
Bull. Aust. Math. Soc. 97 (2018), 102–109
doi:10.1017/S0004972717000740

EXISTENCE OF TRAVELLING WAVES IN THE
FRACTIONAL BURGERS EQUATION

ADAM CHMAJ

(Received 29 May 2017; accepted 8 June 2017; first published online 20 December 2017)

Abstract

We construct travelling waves in the Burgers equation with the fractional Laplacian (D2)α, α ∈ (1/2, 1).
This is done by first constructing odd solutions uε of uu′ = Kε1 ∗ u − kε1 u + ε2u′′, u(−∞) = uc > 0, with
Kε1 ∗ u − kε1 u nonsingular, and then passing to the limit ε1, ε2 → 0, to give Kε1 ∗ uε − kε1 uε → (D2)αu0
pointwise. The proof relies on operator splitting.
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1. Introduction

We study the equation
ut + uux − (∂xx)αu = 0, (1.1)

in which the fractional power of the Laplacian in one dimension for α ∈ (0, 1] can be
represented as

(D2)αu(x) = −
1

2Γ(−2α)cos(πα)
PV

∫
R

u(y) − u(x)
|x − y|1+2α dy,

where PV denotes the Cauchy principal value. It is also a pseudodifferential operator
of the symbol −|ξ|2α given by

(D2)αu = F −1(−|ξ|2α(F u)) for all u ∈ S,

where S is the Schwartz class.
The simplest Cauchy problem for the classical Burgers equation{

ut + uux = 0,
u(x, 0) = (1 − H(x))u− + H(x)u+,

(1.2)

where H is the Heaviside function, has two types of solutions. If u− > u+, the shock
wave u(x, t) = (1 − H(x − st))u− + H(x − st)u+, with s = 1

2 (u− + u+), is the unique weak
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solution of (1.2). If u− < u+, the rarefaction wave

u(x, t) =


u− for x < u−t,
x/t for u−t ≤ x ≤ u+t,
u+ for x > u+t,

(1.3)

is the unique weak solution of (1.2) with the entropy condition.
Here we are interested in the first type of solution of (1.1), that is, travelling waves

U(x − st), such that U(−∞) = u− and U(∞) = u+, where u− > u+. Thus U satisfies

U′(U − s) = (D2)αU.

If we let u = U − s, then
uu′ = (D2)αu. (1.4)

Integrating (1.4) over R shows that uc = u(−∞) = −u(∞), and thus uc = 1
2 (u− − u+) and

s = 1
2 (u− + u+) (the Rankine–Hugoniot condition). These solutions are expected to be

globally stable, that is, the solution of the Cauchy problem with an initial value having
tails asymptotic to u− and u+, where u− > u+, should converge to a translate of the
travelling wave asymptotic to u− and u+.

The only result in the literature in this direction is the formal nonexistence of smooth
travelling waves of (1.1) in the case α ∈ (0, 1/2] in [5, Proposition 5.1]. Solutions of
the Cauchy problem with an initial value having tails asymptotic to u− and u+, where
u− < u+, were shown to converge to the rarefaction wave (1.3) in the case α ∈ (1/2, 1)
[11], to a self-similar solution in the case α = 1/2 [4] and to the solution of the linear
part of (1.1) with initial condition (1 − H(x))u− + H(x)u+ in the case α ∈ (0, 1/2) [4].
Solutions of the Cauchy problem always remain smooth in the cases α ∈ (1/2, 1) [10]
and α = 1/2 [12, 13], and may become discontinuous in the case α ∈ (0, 1/2) [3]. In
[6], such a weak solution was shown to become smooth eventually for α a little less
than 1/2. Some other papers on the subject are [1, 2].

Existence of travelling waves was a longstanding problem for the nonlocal Burgers
equation

ut + uux − K ∗ u + u = 0, (1.5)

where K is nonsingular. It was solved in [8] and in more generality in [7]. See also
the references in [7, 8] for the special case K(x) = 1

2 e−|x|, which was solved earlier.
The travelling wave can be a shock wave, that is, discontinuous, if uc is large enough.
Travelling waves for (1.5) are the starting point of our construction, which uses the
idea from [9] of deriving travelling waves of (1.1) from an appropriate limit. In [9],
we constructed travelling waves of

ut − (∂xx)α + f (u) = 0,

where f is bistable, by passing to the limit from travelling wave solutions of

ut − bα(Jε ∗ u − jεu) + f (u) = 0, (1.6)

https://doi.org/10.1017/S0004972717000740 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717000740


104 A. Chmaj [3]

where bα = −1/(2Γ(−2α)cos(πα)),

Jε(x) =

{
1/|x|1+2α for |x| ≥ ε,
1/ε1+2α for |x| < ε, (1.7)

and jε =
∫
R

Jε = (α−1 + 2)/ε2α, so that, formally, bα(Jε ∗ u − jεu)→ (D2)αu. Travelling
waves of (1.6) are guaranteed to be smooth (not discontinuous) if jε is large enough.
This should also be the case for (1.5) if the nonlocal operator is as in (1.6). However,
it is not known how to show it. Since members of the limiting sequence need to be
smooth, we overcome this difficulty by first using (1.5) to construct odd solutions of

uu′ = bα(Kε1 ∗ u − kε1 u) + ε2u′′, (1.8)

with uc = u(−∞) and Kε1 = Jε1 , as in (1.7). If ε2 > 0 is appropriately chosen, we can
then pass to the limit ε1, ε2 → 0 to obtain the following result.

Theorem 1.1. Let α ∈ (1/2, 1). There exists an odd and smooth solution of (1.4) such
that u(−∞) = uc and u′ < 0.

We prove Theorem 1.1 in Section 2. Getting the necessary estimates for the passage
to the limit is harder than in [9], even though we use the same operator splitting trick.

2. Existence

The following proposition was proved in [8].

Proposition 2.1. Suppose that
∫
R

K = 1, K is even, K ≥ 0, K ∈ W1,1(R), K is
nonincreasing on (0,∞) and K(y) = o(1/y4) as y→ ∞. Then there exists an odd
solution u of

uu′ = K ∗ u − u,

such that u′ < 0 and u(−∞) = uc. If uc > 2
∫
R
|x|K(x) dx, then u is discontinuous at

zero.

It follows that there is such a solution uδ of the equation

uu′ = bα(Kε1,δ ∗ u − kε1,δu) +
1
δ2 (Lδ ∗ u − u), (2.1)

where Kε1,δ ↗ Kε1 and δ−2(Lδ ∗ φ − φ)→ ε2φ
′′ for smooth enough φ as δ→ 0. Here

L is even, Lδ(x) = δ−1L(xδ−1), L ≥ 0,
∫
R

L = 1 and ε2 = 1
2

∫
R

x2L(x) dx. Since each
uδ is monotone, from Helly’s theorem there is a subsequence of uδ, denoted again
by uδ, such that uδ → u0 as δ→ 0. We need to show that u0 satisfies (1.8) and that
u0(−∞) = uc. For the first, we use the weak formulation, and for the second we use the
strong. Let S ≥ 0 be such that

∫
R

S = 1, S ∈ W2,1(R) and vδ = S ∗ uδ. Applying S to
(2.1) and integrating from −∞ to x,

S ∗
(1
2

u2
δ

)
−

1
2

u2
c =

∫ x

−∞

[
bα(Kε1,δ ∗ vδ − kε1,δvδ) +

1
δ2 (Lδ ∗ vδ − vδ)

]
.

https://doi.org/10.1017/S0004972717000740 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717000740


[4] Fractional Burgers travelling waves 105

Passing to the limit δ→ 0 and integrating from 0 to x,∫ x

0

(
S ∗

(1
2

u2
0

)
−

1
2

u2
c

)
=

∫ x

0

∫
R

ybαKε1 (y)
∫ 1

0
v0(s + ty) dt dy ds + ε2v0(x), (2.2)

where v0 = S ∗ u0. This is derived from∫ x

−∞

bα(Kε1,δ ∗ vδ − kε1,δvδ) = lim
r→−∞

∫ x

r

∫
R

ybαKε1,δ(y)
∫ 1

0
v′δ(s + ty) dt dy ds

=

∫
R

ybαKε1,δ(y)
∫ 1

0
[vδ(x + ty) − uc] dt dy

→

∫
R

ybαKε1 (y)
∫ 1

0
v0(x + ty) dt dy as δ→ 0,

where we used Fubini’s theorem and dominated convergence twice, and∫ x

−∞

1
δ2 (Lδ ∗ vδ − vδ) = ε2v′δ +

∫
R

L(y)
∫ y

0
(y − t)[v′δ(x + δt) − v′δ(x)] dt dy,

where v′δ → v′0 from
∫
R
|S ′| <∞ with dominated convergence and∣∣∣∣∣∫

R

L(y)
∫ y

0
(y − t)[v′δ(x + δt) − v′δ(x)] dt dy

∣∣∣∣∣ ≤ δmax |v′′δ |
∫
R

L(y)
∣∣∣∣∣∫ y

0
(y − t)t dt

∣∣∣∣∣ dy

→ 0 as δ→ 0,

using
∫
R
|S ′′| <∞ and an additional assumption that

∫
R
|y3|L(y) dy <∞.

It is clear that u0 . 0. We would now like to take S ε(x) = ε−1S (xε−1) in (2.2) and
pass to the limit ε→ 0. However, we do not know if u0 is continuous, and if it is not
continuous at xdc, then v0(xdc)→ 1

2 (u0(xdc−) + u0(xdc+)) as ε→ 0. Before we return
to (2.2), we use the weak formulation to show that u0 is continuous.

Multiplying (2.1) by φ ∈ C∞0 , integrating over R and passing to the limit δ→ 0,∫
R

[1
2

u2
0φ
′ + bα(Kε1 ∗ u0 − kε1 u0)φ + ε2u0φ

′′

]
= 0. (2.3)

For any finite a, b, by integration in (2.3) over (a, b),∫ b

a
fφ′′ = 0,

where

f (x) = −

∫ x

0

1
2

u2
0 +

∫ x

0
ds

∫ s

0
bα(Kε1 ∗ u0 − kε1 u0) + ε2u0(x). (2.4)

It is standard that
f (x) = c1 + c2x almost everywhere,
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where c1, c2 satisfy the system F1(b) = 0, F2(b) = 0, with

F1(x) =

∫ x

a
( f (s) − c1 − c2s) ds, F2(x) =

∫ x

a
F1.

Then u0 in (2.4) is continuous since u0 is L∞ and Kε1 is L1. We can now differentiate
(2.4) twice to show that u0 is a solution of (1.8).

Replace S by S ε in (2.2), pass to the limit ε→ 0 and differentiate to get

1
2

u2
0(x) −

1
2

u2
c =

∫
R

ybαKε1 (y)
∫ 1

0
u0(x + ty) dt dy + ε2u′0(x).

On the other hand, we can integrate (1.8) with u0 from −∞ to x to get

1
2

u2
0(x) −

1
2

u2
0(−∞) =

∫
R

ybαKε1 (y)
∫ 1

0
u0(x + ty) dt dy + ε2u′0(x). (2.5)

Thus u0(−∞) = uc. In the last line, we used
∫ x
−∞

u′′0 = u′0(x), which can be obtained
from u′′0 ∈ L1(R), since

||Kε1 ∗ u0 − kε1 u0||L1 ≤

∫
R

|y|Kε1 (y)||u′0||L1

and ||u0u′0||L1 ≤ uc||u′0||L1 and any W1,1(R) function tends to zero at infinity.
In passing to the limit ε1, ε2 → 0, if we can show that the first three derivatives

of the solution uε1,ε2 of (1.8) are uniformly bounded, then, from the Arzelà–Ascoli
theorem, there is a subsequence of uε1,ε2 , also denoted by uε1,ε2 , such that uε1,ε2 → u0
as ε1, ε2 → 0 pointwise on R and

bα(Kε1 ∗ uε1,ε2 − kε1 uε1,ε2 ) + ε2u′′ε1,ε2
→ (D2)αu0 as ε1, ε2 → 0

pointwise on R (see, for example, [9]), so that u0 satisfies (1.4). The idea is to split

bαKε1 = Pε1 + Rε1 ,

with Rε1 ≥ 0, Pε1 ∈ W1,1(R) and pε1 =
∫
R

Pε1 = 2|minx∈Ru′ε1,ε2
(x)|, by taking

Pε1 (x) =

{
bαKε1 (x) for x ∈ R\[−e, e],
bαKε1 (−e) for x ∈ (e, e), (2.6)

where e = p−1/2α
ε1 (2 + 1/α)1/2α. Note that the minimum is attained, since Rε1 ≥ 0 and

u′ε1,ε2
(x)→ 0 as x→ −∞ from (2.5). Let rε1 =

∫
R

Rε1 . After differentiating (1.8), at the
minimum,

−
p2
ε1

4
= P′ε1

∗ uε1,ε2 + Rε1 ∗ u′ε1,ε2
− rε1 u′ε1,ε2

+ ε2u′′′ε1,ε2
≥ P′ε1

∗ uε1,ε2 .

With (2.6), this becomes

p2
ε1

4
≤

2ucbα
(2 + 1/α)(1+2α)/2α p(1+2α)/2α

ε1
.
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Since α > 1/2, pε1 is bounded. However, we need to show that such a splitting exists.
Note that here we are adjusting it to the solution, whereas in [9] the splitting in (1.6)
was adjusted to the nonlinearity, that is, we had Jε = K + S ε with bαk + f ′ > 0. We
show that |minx∈Ru′ε1,ε2

(x)| is of order lower than bαkε1 . From (2.5),

ε2|u′| ≤
1
2

u2
c + ucbαk1−1/2α

ε1

(
2 +

1
α

)(1/2α)−1 2α + 1
2α − 1

.

It now suffices to take ε2 = 1/kβε1 , where β < 1/2α.
To estimate maxx∈R|u′′ε1,ε2

| = maxx∈Ru′′ε1,ε2
, first note that this maximum is attained,

since u′′ε1,ε2
→ 0 as x→ −∞ from (1.8) and u′ε1,ε2

(x)→ 0 as x→ −∞. Use another
splitting

bαKε1 = P + Rε1 . (2.7)

After differentiating (1.8) twice, at the maximum,

(p + 3u′ε1,ε2
)u′′ε1,ε2

≤ P′ ∗ u′ε1,ε2
.

Since |u′ε1,ε2
| is uniformly bounded, so is |u′′ε1,ε2

| after taking P such that p + 3u′ε1,ε2
> 0.

To estimate maxx∈R|u′′′ε1,ε2
|, note that

max
x∈R
|u′′′ε1,ε2

| = max
(

max
x∈R

u′′′ε1,ε2
,−min

x∈R
u′′′ε1,ε2

)
and both the maximum and minimum are attained. Using another splitting as in (2.7),
after differentiating (1.8) three times, at maxx∈Ru′′ε1,ε2

,

(p + 4u′ε1,ε2
)u′′′ε1,ε2

≤ P′ ∗ u′′ε1,ε2
,

and at −minx∈Ru′′′ε1,ε2
,

−(p + 4u′ε1,ε2
)u′′′ε1,ε2

≤ −P′ ∗ u′′ε1,ε2
+ 3u′′2ε1,ε2

,

so, as before, |u′′′ε1,ε2
| is uniformly bounded.

To show that u0(−∞) = uc, we argue as before. Integrate (1.8) from −∞ to x, pass
to the limit ε1, ε2 → 0, then integrate (1.4) from −∞ to x and compare the two. The
only difficulty is in showing that∫ x

−∞

(Kε1 ∗ uε1,ε2 − kε1 uε1,ε2 )→
∫ x

−∞

(D2)αu0 as ε1 → 0.

To manage the singularity, it is standard to consider separately integration on R\(−1,1)
and (−1, 1), that is, ∫ x

−∞

(Kε1 ∗ uε1,ε2 − kε1 uε1,ε2 ) = I1 + I2,

where

I1 = lim
r→−∞

∫ x

r

∫
R\(−1,1)

yKε1 (y)
∫ 1

0
u′ε1,ε2

(s + ty) dt dy ds

=

∫
R\(−1,1)

yKε1 (y)
∫ 1

0
uε1,ε2 (x + ty) dt dy
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and

I2 = lim
r→−∞

∫ x

r

∫ 1

−1
y2Kε1 (y)

∫ 1

0
(1 − t)u′′ε1,ε2

(s + ty) dt dy ds

=

∫ 1

−1
y2Kε1 (y)

∫ 1

0
(1 − t)u′ε1,ε2

(x + ty) dt dy.

By passing to the limit ε1, ε2 → 0 in I1 and I2 and doing the same integrations in∫ x
−∞

(D2)αu0,

I1 + I2 →

∫ x

−∞

(D2)αu0.

Note that we can show that I1 is finite only for α > 1/2.
To show that u′0 < 0, differentiate (1.4). If u′0(xmax) = 0 at a point xmax, then also

u′′0 (xmax) = 0. On the other hand, ((D2)αu0)(xmax) < 0, which is a contradiction. To
justify ((D2)αu0)′ = (D2)αu′0, it suffices that |u′′′0 | is bounded. After, additionally,
showing that |u′′′′ε1,ε2

| is uniformly bounded, this follows in the same way as above.
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