21, 18][15, 13, 11][3, 6, 6, 6, 6, 6, 6] 18
39 [21, 18][14, 14, 11][3, 6, 6, 6, 6, 6, 6] 20
39 [21, 18][15, 12, 12][3, 6, 6, 6, 6, 6, 6] 20
39 [21, 18][14, 13, 12][3, 6, 6, 6, 6, 6, 6] 24
39 [21, 18][13, 13, 13][3, 6, 6, 6, 6, 6, 6] 26
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Appendix F. Admissible multiplicity vectors for p = 7

Table F-1: 1 < n < 26.

n multiplicity vector rid. index symm type
13 [7, 6][4, 3, 6][2, 2, 2, 2, 2, 2, 1] 0 (1, ∗)
14 [6, 8][5, 3, 6][2, 2, 2, 2, 2, 2, 2] 0 (1, ∗)
15 [7, 8][4, 4, 7][3, 2, 2, 2, 2, 2, 2] 0 (1, ∗)
16 [8, 8][5, 4, 7][3, 3, 2, 2, 2, 2, 2] 2 (1, ∗)
19 [9, 10][6, 5, 8][3, 3, 3, 3, 3, 2, 2] 4 (1, ∗)
19 [9, 10][6, 5, 8][3, 3, 3, 3, 3, 3, 1] 2 (1, ∗)
20 [10, 10][6, 7, 7][3, 3, 3, 3, 3, 3, 2] 10 (2, ∗)
20 [10, 10][7, 5, 8][3, 3, 3, 3, 3, 3, 2] 6 (1, ∗)
20 [10, 10][5, 6, 9][3, 3, 3, 3, 3, 3, 2] 2 (1, ∗)
21 [11, 10][7, 7, 7][3, 3, 3, 3, 3, 3, 3] 12 (2, ∗)
21 [11, 10][6, 6, 9][3, 3, 3, 3, 3, 3, 3] 6 (1, ∗)
21 [11, 10][6, 6, 9][4, 3, 3, 3, 3, 3, 2] 4 (1, ∗)
21 [9, 12][6, 6, 9][3, 3, 3, 3, 3, 3, 3] 2 (1, ∗)
22 [10, 12][7, 6, 9][4, 3, 3, 3, 3, 3, 3] 6 (1, ∗)
23 [11, 12][7, 8, 8][4, 4, 3, 3, 3, 3, 3] 12 (2, ∗)
23 [11, 12][8, 6, 9][4, 4, 3, 3, 3, 3, 3] 8 (1, ∗)
23 [11, 12][6, 7, 10][4, 4, 3, 3, 3, 3, 3] 4 (1, ∗)
24 [12, 12][8, 8, 8][4, 4, 4, 3, 3, 3, 3] 14 (2, ∗)
24 [12, 12][8, 8, 8][4, 4, 4, 4, 3, 3, 2] 12 (2, ∗)
24 [12, 12][7, 7, 10][4, 4, 4, 3, 3, 3, 3] 8 (1, ∗)
24 [12, 12][7, 7, 10][4, 4, 4, 4, 3, 2, 2] 6 (1, ∗)
24 [12, 12][7, 7, 10][5, 4, 3, 3, 3, 3, 3] 6 (1, ∗)
25 [13, 12][7, 9, 9][4, 4, 4, 4, 3, 3, 3] 12 (2, ∗)
25 [13, 12][8, 7, 10][4, 4, 4, 4, 3, 3, 3] 10 (1, ∗)
25 [13, 12][8, 7, 10][4, 4, 4, 4, 4, 3, 2] 8 (1, ∗)
25 [13, 12][8, 7, 10][4, 4, 4, 4, 4, 4, 1] 4 (1, ∗)

Table F-2: Admissible multiplicity vectors with (2, ∗) symmetry
for p = 7 for 25 < n < 31.

n multiplicity vector rid. index
26 [12, 14][8, 9, 9][4, 4, 4, 4, 4, 4, 2] 12
26 [14, 12][8, 9, 9][4, 4, 4, 4, 4, 4, 2] 12
26 [12, 14][8, 9, 9][4, 4, 4, 4, 4, 3, 3] 14
26 [14, 12][8, 9, 9][4, 4, 4, 4, 4, 3, 3] 14
27 [13, 14][9, 9, 9][5, 4, 4, 4, 4, 4, 2] 14
27 [13, 14][9, 9, 9][5, 4, 4, 4, 4, 3, 3] 16
27 [13, 14][7, 10, 10][4, 4, 4, 4, 4, 4, 3] 12
27 [13, 14][9, 9, 9][4, 4, 4, 4, 4, 4, 3] 18
28 [14, 14][10, 9, 9][4, 4, 4, 4, 4, 4, 4] 20
28 [14, 14][8, 10, 10][4, 4, 4, 4, 4, 4, 4] 18
28 [14, 14][8, 10, 10][5, 4, 4, 4, 4, 4, 3] 16
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28 [14, 14][8, 10, 10][5, 5, 4, 4, 4, 3, 3] 14
28 [14, 14][8, 10, 10][5, 5, 4, 4, 4, 4, 2] 12
29 [15, 14][9, 10, 10][5, 4, 4, 4, 4, 4, 4] 20
29 [15, 14][9, 10, 10][5, 5, 4, 4, 4, 4, 3] 18
29 [15, 14][9, 10, 10][5, 5, 5, 4, 4, 3, 3] 16
29 [13, 16][9, 10, 10][5, 4, 4, 4, 4, 4, 4] 16
29 [15, 14][9, 10, 10][5, 5, 5, 4, 4, 4, 2] 14
29 [15, 14][9, 10, 10][5, 5, 5, 5, 4, 4, 4] 14
30 [14, 16][10, 10, 10][5, 5, 4, 4, 4, 4, 4] 20
30 [14, 16][10, 10, 10][6, 4, 4, 4, 4, 4, 3] 18
30 [14, 16][8, 11, 11][5, 5, 4, 4, 4, 4, 4] 14
30 [16, 14][8, 11, 11][5, 5, 5, 4, 4, 4, 4] 14

Appendix G. Admissible orthogonal multiplicity vectors

Table G-1: p �= 2, 3, 7 and 6 < n < 19.

n multiplicity vector rid. index symm. type
7 [3, 4][1, 3, 3][1, 1, 1, 1, 1, 1, 1] 0 (2, 6)
7 [3, 4][3, 2, 2][1, 1, 1, 1, 1, 1, 1] 2 (2, 6)
8 [4, 4][2, 3, 3][2, 1, 1, 1, 1, 1, 1] 2 (2, 6)
9 [5, 4][3, 3, 3][1, 1, 1, 2, 2, 1, 1] 2 (2, 2)

11 [5, 6][3, 4, 4][1, 1, 2, 2, 2, 2, 1] 2 (2, 2)
12 [6, 6][4, 4, 4][0, 2, 2, 2, 2, 2, 2] 2 (2, 6)
12 [6, 6][4, 4, 4][2, 1, 2, 2, 2, 2, 1] 4 (2, 2)
13 [7, 6][5, 4, 4][1, 2, 2, 2, 2, 2, 2] 4 (2, 6)
13 [7, 6][3, 5, 5][1, 2, 2, 2, 2, 2, 2] 2 (2, 6)
14 [8, 6][4, 5, 5][2, 2, 2, 2, 2, 2, 2] 4 (2, 6)
14 [6, 8][5, 4, 4][2, 2, 2, 2, 2, 2, 2] 4 (2, 6)
15 [7, 8][5, 5, 5][3, 2, 2, 2, 2, 2, 2] 6 (2, 6)
15 [7, 8][5, 5, 5][1, 2, 2, 3, 3, 2, 2] 4 (2, 2)
16 [8, 8][6, 5, 5][2, 2, 2, 3, 3, 2, 2] 6 (2, 2)
16 [8, 8][4, 6, 6][2, 2, 2, 3, 3, 2, 2] 4 (2, 2)
17 [9, 8][5, 6, 6][3, 2, 2, 3, 3, 2, 2] 6 (2, 2)
17 [9, 8][5, 6, 6][1, 2, 3, 3, 3, 3, 2] 4 (2, 2)
18 [8, 10][6, 6, 6][2, 2, 3, 3, 3, 3, 2] 6 (2, 2)
18 [10, 8][6, 6, 6][2, 2, 3, 3, 3, 3, 2] 6 (2, 2)

Table G-2: Admissible orthogonal multiplicity vectors
with (2, 6) symmetry for p �= 2, 3, 7 and 18 < n < 32.

n multiplicity vector rid. index
19 [9, 10][5, 7, 7][1, 3, 3, 3, 3, 3, 3] 4
19 [9, 10][7, 6, 6][1, 3, 3, 3, 3, 3, 3] 6
20 [10, 10][6, 7, 7][2, 3, 3, 3, 3, 3, 3] 10
20 [10, 10][8, 6, 6][2, 3, 3, 3, 3, 3, 3] 8
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21 [9, 12][5, 8, 8][3, 3, 3, 3, 3, 3, 3] 6
21 [11, 10][7, 7, 7][3, 3, 3, 3, 3, 3, 3] 12
22 [10, 12][6, 8, 8][4, 3, 3, 3, 3, 3, 3] 8
22 [12, 10][6, 8, 8][4, 3, 3, 3, 3, 3, 3] 8
22 [10, 12][8, 7, 7][4, 3, 3, 3, 3, 3, 3] 10
23 [11, 12][7, 8, 8][5, 3, 3, 3, 3, 3, 3] 10
25 [13, 12][7, 9, 9][1, 4, 4, 4, 4, 4, 4] 6
25 [13, 12][9, 8, 8][1, 4, 4, 4, 4, 4, 4] 8
26 [12, 14][10, 8, 8][2, 4, 4, 4, 4, 4, 4] 10
26 [14, 12][10, 8, 8][2, 4, 4, 4, 4, 4, 4] 10
26 [12, 14][8, 9, 9][2, 4, 4, 4, 4, 4, 4] 12
26 [14, 12][8, 9, 9][2, 4, 4, 4, 4, 4, 4] 12
27 [15, 12][7, 10, 10][3, 4, 4, 4, 4, 4, 4] 8
27 [13, 14][7, 10, 10][3, 4, 4, 4, 4, 4, 4] 12
27 [13, 14][11, 8, 8][3, 4, 4, 4, 4, 4, 4] 12
27 [15, 12][9, 9, 9][3, 4, 4, 4, 4, 4, 4] 14
27 [13, 14][9, 9, 9][3, 4, 4, 4, 4, 4, 4] 18
28 [12, 16][8, 10, 10][4, 4, 4, 4, 4, 4, 4] 10
28 [16, 12][8, 10, 10][4, 4, 4, 4, 4, 4, 4] 10
28 [12, 16][10, 9, 9][4, 4, 4, 4, 4, 4, 4] 12
28 [14, 14][8, 10, 10][4, 4, 4, 4, 4, 4, 4] 18
28 [14, 14][10, 9, 9][4, 4, 4, 4, 4, 4, 4] 20
29 [15, 14][7, 11, 11][5, 4, 4, 4, 4, 4, 4] 10
29 [13, 16][11, 9, 9][5, 4, 4, 4, 4, 4, 4] 14
29 [13, 16][ 9, 10, 10][5, 4, 4, 4, 4, 4, 4] 16
29 [15, 14][9, 10, 10][5, 4, 4, 4, 4, 4, 4] 20
30 [14, 16][8, 11, 11][6, 4, 4, 4, 4, 4, 4] 12
30 [16, 14][8, 11, 11][6, 4, 4, 4, 4, 4, 4] 12
30 [14, 16][10, 10, 10][6, 4, 4, 4, 4, 4, 4] 18
31 [15, 16][11, 10, 10][1, 5, 5, 5, 5, 5, 5] 10
31 [15, 16][ 9, 11, 11][7, 4, 4, 4, 4, 4, 4] 14

Table G-3: p = 3 and 6 < n < 19.

n multiplicity vector rid. index symm. type Jordan shape
7 [3, 4][3, 3, 1][1, 1, 1, 1, 1, 1, 1] 0 (∗, 6) (J3, 2J2)
7 [3, 4][3, 2, 2][1, 1, 1, 1, 1, 1, 1] 2 (∗, 6) (2J3, J1)
9 [5, 4][3, 3, 3][1, 1, 1, 2, 2, 1, 1] 2 (∗, 2) (3J3)

12 [6, 6][4, 4, 4][0, 2, 2, 2, 2, 2, 2] 2 (∗, 6) (4J3)
12 [6, 6][4, 4, 4][2, 1, 2, 2, 2, 2, 1] 4 (∗, 2) (4J3)
13 [7, 6][5, 4, 4][1, 2, 2, 2, 2, 2, 2] 4 (∗, 6) (4J3, J1)
13 [7, 6][5, 5, 3][2, 1, 2, 2, 2, 2, 1] 2 (∗, 6) (3J3, 2J2)
15 [7, 8][5, 5, 5][3, 2, 2, 2, 2, 2, 2] 6 (∗, 6) (5J3)
15 [7, 8][5, 5, 5][1, 2, 2, 3, 3, 2, 2] 4 (∗, 2) (5J3)
16 [8, 8][6, 6, 4][2, 2, 2, 3, 3, 2, 2] 4 (∗, 2) (4J3, 2J2)
16 [8, 8][6, 5, 5][2, 2, 2, 3, 3, 2, 2] 6 (∗, 2) (4J3, 2J2)
18 [8, 10][6, 6, 6][2, 2, 3, 3, 3, 3, 2] 6 (∗, 2) (4J3, 2J2)
18 [10, 8][6, 6, 6][2, 2, 3, 3, 3, 3, 2] 6 (∗, 2) (4J3, 2J2)
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Table G-4: Admissible orthogonal multiplicity vectors
of (∗, 6) symmetry for p = 3 and 18 < n < 32.

n multiplicity vector rid. index Jordan shape
19 [9, 10][7, 7, 5][1, 3, 3, 3, 3, 3, 3] 4 (5J3, 2J2)
19 [9, 10][7, 6, 6][1, 3, 3, 3, 3, 3, 3] 6 (6J3, J1)
20 [10, 10][8, 6, 6][2, 3, 3, 3, 3, 3, 3] 6 (6J3, 2J1)
20 [10, 10][8, 7, 5][2, 3, 3, 3, 3, 3, 3] 8 (5J3, 2J2, J1)
21 [9, 12][7, 7, 7][3, 3, 3, 3, 3, 3, 3] 8 (7J3)
21 [11, 10][7, 7, 7][3, 3, 3, 3, 3, 3, 3] 12 (7J3)
22 [10, 12][8, 8, 6][4, 3, 3, 3, 3, 3, 3] 8 (6J3, 2J2)
22 [10, 12][8, 7, 7][4, 3, 3, 3, 3, 3, 3] 10 (7J3, J1)
25 [13, 12][9, 9, 7][1, 4, 4, 4, 4, 4, 4] 6 (7J3, 2J2)
25 [13, 12][9, 8, 8][1, 4, 4, 4, 4, 4, 4] 8 (8J3, J1)
26 [12, 14][10, 9, 7][2, 4, 4, 4, 4, 4, 4] 8 (7J3, 2J2, J1)
26 [14, 16][10, 9, 7][2, 4, 4, 4, 4, 4, 4] 8 (7J3, 2J2, J1)
26 [12, 14][10, 8, 8][2, 4, 4, 4, 4, 4, 4] 10 (8J3, 2J1)
26 [14, 12][10, 8, 8][2, 4, 4, 4, 4, 4, 4] 10 (8J3, 2J1)
27 [13, 14][11, 9, 7][3, 4, 4, 4, 4, 4, 4] 10 (7J3, 2J2, 2J1)
27 [13, 14][11, 8, 8][3, 4, 4, 4, 4, 4, 4] 12 (8J3, 3J1)
27 [15, 12][9, 9, 9][3, 4, 4, 4, 4, 4, 4] 14 (9J3)
27 [13, 14][9, 9, 9][3, 4, 4, 4, 4, 4, 4] 18 (9J3)
28 [12, 16] [10, 10, 8][4, 4, 4, 4, 4, 4, 4] 20 (8J3, 2J2)
28 [12, 16] [10, 9, 9][4, 4, 4, 4, 4, 4, 4] 12 (9J3, J1)
28 [14, 14] [10, 10, 8][4, 4, 4, 4, 4, 4, 4] 18 (8J3, 2J2)
28 [14, 14] [10, 9, 9][4, 4, 4, 4, 4, 4, 4] 20 (9J3, J1)
29 [13, 16] [11, 10, 8][5, 4, 4, 4, 4, 4, 4] 12 (8J3, 2J2, J1)
29 [13, 16] [11, 9, 9][5, 4, 4, 4, 4, 4, 4] 14 (9J3, 2J2)
30 [14, 16][10, 10, 10][6, 4, 4, 4, 4, 4, 4] 18 (10J3)
31 [15, 16][11, 11, 9][1, 5, 5, 5, 5, 5, 5] 8 (9J3, 2J2)
31 [15, 16][11, 10, 10][1, 5, 5, 5, 5, 5, 5] 10 (10J3, J1)

Table G-5: p = 7 and 6 < n < 20.

n multiplicity vector rid. index Jordan shape
7 [3, 4][1, 3, 3][1, 1, 1, 1, 1, 1, 1] 0 J7

7 [3, 4][3, 2, 2][1, 1, 1, 1, 1, 1, 1] 2 J7

8 [4, 4][2, 3, 3][2, 1, 1, 1, 1, 1, 1] 2 (J7, J1)
12 [6, 6][4, 4, 4][2, 2, 2, 2, 2, 2, 0] 2 (2J6)
12 [6, 6][4, 4, 4][2, 2, 2, 2, 2, 1, 1] 4 (J7, J5)
14 [6, 8][4, 5, 5][2, 2, 2, 2, 2, 2, 2] 4 (2J7)
14 [8, 6][4, 5, 5][2, 2, 2, 2, 2, 2, 2] 4 (2J7)
15 [7, 8][5, 5, 5][3, 2, 2, 2, 2, 2, 2] 6 (2J7, J1)
17 [9, 8][5, 6, 6][3, 3, 3, 2, 2, 2, 2] 6 (2J7, J3)
19 [9, 10][5, 7, 7][3, 3, 3, 3, 3, 3, 1] 4 (J7, 2J6)
19 [9, 10][5, 7, 7][3, 3, 3, 3, 3, 2, 2] 6 (2J7, J5)
19 [9, 10][7, 6, 6][3, 3, 3, 3, 3, 2, 2] 8 (2J7, J5)
19 [9, 10][7, 6, 6][3, 3, 3, 3, 3, 3, 1] 6 (J7, 2J6)

80https://doi.org/10.1112/S1461157000001303 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001303


non-hurwitz groups

Acknowledgement The authors are grateful to the referee for many useful com-
ments, and for checking the tables.

References

1. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A.

Wilson, ATLAS of finite groups (Clarendon Press, Oxford, 1985). 41, 42,
53, 54

2. C. Jansen, K. Lux, R. A. Parker and R. A. Wilson, An Atlas of Brauer
characters (Clarendon Press, Oxford, 1995). 41, 42, 54

3. J. M. Cohen, ‘On non-Hurwitz groups and non-congruence subgroups of the
modular group’, Glasgow Math. J. 22 (1981) 1–7. 22

4. M. D. E. Conder, ‘Generators for alternating and symmetric groups’, J.
London Math. Soc. (2) 22 (1980) 75–86. 21

5. M. D. E. Conder, ‘Hurwitz groups: a brief survey’, Bull. Amer. Math. Soc.
23 (1990) 359–370.

6. L. Di Martino, Ch. Tamburini and A. Zalesski, ‘Hurwitz groups of small
rank’, Comm. Algebra 28 (2000) 5383–5404. 21, 22, 23, 24, 25, 47, 53, 54

7. W. Feit, The representation theory of finite groups (North-Holland, Ams-
terdam, 1982). 38, 41

8. B. Huppert, Endliche Gruppen I (Springer, Berlin/Heidelberg, 1967). 39
9. J. Humphreys, Conjugacy classes in semisimple algebraic groups (Amer.

Math. Soc., Providence, RI, 1995). 34
10. G. Jones, ‘Ree groups and Riemann surfaces’, J. Algebra 165(1994), 41–62.

21, 46
11. P. Kleidman and M. W. Liebeck, Subgroup structure of classical groups

(Cambridge Univ. Press, Cambridge 1990). 30, 59
12. A. Lucchini, M. C. Tamburini and J. Wilson, Hurwitz groups of large

rank, J. London Math. Soc. (2) 61(2000) 81–92. 21, 23
13. A. Lucchini and M. C. Tamburini, ‘Classical groups of large rank as Hur-

witz groups’, J. Algebra 219 (1999) 531–546. 21
14. A. M. Macbeath, Generators of the linear fractional groups, Proc. Symp.

Pure Math. 12 (1969) 14–32. 39
15. G. Malle, ‘Hurwitz groups and G2(q)’, Canad. Math. Bull. 33 (1990) 349–

356. 21, 46
16. G. Malle, ‘Small rank exceptional Hurwitz groups’, Groups of Lie type and

their geometries, London Math. Soc. Lecture Notes 207 (Cambridge Univ.
Press, Cambridge, 1995) 173–183. 21, 23, 46

17. C. T. Simpson, ‘Products of matrices’, Differential geometry, global analysis
and topology, Canad. Math. Soc. Conf. Proc. 12 (Amer. Math. Soc., Provi-
dence, RI, 1991) 157–185. 29

18. R. Steinberg, ‘Lectures on Chevalley groups’, Yale Univ., 1967. 40, 43, 54
19. L. Scott, Matrices and cohomology, Ann. of Math. 105 (1987) 473–492. 24,

27

81https://doi.org/10.1112/S1461157000001303 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001303


non-hurwitz groups

20. T. Springer and R. Steinberg, ‘Conjugacy classes’, ‘Seminar on algebraic
groups and related finite groups, Lect. Notes in Math. 131 (Springer, Berlin,
1970). 38

21. K. Strambach and H. Völklein, ‘On linearly rigid tuples’, J. Reine Angew.
Math. 510 (1999) 57–62. 29

22. Ch. Tamburini and S. Vassallo, ‘(2, 3)-generazione di SL(4, q) in caracter-
istica dispari e problemi collegati’, Boll. Un. Mat. Ital. (7) (1994) 121–134.
24

23. Ch. Tamburini and M. Vsemirnov, ‘Hurwitz groups and Hurwitz genera-
tion’, Handbook of algebra, vol.4 (Elsevier, 2006) 385–426. 21, 22, 46

24. Ch. Tamburini and M. Vsemirnov, ‘Irreducible (2, 3, 7)-subgroups of
PGLn(F ), n � 7’, J. Algebra 300 (2006) 339–362. 25

25. M. Chiara Tamburini and A.E. Zalesski, ‘Classical groups in dimension
5 which are Hurwitz’, Finite groups 2003, Proc. Gainesville Conf. on Finite
Groups, March 6–12, 2003 (ed. C. Y. Ho, P. Sin, P. H. Tiep and A. Turull;
De Gruyter, Berlin, 2004) 363–372. 25

26. M. Vsemirnov, ‘Hurwitz groups of intermediate rank’,
LMS J. Comput. Math. 7 (2004) 300–336. 21, 23

27. R. Wilson, ‘The Monster is a Hurwitz group’, J. Group Theory 4 (2001)
367–374. 21

28. Yongzhong Sun, ‘On the (2, 3, 7)-Generation of some special linear groups’,
Comm. Algebra 34 (2006) 51–74. 23

29. A. Zalesski, ‘Minimal polynomials and eigenvalues of p-elements in repre-
sentations of groups with a cyclic Sylow p-subgroup’, J. London Math. Soc.
59 (1999) 845–866. 41

R. Vincent Robert.Vincent@uea.ac.uk
A.E. Zalesski a.zalesskii@uea.ac.uk

School of Mathematics
University of East Anglia
Norwich NR47TJ
United Kingdom

82https://doi.org/10.1112/S1461157000001303 Published online by Cambridge University Press

http://www.lms.ac.uk/jcm/7/lms2004-042
mailto:Robert.Vincent@uea.ac.uk
mailto:a.zalesskii@uea.ac.uk
https://doi.org/10.1112/S1461157000001303

	Introduction
	Some facts on representations 
	Examples of rigid representations 
	Relationship between dfA, dfS and dfE
	Non-Hurwitz irreducible groups
	Tables
	Multiplicity vectors for rigid representations of H237
	Testing inequalities
	Admissible multiplicity vectors for p=2,3,7
	Admissible multiplicity vectors for p=2
	Admissible multiplicity vectors for p=3
	Admissible multiplicity vectors for p=7
	Admissible orthogonal multiplicity vectors

