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SHARPNESS IN THE k-NEAREST-NEIGHBOURS
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Abstract

Let Sn,k denote the random graph obtained by placing points in a square box of area
n according to a Poisson process of intensity 1 and joining each point to its k nearest
neighbours. Balister, Bollobás, Sarkar and Walters (2005) conjectured that, for every
0 < ε < 1 and all sufficiently large n, there exists C = C(ε) such that, whenever
the probability that Sn,k is connected is at least ε, then the probability that Sn,k+C is
connected is at least 1 − ε. In this paper we prove this conjecture. As a corollary, we
prove that there exists a constant C′ such that, whenever k(n) is a sequence of integers
such that the probability Sn,k(n) is connected tends to 1 as n → ∞, then, for any integer
sequence s(n) with s(n) = o(log n), the probability Sn,k(n)+�C′s log log n� is s-connected
(i.e. remains connected after the deletion of any s − 1 vertices) tends to 1 as n → ∞.
This proves another conjecture given in Balister, Bollobás, Sarkar and Walters (2009).
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1. Introduction

Let Sn be the square [0,
√

n] × [0,
√

n] ⊂ R
2, and let k be an integer. Place points in Sn

according to a Poisson process of intensity 1, and put an undirected edge between each point
and its k nearest neighbours. Let Sn,k be the resulting graph.

Several authors (see below) have considered the following question: for which k is Sn,k

connected? Of course, it is always possible for Sn,k to fail to be connected, no matter how
large k is; the best we can hope for is that Sn,k is connected ‘asymptotically’. Formally, given a
function k : N → N and a property Q of geometric graphs, we say that Sn,k(n) has a property Q
with high probability (w.h.p.) if

lim
n→∞ P(Sn,k(n) has property Q) = 1.

In words, this states that the probability that a random pointset gives rise to a graph with property
Q tends to 1. Indeed, it will be convenient to distinguish between a pointset as an arbitrary set
of points and a Poisson pointset as a random pointset chosen according to a Poisson process.

Elementary arguments indicate that there exist constants cl and cu such that, for every
c < cl , Sn,	c log n
 is not connected w.h.p., while, for every c > cu, Sn,�c log n� is connected
w.h.p. Using a result of Penrose [6], Xue and Kumar [10] showed that cu ≤ 5.1774. A bound
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of cu ≤ 2 log((4π/3 + √
3/2)/(π + 3

√
3/4)) ≈ 3.8597 can also be read out of earlier work

by Gonzáles-Barrios and Quiroz [5].
These results were significantly improved by Balister et al. [1], [2], who established the

existence of a critical constant c∗ : 0.3043 < c∗ < 1/ log 7 ≈ 0.5139 such that, for any c < c∗,
Sn,	c log n
 is not connected w.h.p. and, for any c > c∗, Sn,�c log n� is connected w.h.p. They also
made the following conjecture about the sharpness of the transition.

Conjecture 1. (Conjecture 3 of [1].) For any 0 < ε < 1, there exists an integer constant C(ε)

such that, for all sufficiently large n, if

P(Sn,k is connected) ≥ ε

then
P(Sn,k+C(ε) is connected) > 1 − ε.

The main result of this paper is the following theorem which proves the conjecture for an
explicit function C(ε).

Theorem 1. There exist absolute constants C > 0 and γ > 0 such that, for every 0 < ε < 1
and all n > ε−γ , if

P(Sn,k is connected) ≥ ε

then
P(Sn,k+�C log(1/ε)� is connected) > 1 − ε.

Balister et al. [3] proved a weaker variant of Conjecture 1 which they used to prove the
following result. Define a graph to be s-connected if it remains connected whenever at most
s−1 vertices are removed. Then if k = k(n) is such that Sn,k(n) is connected w.h.p. then, for any
s = o(log n), the graphs Sn,k′(n), where k′(n) = k(n) + �6

√
(s − 1) log n�, are s-connected

w.h.p. in a technical sense of ‘on average’. As an immediate corollary to Theorem 1, we
remove the somewhat complicated hypothesis that Balister et al. needed in the statement of
their Theorem 10 (admittedly with a weaker constant). Moreover, in the final section we
strengthen this substantially, proving the following theorem.

Theorem 2. Whenever k(n) is an integer sequence such that Sn,k(n) is connected w.h.p. and
s(n) is an integer sequence with s = s(n) = o(log n), then Sn,k(n)+�2Cs log log n� is s-connected
w.h.p.

This proves the main conjecture in [3].
Before we describe the structure of our paper, we briefly contrast the k-nearest-neighbours

model with another classical random geometric graph model introduced by Gilbert [4]. As
before, let Sn be the square [0,

√
n] × [0,

√
n] ⊂ R

2. Let r be a real number. Again, place
points in Sn according to a Poisson process of intensity 1, but this time put an undirected edge
between any pair of points which lie at a distance of at most r from one another. We denote
by Gn,r the resulting random geometric graph model; Gn,r is often known as the Gilbert disc
model. Penrose [6], [7], [8] proved very precise results on the connectivity of Gn,r . In particular,
he showed that isolated vertices are the main obstacle to connectivity in the sense that, w.h.p.,

inf{r ≥ 0 : Gn,r is connected} = inf{r ≥ 0 : Gn,r has no isolated vertices}.
The situation is quite different for the k-nearest-neighbours model, which has no iso-

lated vertices nor any immediately apparent analogous family of geometric obstructions to
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connectivity—indeed, the value of the critical constant c∗ is not known (although it may well
be the lower bound of 0.3043 . . . proved in [1]).

One motivation for the study of Sn,k (and the Gilbert disc model) comes from the theory of
ad-hoc wireless networks. We imagine that we have various radio transmitters (nodes) that wish
to communicate using multiple hops. The transmitters could have fixed range which naturally
corresponds to the Gilbert disc model, or they could adjust their power so that each node has some
fixed number of neighbours which is exactly the k-nearest-neighbour model. In this context
Theorem 2 is a result about the fault tolerance of such a network: it states that we can have a fault
tolerant network for very little additional cost over the minimum needed for communication.

1.1. Outline of the paper

In Section 2 we adapt techniques first introduced in [2] to relate the global property of
connectivity to certain families of local ‘disconnection’ events: these will be events determined
by the Poisson process inside a square of area of order log n, which roughly say that the graph
inside this square is not connected. We establish a correspondence between the probability of
an individual disconnection event occurring and the probability that the graph as a whole is not
connected (see Lemma 6).

In Section 3 we prove a geometric lemma which is crucial to our proof of Theorem 1,
establishing that ‘small’ connected components in Sn,k have a region of ‘high point density’.

In Section 4 we show that removing points from such a dense region results in a much more
likely configuration which still gives rise to a small connected component in the k′-nearest-
neighbour graph for some k′ a little smaller than k. In other words, the disconnection event is
much more likely to occur in the graph Sn,k′ than in the graph Sn,k . Then the correspondence
between these local disconnection events and global connectivity shows that Sn,k′ is much more
likely to be disconnected than Sn,k , which is exactly Theorem 1.

In the final section we prove Theorem 2.

2. Local obstacles to connectivity

Following [2], we shall relate the global connectivity of Sn,k to certain families of local
events. Let M be an integer constant which we shall specify later on. Let Un be the square

Un =
[−M

√
log n

2
,
M

√
log n

2

]
×

[−M
√

log n

2
,
M

√
log n

2

]
⊂ R

2.

We shall refer to the subsquare 1
2Un as the central subsquare of Un. Place points in Un according

to a Poisson process of intensity 1, and put an undirected edge between any point and the k

points nearest to it to obtain the graph Un,k .

Definition 1. Let Ak be the event that Un,k has a connected component wholly contained inside
the central subsquare 1

2Un.

Note that our Ak event is slightly different from the family of events defined in [2]: there the
size of the box corresponding to Un varied with k rather than log n. One of the advantages of
our definition of Un is that the Ak events are nested: if k ≤ k′ then Ak′ ⊆ Ak . We shall cover
most of Sn with copies of Un and show (approximately) that Sn,k is disconnected if and only if
the event Ak occurs in one of these copies.

For this argument to work, we need to ensure that, w.h.p., Sn,k contains no ‘long’ edges
(relative to the size of Un) and only one connected component of ‘large’diameter. The following
result is exactly what we want.
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Lemma 1. (Lemma 1 of [2].) For any fixed α1, α2 with 0 < α1 < α2 and any β > 0, there
exists c = c(α1, α2, β) > 0, depending only on α1, α2, and β, such that, for any k with
α1 log n ≤ k ≤ α2 log n, the probability that Sn,k contains two components each of diameter
at least c

√
log n or any edge of length at least c

√
log n is O(n−β).

Remark. In this paper we use the O notation in a slightly nonstandard way. Most of our results
depend on n and k, where k = k(n) is a function of n. When we say f (n, k) = O(n), we mean
‘uniformly in k’, that is, there is a constant B such that f (n, k) ≤ Bn for all n and k (satisfying
our other constraints).

Let c1 = c(0.3, 0.6, 2) in Lemma 1, and define a small component to be any component
with diameter at most c1

√
log n. Let M = max(	16c1
, 30). We shall also need the following

lemma, which is an easy modification of Corollary 6 of [2].

Lemma 2. For any n and any integer k with 0.3 log n < k < 0.6 log n, the probability that
Un,k contains an edge of length at least M

√
log n/8 is O(n−6).

Proof. This is very similar to the proof of Corollary 6 of [2], but we have to make allowances
for the slight difference in our definition of the event Ak .

Let k < 0.6 log n. Suppose that some vertex x ∈ Un has its kth nearest neighbour lying at
a distance of at least M

√
log n/8. Then there must be fewer than k < 0.6 log n points within

the intersection of the disk about x of radius M
√

log n/8 and the square Un. Since at least one
quarter of this disk lies within the square Un, this intersection has area at least πM2 log n/256.
(It may be only one quarter of the disk since x may be close to a corner of Un.) Since we picked
M ≥ 30, we have πM2 log n/256 > 10 log n. Let X ∼ Poisson(10 log n). Then

P(X < 0.6 log n) =
∑

s<0.6 log n

(10 log n)s

s! e−10 log n

< (0.6 log n)

(
10 log n

0.6 log n/e

)0.6 log n

e−10 log n

< 0.6(log n)e(0.6 log(50e/3)−10) log n

< e−7 log n for sufficiently large n.

Thus, the probability that any vertex x ∈ Un has its kth nearest neighbour lying at a distance at
least M

√
log n/8 away is at most

E{number of vertices in Un} P(X < 0.6 log n) < M2(log n)e−7 log n = O(n−6),

as required.

We also need to define what we meant by ‘most’ of Sn. Let

Tn =
[
M

√
log n,

(⌊ √
n

M
√

log n

⌋
− 1

)
M

√
log n

]2

.

The nice feature of Tn is that it is not very close to any of the boundaries of Sn. The following
lemma is a minor restatement of Theorem 1 of [9].

Lemma 3. There is a positive constant 0 < c2 < 2 such that if k > 0.3 log n then the
probability that Sn,k contains any small component not wholly contained in Tn is O(n−c2).
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We now define two covers of Tn by translates of Un. The independent cover C1 of Tn is
obtained by covering Tn with translates of Un with disjoint interiors. The dominating cover
C2 of Tn is obtained from C1 by replacing each square V ∈ C1 by the twenty-five translates
V + (iM

√
log n/4, jM

√
log n/4), i, j ∈ {0, ±1, ±2}. By construction we have C1 ⊆ C2

and the translates of 1
4Un corresponding to elements of C2 cover the whole of Tn. Also,

|C2| < 25n/M2 log n.
We shall write ‘Ak occurs in Ci’ as a convenient shorthand for ‘there is a translate V of

Un in Ci for which the event corresponding to Ak occurs’. We shall also write Vk for the
k-nearest-neighbour graph on V , and 1

2V for the centre subsquare of V .
Lemmas 1, 2, and 3 allow us to relate, up to some small error, the global connectivity to the

local events Ak . Before we make this relationship precise we need a technical lemma.

Lemma 4. Suppose that Sn,k contains no edge of length greater than M
√

log n/16 and that
V ∈ C2 is a translate of Un such that Vk contains no edge of length greater than M

√
log n/8.

Then Sn,k has a connected component contained inside 1
2V whenever the event corresponding

to Ak occurs in V .

Proof. Let �V denote the subgraph of Vk consisting of all edges with at least one end in 1
2V ,

and let �S be the subgraph of Sn,k consisting of all edges with at least one end in 1
2V . We aim

to show that �V = �S . Obviously, this will imply the lemma.
Let Sn,k[V ] denote the induced subgraph of Sn,k formed by the vertices contained in V .

Trivially, Sn,k[V ] is a subgraph of Vk . What extra edges can there be in Vk? We assume that
Sn,k contains no edges of length greater than M

√
log n/16. Thus, only the vertices within a

distance M
√

log n/16 of the boundary of V may be joined in Sn,k to points in Sn \V . So every
edge in Vk \ Sn,k[V ] (i.e. all extra edges) must meet one of these vertices.

Now Vk contains no edges of length greater than M
√

log n/8, so all the vertices meeting an
edge of Vk \ Sn,k[V ] must lie a distance at most

M
√

log n

8
+ M

√
log n

16
<

M
√

log n

4

from the boundary of V . Since the vertices inside the central subsquare 1
2V all lie at a distance

at least M
√

log n/4 from the boundary of V , they do not meet any extra edges, and we have
�V = �S as claimed.

Next we relate the probability of Sn,k being connected to the probability of an Ak event
occurring somewhere in Sn.

Lemma 5. For all n ∈ N and all integers k with 0.3 log n < k < 0.6 log n, and c2 as given by
Lemma 3,

P(Sn,k not connected) = P(Ak occurs in C2) + O(n−c2).

Proof. Suppose that Ak occurs in C2. Then there is a translate V of Un in C2 for which Ak

occurs; in other words, Vk has a connected component X wholly contained inside the central
subsquare 1

2V . By Lemma 1 and our choice of M , the probability that Sn,k contains an edge
of length at least M

√
log n/16 is O(n−2). Let us assume that this does not happen. Then there

are no edges between 1
2V and Sn \ V in Sn,k . It follows that X is a connected component in

Sn,k as well as in Vk , so Sn,k is disconnected. Thus,

P(Sn,k not connected) ≥ P(Ak occurs in C2) + O(n−2).
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Conversely, suppose that Sn,k is not connected. It must contain at least two connected
components. By Lemma 1 and our choice of M , the probability that Sn,k contains any edge
of length at least M

√
log n/16 or two components of diameter at least M

√
log n/16 is at most

O(n−2). By Lemma 3, the probability that Sn,k has a small component not contained entirely
within Tn is O(n−c2). Also, by Lemma 2, the probability that a particular translate of Un has
any edge longer than M

√
log n/8 is O(n−6). Thus, the probability that Vk has an edge longer

than M
√

log n/8 for some translate V of Un in C2 is at most |C2|O(n−6) = O(n−5). Thus,
the probability of any of the above occurring in Sn,k is at most O(n−c2).

For the remainder of the proof, let us assume that none of the above occurs. Then at least one
of the connected components of Sn,k is contained in Tn and has diameter less than M

√
log n/16.

Let X be such a component, and let x be a vertex of X. By our definition of C2, there exists a
translate V of Un such that x ∈ 1

4V . For any point x′ /∈ 1
2V , we have d(x, x′) > M

√
log n/8.

By our assumption on the diameter of X, we have x′ /∈ X and, hence, X ⊆ 1
2V . We have shown

that Sn,k has a small component, namely X, contained entirely inside the central subsquare 1
2V .

Since Vk and Sn,k satisfy the hypotheses of Lemma 4, the event corresponding to Ak occurs in
V and

P(Sn,k not connected) ≤ P(Ak occurs in C2) + O(n−c2).

The lemma follows.

Roughly speaking, P(Ak occurs in C2) is of order (n/ log n) P(Ak). Thus, from a heuristic
perspective, Lemma 5 tells us that, as we increase k, the transition of Sn,k from not connected
w.h.p. to connected w.h.p. happens at the same time as the transition from P(Ak) � log n/n to
P(Ak) � log n/n. The following is a precise statement of this relationship.

Lemma 6. There exists a constant c3 > 0 such that, for all ε, 0 < ε ≤ 1
2 , all integers n > ε−c3 ,

and all integers k, 0.3 log n < k < 0.6 log n, if

P(Sn,k connected) ≥ ε

holds then

P(Ak) ≤ e log

(
1

ε

)
M2 log n

n
.

Conversely, if

P(Ak) ≤ ε

e4

M2 log n

n

then
P(Sn,k connected) > 1 − ε.

Remark. There is nothing special about the constants e and e4: we picked these values for
later convenience, but all we needed was e > 2 and e4 > 25.

Proof of Lemma 6. Suppose that P(Sn,k is connected) ≥ ε. The translates of Un contained
in C1 have disjoint interiors; hence, the event corresponding to Ak occurs in each of them
independently. Therefore,

P(Ak occurs in C1) = 1 − (1 − P(Ak))
|C1|.

Now,
P(Ak occurs in C1) ≤ P(Ak occurs in C2) (since C1 ⊂ C2)

= P(Sn,k not connected) + O(n−c2) (by Lemma 5)

≤ 1 − ε + O(n−c2).
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Thus,
(1 − P(Ak))

|C1| ≥ ε + O(n−c2).

Provided that we choose c3 large enough, we see that, for all n > ε−c3 , the right-hand side is
at least ε/2. Taking logarithms of both sides and using the inequality log(1 − x) ≤ −x for
0 ≤ x ≤ 1 yields

−|C1|P(Ak) ≥ log
( 1

2ε
)
,

so

P(Ak) ≤ 1

|C1|
(

log
1

ε/2

)
= 1

|C1|
(

log
1

ε
+ log 2

)
.

Now C1 contains (n/M2 log n)(1 + O(
√

log n/n)) translates of Un, 0 < ε ≤ 1
2 and e > 2.

Hence, provided that we choose our constant c3 sufficiently large, for all n > ε−c3 , we have

P(Ak) ≤ eM2 log n

n
log

1

ε
.

For the converse, suppose that P(Ak) ≤ εM2 log n/e4n. By Lemma 5 we have

P(Sn,k not connected) = P(Ak occurs in C2) + O(n−c2)

≤ |C2|P(Ak) + O(n−c2)

≤ |C2|εM2 log n

e4n
+ O(n−c2)

≤ ε
25

e4 + O(n−c2) (since |C2| < 25n/M2 log n).

Since 0 < ε ≤ 1
2 and 25/e4 < 1, we have (again providing we choose c3 sufficiently large),

for all n > ε−c3 ,
P(Sn,k not connected) < ε.

3. Small components have high point density

Having made precise the relationship between P(Ak) and P(Sn,k connected), we turn our
attention to the event Ak . Our aim in this section is to show that, provided k > 0.3 log n, small
connected components in Un,k witnessing Ak must have a region with high point density.

Let N be an integer constant whose value we shall specify later. We consider a perfect tiling
of Un by square tiles of area log n/N2. (Such a perfect tiling exists as Un has area M2 log n

and M , N are integers.) The expected number of points of the Poisson point process on Un in
each tile is log n/N2. Fix 0 < η ≤ 1

2 .

Definition 2. Given a tile Q in Un, we define three events:

1. Ak,Q is the event that Ak occurs and the tile Q receives more than (1 + η) log n/N2

points,

2. A′
k,Q is the event that Ak occurs and the tile Q receives more than (1 + η/2) log n/N2

points,

3. Ak,Q,L is the event that if we remove any L points of the process from Q then A′
k,Q still

occurs.
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Lemma 7. Suppose that k ∈ [0.3 log n, 0.6 log n]. Then

P

(
Ak \

⋃
Q

Ak,Q

)
= O(n−1.1).

The main idea of the proof of this geometric lemma is the following: suppose that X is a
connected component of Un,k wholly contained inside 1

2Un, and suppose that x is a vertex of
X which lies ‘on the boundary’ of X. Write r for the distance between x and its kth nearest
neighbour.

If Un,k contains no tile with high density (i.e. no tile receiving more than 1 + η times the
expected number of points) then the intersection of the ball of radius r centred at x with the
‘convex hull’ of X must have large area (at least k/(1 + η) − o(k)). In particular, looking
outwards from X at x there must be quite a few empty tiles. Doing the above in several
different directions we find that X is surrounded by a wide ‘sea’ of empty tiles of area at least
1.1 log n. Since the number of tiles M2N2 is a constant, the probability that such a collection
of empty tiles exists is O(n−1.1), yielding the desired result.

Before presenting the proof of Lemma 7, we need the following technical result.

Lemma 8. Let γ : [0, 1] → Un be a closed continuously differentiable curve in Un. Let l(�)

be the length of the curve � = γ ([0, 1]), and let D be the number of tiles it meets. Then

D ≤ 9l(�)√
log n/N

.

Proof. We define a graph G on the set of tiles of Un by setting an edge between tiles Q and Q′
if they meet in at least one point. (G is just the usual square integer lattice on {1, 2, . . . , MN}2

with diagonal edges added.) Every tile has at most eight neighbours in this graph. Let S be
the set of tiles met by �. Greedily pick a maximal subset S′ ⊆ S which is independent in G:
pick the tile Q1 with γ (0) ∈ Q1, then pick the first nonadjacent tile Q2 which γ (t) next meets,
and so on. We have D = |S| ≤ 9|S′|. Now � is continuous and cycles through the tiles of S′
before coming back to Q1. Since the minimum distance between points lying in nonadjacent
tiles is at least one tile length (i.e.

√
log n/N ), it follows that the length of � satisfies

l(�) ≥ |S′|
√

log n

N
.

Substituting D ≤ 9|S′| and rearranging terms, we obtain the desired inequality

D ≤ 9l(�)√
log n/N

.

Proof of Lemma 7. Let k be an integer with 0.3 log n < k < 0.6 log n. By Lemma 2, the
probability of Un,k containing any edge of length at least M

√
log n/8 is O(n−6). Since we are

trying to show that Ak \ ⋃
Q Ak,Q has probability at most O(n−1.1), we may assume in what

follows that all edges in Un,k have length strictly less than M
√

log n/8.
Suppose that P is a pointset for which Ak occurs, but Ak,Q does not occur for any tile

Q—so, in particular, no tile of Ak contains more than (1 + η) log n/N2 points of P . Write
Un,k(P ) for the k-nearest-neighbours graph on Un associated with the pointset P . Let X be
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J1

J1

HI1

x1

K1

I1

Figure 1: The hexagonal hull H and regions I1, J1, K1 and I ′
1, J

′
1.

the set of vertices of a connected component of Un,k(P ) wholly contained in 1
2Un. Using an

idea of Balister et al. [1], we shall consider the hexagonal hull of X, H(X), which we now
define.

We consider the six tangents to the convex hull of X making angles of 0, π/3, and 2π/3 with
the x-axis (two for each angle). Together, these define a hexagon H(X) containing X whose
edges are segments of the tangents (some of which may have zero length). We shall call H(X)

the hexagonal hull of X, and label its edges E1, E2, . . . , E6 in cyclic clockwise order so that
the top and bottom edges parallel to the x-axis are E1 and E4, respectively.

Consider E1. There exists x1 ∈ E1 ∩ X. Let r1 be the distance between x1 and its kth
nearest neighbour. Note that, since r1 is the length of an edge of Un,k , r1 < M

√
log n/8. Let

I1 be the intersection of the ball of radius r1 centred at x1 with the hexagon H(X). Let I ′
1 be

the reflection of I1 with respect to E1. Since I ′
1 ∩ H(X) = ∅ and since every point of I ′

1 lies
at a distance at most r1 from x1, it follows that I ′

1 contains no point of P .
Next we show that I ′

1 covers many tiles. Since r1 < M
√

log n/8 and H ⊂ 1
2Un, we see

that I ′
1 ⊂ Un. Let J1 be the union of all of the tiles wholly contained inside I1, and let J ′

1 be
the union of all of the tiles wholly contained inside I ′

1. Let K1 be the union of all of the tiles
meeting I1, and let K ′

1 be the union of all of the tiles meeting I ′
1. (See Figure 1.) Since no tile

in Un contains more than (1 + η) log n/N2 points of P , it follows that K1 is the union of at
least k/((1 + η) log n/N2) tiles.

A tile is contained in K1 \ J1 only if it meets the boundary of I1. Now, since I1 is a convex
subset of a disc of radius r1, the boundary of I1 has length less than 2πr1, so, by Lemma 8,
K1 \ J1 is the union of at most 18πr1/(

√
log n/N) tiles. By the same argument, K ′

1 \ J ′
1 is the

union of at most 18πr1/(
√

log n/N) tiles. Denote by |I1| the area of I1; |I ′
1|, |J1|, . . . , |K ′

1|
similarly. We have

|J ′
1| ≥ |I ′

1| − |K ′
1 \ J ′

1| ≥ |I1| − |K ′
1 \ J ′

1| ≥ |K1| − |K1 \ J1| − |K ′
1 \ J ′

1|.
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Since each tile has area log n/N2, our bounds on the number of tiles in K1, K1 \J1, and K ′
1 \ J ′

1
imply that

|J ′
1| ≥ log n

N2

(
k

(1 + η) log n/N2 − 36πr1√
log n/N

)

≥ k

1 + η
− 36πr1

√
log n

N

≥ k

1 + η
− 9Mπ log n

2N
, (1)

where the last inequality follows since r1, the radius of the k-nearest-neighbour disc about x1,
is the length of an edge, so is at most M

√
log n/8.

We turn at last to the choice of N : let N = 10	27Mπ
. For k > 0.3 log n and η ≤ 1
2 ,

(1) becomes
|J ′

1| > 11
60 log n.

For i = 2, 3, . . . , 6, we may define Ii , I ′
i , etc. as above. It is easy to see that the J ′

i are
disjoint: each J ′

i lies between the bisectors of two adjacent angles of the convex hexagon H(X).
Repeating the argument above to bound below |J ′

2|, . . . , |J ′
6|, we obtain

∣∣∣∣
6⋃

i=1

J ′
i

∣∣∣∣ =
6∑

i=1

|J ′
i | >

11

10
log n.

Thus, there are at least
11

10

log n

log n/N2 = 110(	27Mπ
)2

tiles which receive no points. There are at most
(

M2N2

110(	27Mπ
)2

)

ways of choosing this many tiles. Since M and N are constants, this is just a (large) constant.
The probability that there exist 110(	27Mπ
)2 empty tiles (i.e. empty tiles with total area
11
10 log n) in Un is therefore

O
(
exp

(− 11
10 log n

)) = O(n−1.1).

Thus,

P

(
Ak \

⋃
Q

Ak,Q

)
= O(n−1.1),

as claimed.

4. The sharp connectivity threshold for Sn,k

In Lemma 7 we proved that small components witnessing Ak have high point density. We
use this fact to prove a sharpness result for P(Ak), which, by Lemma 6, implies in turn a sharp
threshold for the connectivity of Sn,k (i.e. Theorem 1). We shall do this by showing that, for all
k′ > k, most pointsets in Ak′ may be obtained by adding points to already dense parts of Ak

pointsets.
We shall need the following lemma, which is a convenient restatement of Theorem 5 of [1].
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Lemma 9. There exists a positive constant c4 > 0 such that, for every ε with 0 < ε ≤ 1
2 and

all n > ε−c4 ,

• if k ≤ 0.3 log n then P(Sn,k connected) < ε, and

• if k ≥ 0.6 log n then P(Sn,k connected) > 1 − ε.

Recall that in the previous section we fixed constants 0 < η ≤ 1
2 and N ∈ N, and introduced

a tiling of Un into M2N2 small square tiles as well as the families of events Ak,Q and A′
k,Q.

Lemma 7 says that, provided P(Ak) = �(n−1), we have P(
⋃

Q Ak,Q)= (1 − O(n−0.1)) P(Ak).
Thus, if a small Ak connected component occurs then, w.h.p., some tile Q receives far more
points than expected. We show that if k′ > k then most Ak′ pointsets can be obtained by adding
points to an overpopulated tile of an Ak pointset.

Recall our definition of Ak,Q,L (Definition 2): it is the event that if we remove any L points
of the process from Q then A′

k,Q occurs.

Lemma 10. For any tile Q and positive integer L < η log n/2N2, we have

Ak+L,Q ⊆ Ak,Q,L.

Proof. Suppose that P ⊂ Un is a pointset for which the event Ak+L,Q occurs. It is enough
to show that the removal of any L points from P ∩ Q yields a pointset P ′ for which the event
A′

k,Q occurs.
As in Lemma 7, write Un,k(P ) for the k-nearest-neighbours graph on Un associated with

the pointset P . Since we remove at most L vertices from P , every vertex in P loses at most L

of its k + L nearest neighbours; the set of its k nearest neighbours in P ′ is thus a subset of the
set of its k + L nearest neighbours in P . It follows that Un,k(P

′) is a subgraph of Un,k+L(P ).
Since we assume that Ak+L,Q occurs, Un,k+L(P ) has a connected component wholly

contained inside 1
2Un. This component must contain at least k + L + 1 > L vertices and,

since we have removed only L vertices from P to obtain P ′, some vertices of this component
remain, that is, Un,k(P

′) must also have a component wholly contained inside 1
2Un. Thus,

P ′ ∈ Ak .
Moreover, the number of points in P ′ ∩ Q is exactly

|P ∩ Q| − L > (1 + η)
log n

N2 − η log n

2N2 =
(

1 + η

2

)
log n

N2 ,

and, hence, P ′ ∈ A′
k,Q, as claimed.

Lemma 11. Let L < η log n/2N2 be a positive integer, and let Q be a tile. Then

P(Ak+L,Q) <

(
1 + η

2

)−L

P(A′
k,Q).

Proof. First, note that we may consider the Poisson process on Un as the union of a Poisson
process on Q and an independent Poisson process on the disjoint set Un \ Q. Now a Poisson
point process on Q is just a uniform point process placing

Z ∼ Poisson

(
log n

N2

)

points in Q.
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We may think of this uniform point process as adding points one by one. If Ak,Q,L occurs
then, in particular, A′

k,Q occurs if we remove the last L points added by the point process. It
follows that

P(Ak+L,Q) ≤ P(Ak,Q,L) (by Lemma 10)

=
∑
m

P(Ak,Q,L | Z = m + L) P(Z = m + L)

≤
∑
m

P(A′
k,Q | Z = m) P(Z = m + L) (by the definition of Ak,Q,L)

=
∑
m

P(A′
k,Q | Z = m) P(Z = m)

L∏
i=1

N−2 log n

m + i
. (2)

By the definition of A′
k,Q,

P(A′
k,Q | Z = m) = 0 for all m <

(
1 + η

2

)
log n

N2 .

For m ≥ (1 + η/2) log n/N2, we have

L∏
i=1

N−2 log n

m + i
<

(
N−2 log n

m

)L

≤
(

1 + η

2

)−L

.

Substituting this into (2) gives

P(Ak+L,Q) <

(
1 + η

2

)−L

P(A′
k,Q),

as claimed.

Lemma 12. There exist constants c5 and L ∈ N such that, for all n > c5 and all k satisfying

0.3 log n ≤ k ≤ 0.6 log n − L and P(Ak) ≥ n−1.05,

we have
P(Ak+L) < e−1 P(Ak).

Proof. Let L be an integer constant which we shall specify later on. As η, L, and N are all
constants, provided that we choose the constant c5 > 0 sufficiently large, then, for all n > c5,
we have L < η log n/2N2—so, in particular, the hypothesis of Lemma 11 is satisfied. Also,
k + L ∈ [0.3 log n, 0.6 log n], so the hypothesis of Lemma 7 is satisfied for k + L. Applying
the two lemmas successively, we obtain

P(Ak+L) = P

(⋃
Q

Ak+L,Q

)
+ O(n−1.1) (by Lemma 7)

≤
∑
Q

P(Ak+L,Q) + O(n−1.1)

≤
∑
Q

(
1 + η

2

)−L

P(A′
k,Q) + O(n−1.1) (by Lemma 11)

≤ M2N2
(

1 + η

2

)−L

P(Ak) + O(n−1.1), (3)

where the final line follows since P(A′
k,Q) ≤ P(Ak).
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We now choose L: let

L =
⌈

log(M2N2e2)

log(1 + η/2)

⌉
,

so that

M2N2
(

1 + η

2

)−L

≤ e−2.

Thus, (3) becomes
P(Ak+L) ≤ e−2 P(Ak) + O(n−1.1).

By assumption, P(Ak) ≥ n−1.05, so, again provided that we choose c5 large enough, for all
n > c5, we have

P(Ak+L) < e−1 P(Ak),

as claimed. (Note that the choice of our constant L depended only on the constants M , N ,
and η.)

Proof of Theorem 1. In essence, we just iterate Lemma 12. However, we have to choose the
right parameters and make sure the conditions hold at each stage.

We choose γ > 0 such that γ > max(c3, c4, log2 c5, 20), where c3, c4, and c5 are the
constants in Lemma 6, Lemma 9, and Lemma 12, respectively. Note that, since we defined
M ≥ 30, we have e4/M2 log n ≤ e4/900 log 2 < 0.09 < 1 for all n ≥ 2, so

n−1/γ >
e4

M2 log n
n−0.05 (4)

for all n ≥ 2.
Suppose that n and k are such that P(Sn,k is connected) > ε and n > ε−γ . We may assume

that ε ≤ 1
2 and P(Sn,k connected) ≤ 1 − ε, for otherwise we have nothing to prove. Since

n > ε−γ > ε−c4 and ε < P(Sn,k connected) < 1 − ε, Lemma 9 implies that

0.3 log n < k < 0.6 log n. (5)

In particular, for n > ε−γ , the assumptions of Lemma 6 are satisfied.
Let C be a strictly positive real constant which we shall specify later on. There are three

cases to consider, the first two of which are essentially trivial.
Suppose first of all that

k +
⌊
C log

1

ε

⌋
≥ 0.6 log n.

Then by Lemma 9 we have P(Sn,k+�C log(1/ε)� connected) > 1 − ε, and we are done.
Second, suppose that k + �C log(1/ε)� < 0.6 log n and

P(Ak+�C log(1/ε)�) < n−1.05.

Since n > ε−γ , by (4) we have

n−1.05 < n−1/γ M2 log n

e4n
< ε

M2 log n

e4n
,

so by Lemma 6 we have P(Sn,k+�C log(1/ε)� connected) > 1 − ε, and we are done.
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Finally, we turn to the case when neither of the above occurs, that is, when

k +
⌊
C log

1

ε

⌋
< 0.6 log n

and
P(Ak+�C log(1/ε)�) ≥ n−1.05.

Since P(Ak′) monotonically decreases as k′ increases, we have

P(Ak′) ≥ n−1.05

for every k′, k ≤ k′ ≤ k + �C log(1/ε)� − L. Trivially, for any k′ in this range, we have
k′ + L < 0.6 log n and, by (5), 0.3 log n < k′. Thus, applying Lemma 12 we have, for all
k′, k ≤ k′ ≤ k + �C log(1/ε)� − L,

P(Ak′+L) < e−1 P(Ak′). (6)

Since P(Sn,k connected) ≥ ε, Lemma 6 implies that

P(Ak) ≤ eM2 log n

n
log

1

ε
.

Thus, by repeatedly applying (6), we see that

P(Ak+�C log(1/ε)�) ≤ P(Ak) exp

(
−

⌊�C log(1/ε)�
L

⌋)

≤ eM2 log n

n
log

1

ε
· exp

(
−

⌊
C log(1/ε)

L

⌋)

≤ M2 log n

n
exp

(
−

⌊
C log(1/ε)

L

⌋
+ 1 + log log

1

ε

)
. (7)

We now choose C: let

C =
(

2 + 6

log 2

)
L,

where L is the constant in Lemma 12. Since ε ≤ 1
2 , we have log(1/ε)/ log 2 ≥ 1. Thus, for

this choice of C, we have

−
⌊

C

L
log

1

ε

⌋
+ 1 + log log

1

ε

≤ 2 + log log
1

ε
− C

L
log

1

ε

=
(

2 − 2
log(1/ε)

log 2

)
+

(
log log

1

ε
− log

1

ε

)
− 4 log(1/ε)

log 2
− log

1

ε

≤ −4 − log
1

ε
.

Substituting this into (7) we obtain

P(Ak+�C log(1/ε)�) ≤ ε
M2 log n

e4n
.
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By Lemma 6, this implies that

P(Sn,k+�C log(1/ε)� connected) > 1 − ε,

proving the theorem.

5. Higher connectivity

In this section we shall apply our sharpness result, Theorem 1, to show Theorem 2, proving
a conjecture of Balister et al. [3]. Suppose that P is any pointset in the square Sn = [0,

√
n]2.

Let Gk(P ) denote the k-nearest-neighbour graph on P .

Lemma 13. Suppose that s < 0.9 log n/log log n and 0.3 log n + s < k < 0.6 log n. Then
there exists a constant c6 such that

P(Sn,k not s-connected) ≤ c6(log n) P(Sn,k−1 not (s − 1)-connected) + O(n−3).

Moreover,

P(Sn,k not s-connected) ≤ (c6 log n)s−1 P(Sn,k−s+1 not connected) + o(n−2).

We shall need the following technical result to prove Lemma 13.

Lemma 14. Suppose that 0.3 log n < k < 0.6 log n. Then there exists c7 such that the
collection C of pointsets P from which we may delete a set T of at most 0.9 log n/log log n

points so that either

• there exists any point x ∈ Sn (not necessarily in P ) such that the disc of radius c7
√

log n

centred at x contains less than 0.6 log n points of P \ T , or

• Gk(P ) \ T contains at least two components of diameter at least c7
√

log n,

holds, satisfies P(C) = O(n−3).

Proof. This is an easy modification of Lemmas 2 and 6 of [1].

Proof of Lemma 13. We can view a Poisson pointset as follows. Suppose that X1,X2,X3, . . .

is an infinite sequence of uniformly distributed random variables in Sn, and let Z ∼ Poisson(n).
Then let the points in P be given by (Xi)

Z
i=1. Let Pm denote the collection of pointsets with

exactly m points that we give the conditional measure, which we will sometimes denote by Pm.
From this point of view, it is easy to see that we have m measure preserving maps φi for
1 ≤ i ≤ m from Pm to Pm−1 given by deleting the point Xi . We shall usually abbreviate φ1
to φ.

Let As denote the collection of pointsets P for which Gk(P ) is not s-connected but Gk−1(P )

is (s − 1)-connected. Let Bs denote those pointsets P for which Gk−1(P ) is not (s − 1)-
connected. Finally, let C denote the collection of pointsets P for which either of the conditions
in Lemma 14 holds, which we shall think of as the ‘bad’ pointsets. By Lemma 14, P(C) =
O(n−3).

For any pointset P in As , it is clear that (at least) one of the functions φi maps P into Bs .
Indeed, since Gk(P ) is not s-connected, there is a point Xi which we can delete to make the
graph not (s − 1)-connected. Since Gk−1(P \ Xi) is a subgraph of Gk(P ) \ Xi , the map φi is
one such function. Thus, As ⊆ ⋃m

i=1 φ−1
i (Bs).
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Note that P(|Z − n| > n/2) = o(n−3). We have

P(As) =
∞∑

m=0

P(As | Z = m) P(Z = m)

=
3n/2∑

m=n/2

P(As | Z = m) P(Z = m) + o(n−3)

=
3n/2∑

m=n/2

Pm(As \ C) P(Z = m) + O(n−3)

=
3n/2∑

m=n/2

Pm(P ∈ As \ C and there exists i : φi(P ) ∈ Bs) P(Z = m) + O(n−3) (8)

≤
3n/2∑

m=n/2

m∑
i=1

Pm(P ∈ As \ C and φi(P ) ∈ Bs) P(Z = m) + O(n−3)

=
3n/2∑

m=n/2

m Pm(P ∈ As \ C and φ(P ) ∈ Bs) P(Z = m) + O(n−3). (9)

Next we bound Pm(P ∈ As \ C and φ(P ) ∈ Bs). For each P ∈ As \ C with φ(P ) ∈ Bs ,
we see that Gk−1(P ) is (s − 1)-connected but Gk−1(φ(P )) is not (s − 1)-connected.

Fix a separating set T of s − 2 vertices for Gk−1(φ(P )). Since P /∈ C, all but (at most)
one of the components in the separated graph Gk−1(φ(P )) \ T are small: less than c7

√
log n

in diameter. Let C be one such small component.
Since Gk−1(P ) is (s − 1)-connected, we see that Gk−1(P ) \ T is connected. However,

Gk−1(P ) \ T \ {X1} is not connected (since it is a subgraph of Gk−1(P \ {X1}) \ T =
Gk−1(φ(P )) \ T ). Thus, X1 must be joined to C in Gk−1(P ). Since we assume that P �∈ C,
the bound on the edge length from Lemma 14 holds and we see that X1 lies within a distance
c7

√
log n of C.

Combining this with the bound on the diameter of C we see that X1 lies within a set of
measure less than 4πc2

7 log n which is determined by P \ X1. This event has probability less
than 4πc2

7 log n/n. Thus, since φ is a measure preserving transformation from Pm to Pm−1,

Pm(P ∈ As \ C and φ(P ) ∈ Bs) ≤ 4πc2
7 log n

n
Pm(φ(P ) ∈ Bs)

= 4πc2
7 log n

n
Pm−1(P ∈ Bs). (10)

To complete the proof, note that P(Z = m) ≤ 2 P(Z = m − 1) for all m > n/2. Thus,
substituting (10) into (8),

P(As) ≤
3n/2∑

m=n/2

m Pm(P ∈ As \ C and φ(P ) ∈ Bs) P(Z = m) + O(n−3)

≤
3n/2∑

m=n/2

m
4πc2

7 log n

n
Pm−1(P ∈ Bs) P(Z = m) + O(n−3)
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≤
3n/2∑

m=n/2

(12πc2
7 log n) Pm−1(P ∈ Bs) P(Z = m − 1) + O(n−3)

≤ (12πc2
7 log n) P(Bs) + O(n−3).

Finally, observe that

{P : Sn,k not s-connected} ⊆ As ∪ Bs ,

so the first part of the lemma holds with c6 = 12πc2
7 + 1, i.e.

P(Sn,k not s-connected) ≤ c6 log n P(Sn,k−1 not (s − 1)-connected) + O(n−3).

Iterating this s − 1 = O(log n) times we obtain the second part of our claim.

We can now finally turn to the proof of Theorem 2.

Proof of Theorem 2. By Theorem 2 of [3] we may restrict ourselves to the case where s(n) is
an integer sequence with s(n) ≤ min(log n/(2γ log log n), 0.9 log n/log log n). Suppose that
k = k(n) is such that Sn,k is connected w.h.p., so that

P(Sn,k is not connected) → 0.

Now, letting ε = (c6 log n)−s and applying Theorem 1,

P(Sn,k+�C log(1/ε)� is not connected) < ε = (c6 log n)−s

for all sufficiently large n. (Explicitly, this is for all n with n > ε−γ . Given our choice of
ε and the restriction on s, ε−γ is at most exp( 1

2 log n + O(log n/ log log n)), so this is indeed
satisfiable for large enough n.) Now

C log
1

ε
+ s − 1 < 2Cs log log n

for all sufficiently large n. If k + �2Cs log log n� < 0.6 log n, we have, by Lemma 13,

P(Sn,k+�2Cs log log n� not s-connected)

≤ (c6 log n)s−1 P(Sn,k−s+1+�2Cs log log n� not connected) + o(n−2)

≤ (c6 log n)s−1 P(Sn,k+�C log 1/ε� not connected) + o(n−2)

< (c6 log n)s−1ε + o(n−2)

= O

(
1

log n

)

= o(1),

as required. If, on the other hand, k + �2Cs log log n� ≥ 0.6 log n, we have

P(Sn,k+�2Cs log log n� is not s-connected) = o(1)

by Theorem 2 of [3]. The result follows.
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