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Abstract

In this note we consider various theoretical aspects of the problem of least-
squares approximation subject to constraints on the range of the approximating
polynomial. The problem is treated from an optimization theory viewpoint.
Rice's parameter space procedure is discussed.

1. Introduction

In this paper we investigate least-squares approximation subject to restricted range
constraints. Surprisingly, this problem does not appear to have been discussed in
detail in the literature although considerable attention has been directed at the
problem of range constrained uniform approximation [7, 8, 12, 13, 14]. Some
general aspects of the range constrained least-squares problem were considered by
Rice [11] and the special case of discrete least-squares approximation with uniform
constraints was considered by Rabinowitz [10] and Krabs [6]. Here we consider
the problem of least-squares approximating a square-integrable function by a
function composed of a linear combination of continuous functions but with the
additional requirement that range constraints are imposed on the approximating
function. The problem is treated as a function space optimization problem with a
continuous family of linear inequality constraints. Existence, unicity, character-
ization and continuity theorems are presented.

Throughout this paper we follow standard notation and denote the Hilbert
space of functions square-integrable on [a, 6] by L2[a, b~], and the Banach space
of continuous functions on [a,b], equipped with a uniform norm, as C[a,b~\.
Whenever a norm is written without a subscript we are referring to an L2 norm.
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Problem formulation
Restricted range least-squares approximation of a square-integrable function

coeL2[a,i)] by a finite linear combination of continuous orthonormal functions
vt e C\_a, b~\, i = 1,...,«, is easily seen to be equivalent to the optimization problem:

minimize | | r o -g | | 2 ,
geG

where the approximant g is given by

for some fixed n and the range of the approximant is constrained by the set

G = {g e C[a, b]: l(x) < f a,itfx) < «(x), x 6 [a, b}}.

Clearly the range of the approximating polynomial Yj=iaivM ls restricted to lie
between two continuous functions u, leC[a,b], called the range constraints. We
will assume that

(i)

(ii) G is not empty.

REMARKS, (i) Note that in many papers on range-constrained approximation
(for example [4]) a third condition /(*)< vo(x) < u(x), for all xe[a,Z>] is
required. We make no such requirement here.

(ii) The inequality z(x) <X*)> xe[_a,b], defines a partial ordering on C[a, b~]
and in order to simplify notation we will write this as z ^ y.

It is important to note that this partial ordering is generated by a closed positive
cone

P = {yeCla,by.y>0}

and, further, since C[a, 6] is equipped with a uniform norm it follows that P has
a non-empty interior [9].

(iii) It will be useful in the sequel to make the following definitions

(a) O00 = |« e R": / < J a<», <

f " If " 1
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and

(b) / : Rn-+R :/(«) =

(iv) We will assume that Q(n) is non-empty and that {vt}"=l are orthonormal
on [a,ft].

It is now straightforward to see that the range constrained least-squares approxi-
mation problem can be rewritten as

minimize /(a), aeR",
subject to /f(a) ^ 0, K(a) < 0.J

There are a variety of applications of the range-constrained least-squares
approximation problem. An example from control theory is the optimal pulse
amplitude modulation control of a distributed parameter system with state con-
straints. The control is given by the vector a, the desired output trajectory is the
function to be approximated vo,vt,i = l, ...,n, are delayed versions of the
system impulse response, and the range constraints u and / are the output state
constraints. For this example, of course, it is unlikely that the v{ would be ortho-
normal but this is of no real consequence.

There are also applications in system theory where the problem is to approxi-
mately realize a certain system impulse response using a set of orthonormal
functions. For system performance reasons it may be necessary to ensure a
prescribed degree of approximation over certain portions of the response and this
can be achieved easily with the range constraints.

2. Main results

In this section we present several results concerning existence, uniqueness and
characterization of the optimal approximant.

LEMMA 1. {Existence.) An optimal approximant exists under the assumptions made
in Section 1.

PROOF. Since H and K are continuous and linear, and P is closed, it follows the
Q(«) is closed. Finally /(a) is a continuous, coercive operator which is bounded
below on £l(n) hence existence follows [3, p. 35].
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LEMMA 2. (Uniqueness.) The optimal approximant is unique.

PROOF, / i s strictly convex and H and K are linear [11].

In order to proceed further we need certain results from function space opti-
mization theory. A self-contained exposition is presented in the Appendix.
Applying these results to the range-constrained least-squares approximation
problem formulated above (1) we have the following.

(i) The convex Lagrangian functional for (1) is given by

II= \\v0- £

where the Lagrange multiplier functions are positive measures which belong to the
dual positive cone, XltX2eP*,

* = \y*eM\a,V\: \" ydy* Z 0,

and M [a, b~] is the space of regular Borel measures on [a,

(ii) Define the set

n: H(a) < 0} n{«eR" : K(a) < 0}.

(iii) The concave dual functional for (1) is given by

i>^2)= inf L[a; At,A2].
«£«"

THEOREM 3. Given that Cl(ri) is non-empty, that is, there exists an xeR" such that
the range constraints can be satisfied strictly, then <x°eR" solves (1) if and only if
there exist Lagrange multipliers X°, A° e P* sucn tnat

(a) L[ao;A?,A°] < L[a; A?,A°

(b) f «?»,-« <0,

- p i t «?»,-.
J o (.1=1
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PROOF. This follows from a direct application of the function space version of
the Kuhn-Tucker Theorem presented in the Appendix.

COROLLARY 4. The optimal Lag range multipliers X\,X% are mutually singular [2].

PROOF. From conditions (b) and (c) of Theorem 3, we see that the dXt, i = 1,2,
are non-zero only where the range constraints are active. Also it is clear from the
problem formulation that both range constraints cannot be active simultaneously,
thus wherever dX± is non-zero, dX2 must be zero and vice versa, that is the
Lagrange multipliers are mutually singular.

THEOREM 5. (Characterization.) Problem (1) is solved by

1 J .
0, i =!,...,«,

where &i = ^vovidx, i.-A,n, solves the unconstrained least-squares approxi-
mation problem

II " I I 2

minimize £ a^-td ,

and A°eM[a,Z>] solves the unconstrained quadratic optimization problem

minimize <f>(X), X e M [a, b],
where

-- \\u-l)\dX\- \"vodX.
J a J a

PROOF. Using Corollary 4, the Lagrangian can be rewritten as

II n 2
,r,. ]i V « ., •>

where dX = dX1—dX2 and \dX\ — dX1+dX2. Now Z.[a; A] can be minimized with
respect to a by setting

Cb j Cb
«i= vovtdx-- v{dX

J a *-J a
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Next the dual functional (j>(X) is found by substituting this at into the Lagrangian,
and using the orthonormality of {i>,}. Finally, the generalized duality theorem is
applied (see Appendix).

THEOREM 6. (Alternative characterization.) Problem (1) is solved by

« ? = tfjtforfx- v,dX°, i = l , . . . , n ,
J a J a

for any X° e M\a, b~\ satisfying

| W i f A*)>0, xe\a,b],

PROOF. This can be obtained directly from Theorem 5. Alternatively one may
use duality theory as follows. The dual functional <£(A) obtained in Theorem 5 is
convex and is therefore subdifferentiable [3]. Moreover a necessary and sufficient
condition for X°eM[a,b~] to minimize cf>(X) is that zero belongs to the sub-
differential of #(A°), that is Qed<f>(X°). To express this condition for our problem
we simply observe that the smallest element of the subgradient is given by the
function which minimizes the directional Gateaux differential.

It is interesting to note that the solution to the range-constrained least-squares
problem is given by the solution to the unconstrained least-squares problem plus
a correction term to account for the constraints. In [11] Rice mentioned the
possibility of solving constrained approximation problems by firstly solving the
unconstrained problem and then finding the element in the constraint set which
is closest in the parameter-space norm sense to the optimal unconstrained para-
meter. Using Theorem 5 above it is quite easy to show that Rice's procedure is in
fact optimal for our problem.

LEMMA 7. The solution to range-constrained least-squares problem can be found by
solving the problem

n

minimize £ (^-c,)2, ceR", (2)
i = l

subject to H(c) ^ 0,
X(c) ^ 0.

where]

II " I I 2

*,- = arg min £ a,i>,-D0 .

t The notation arg min is not standard but the meaning is straightforward. For example,
arg min/(a) is the value of a for which/(a) is minimized.
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PROOF. Following the proof of Theorem 5 we see that the dual function for (2)
above is the same as the dual for (1) except for a constant.

Another interesting interpretation of af can be obtained by decomposing X°
into an integrable part and a saltus part [2]

where c°el}[_a,b~] is the Radon-Nikodym derivative of dX and p°eR. Now

«? = * . - \ [ ^x)g°(x) dx--[b v{(x) £ p° 8(x - Xj) dx.
^ J a ^ J a J = l

Thus a0 can be thought of as the solution to the unconstrained approximation
problem

minimize

where
00

v = vo+g°+ £ pJS(x-Xj).

We now move on to consider the continuity properties of the best approxi-
mation operator. The best approximation operator A{vt},u,I will be written
simply as A from now on, where a certain orthogonal set {i>(} and upper and
lower bounds u and / are understood to be associated with any A, where

n

A: C[_a,b']-*C\_a,b']: Avo= £ a?vi where a?, i = l , . . . , n , solves (1).

THEOREM 8. (Continuity of best approximation operator.) Given two continuous
functions vOi, v02 then the optimum restricted range least-squares approximations
Av0l and Av02 satisfy for some T > 0

\\Av0l -AvO2\\^ T || v0l - vQ2\\.

PROOF. Assume Av0l and Av02 exist. From the continuity of unconstrained
least-square approximation operator we have that there exists a y > 0 such that

Now applying Lemma 7 we see that continuity of A is equivalent to the existence
of some p > 0 for which
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where
c? = argmin | |a f -c | | 2 , i = l , 2 .

c e O(n)

Now is it clear that we can write

where Proj[fi(«),«,-] is the projection operation which projects the element 6,
onto the closed convex setj Q(ri) and it is well known that this projection operation
is continuous [5]. The theorem now follows immediately.

The following definitions and lemmas will be useful in the sequel. The optimal
n-dimensional range-constrained approximation of a function v0 will be denoted
An v0 and from Theorem 5 above we have

Anv0 = Un+Cn,
where

i = l J a
and

7 v r
" i=l J a

"'=~2£l
Vl}.V'dX'

Note that A0 which maximized </>(l) is a function of n and v0 so from now on we
will write x°.

LEMMA 9.

lim || Un-Ux || = 0 .
n-*oo

PROOF. This follows directly from Bessel's inequality [1].

LEMMA 10. The sequence {X®}f=x is bounded in norm.

PROOF. It is clear that the sequence of optimal primal costs {/(a°)}™= i is a

monotonically decreasing sequence which is bounded below by zero. Moreover,
the dual cost $(A°) is equal to the primal cost for each n, thus the sequence

}"=i c o n verges, that is

t Note that, il(n) is a closed convex set for all /, u, n and {v,} satisfying the assumptions stated
in Section 1.
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Now if {A?} is not bounded in norm there must exist a subsequence {A£} for which

Using the assumption that &(ri) is non-empty it can be shown that such a sub-
sequence contradicts the converge of $(A?).

LEMMA 11.

Hmi (\<w.°- r = 0.

PROOF. From Lemma 10 we have the sequence {A?},™, is bounded in norm.
Further, by Alaoglu's Theorem [2] the unit ball in M[a, 6] is weak-star compact
thus there must exist a subsequence of {A°} which converges weak-star to a limit
1 and it can be shown that A — Xx. From this is follows that {f^dA"} converges
for every i to J^dA^. Moreover this is a continuous function of A° so {f2i>fdA°}
is bounded and the Lebesgue Dominated Convergence Theorem [2] implies
mean-square convergence.

THEOREM 12.

PROOF. Clearly

lim
n-*oo

\\un-uj\ + nc.-cj|.
The first term converges by Lemma 9 and using Lemma 11 we can show that the
second term will also converge. Denning

we see that

IIC.-C
i = l i = l l i = l 1 = 1

The second term on the right-hand side converges by Lemma 11, and the first
term converges because ,̂™ J^f |2<oo.

3. Computational aspects and conclusions

In this paper the range-constrained least-squares approximation problem has
been investigated using the techniques of function space optimization theory and
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convex analysis. A variety of theorems concerning the existence and uniqueness
of the optimal approximant and its characterization and properties have also been
presented. One aspect which has not been discussed, however, is the availability
of algorithms for finding the optimal approximant. The major difficulty of course
lies in the infinite dimensionality of the constraints, making some type of dis-
cretization necessary before computational algorithms can be applied. It may be
possible to discretize the primal problem directly as is done in [16], for the maximum
norm problem and in [15] for an infinite dimensional quadratic programming
problem. Alternatively it is possible to discretize the dual problem by approxi-
mating the Lagrange Multiplier AeM[a , i ] so that

J a j=l

where {x-}™=1 is some partition of [a, b], that is dl has been approximated by
rectangular pulses of height Xj on each interval [Xj,xJ+l,j = \,...,m— 1 [4]].

Now by solving the unconstrained finite dimensional convex (but non-
differentiable) dual problem for increasingly finer partitions, m,m+l,..., we
obtain a sequence of approximating functions and it can be shown using techniques
similar to Lemma 1 that this sequence convergences in mean-square to the optimal
approximant which solves (1).
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Appendix

In this appendix some results from the theory of constrained minimization in
normed linear spaces are stated. Since the results are well known [9] the presen-
tation here is very brief and is designed to summarize some of the key theorems.

Let t /and Zhi = 1,2, ..., n, be real normed linear spaces, with convex cones [9]
Pt £ Zf, i = 1,2, ...,n. For each cone Pt generates a partial ordering [9] on Z,,
denoted < and defined by

x,yeZ(. (A.I)
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Here P, is called the positive cone of Z;, since P( = {zeZ;-. z ^ 0}, and the
notation x <y indicates that y-x is an interior point of Pt. The dual positive
cone p* in the dual space z* is defined by

Pf = {z* e Zf: z*z ^ 0 for all z e P,}

where the notation z* z is used to indicate that z is the argument of the functional

The function H: U^Z is said to be convex (with respect to the partial ordering
z*.

(v), u,veU, ye [0,1].

Consider the optimization problem

minimize /(a), ueU, (A.2)

subject to H,(a) ^ 0 , / = 1,2,..., n,

where/: U-+R1 and Ht: U->Zh /== 1,2,...,«, are all convex. The Lagrangian
function f. U x Z* x Z* x ... x Z*-^Rl for problem (A.2) is defined by

L(«; Als A2,.... A,,) = / ( a ) + f ^ -^(«) . (A"3>
i = l

If A,eP* and z*, ' = 1>2, ...,n, are all given then L(. ; A^Aj, ...,An) is a convex
functional on U. The dual frequency 0: z* x Z* x ... x Z*-*/?1 for problem (A.2)
is defined by

= inf L(A; ^ , A2, ...,An) (A.4)

and it is easily verified [9] that <j> is a concave functional.
Two key theorems are now stated.

THEOREM A-l. (Generalized Kuhn-Tucker conditions.) For i=\,2,...,n, let
U, Zi be real normed linear spaces, as above, with each of the positive cones
Pt <=Zj having a non-empty interior. Let f: U-+R1 and Hi'. U-*Zt be convex, as
above and assume the existence of S e t / such that H^a.) < 0for all i. Then a.0el)
solves problem (A.2) if and only if there exist Lagrange multipliers XfePf,
i = 1,2,...,«, such that

(i) L(a
0;A?,A5>...,An

0)<L(a;A?)A°,...,An
0)>ae(/, (A.5)

(ii) A°.H,{a°) = 0,i=l,2,...,n, (A.6)
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PROOF. See [9].

Condition (ii) of the above theorem expresses the fact that a Lagrange multiplier
is non-zero only where the corresponding constraint is active. The following
duality theorem provides a method for finding the Lagrange multipliers.

THEOREM A-2. {Generalized duality.) The Lagrange multipliers of Theorem 04-1),
XfePf,i = 1,2,...,n, satisfy

(i) ^? ,A° , . . . > A n
0 )^^ 1 , l 2 , . . . ,A n ) , l? , l i >0 , (A.7)

(ii) min /(a) = max(/)(l1,A2, ...,!„).

Conditions (i) and (ii) of Theorem A-l hold for any A1;A2, ...,!„ which satisfy (j)
above.

PROOF. See [9].

REMARKS, (i) There are many other approaches to optimization in function
spaces but the summary presented here is adequate for our needs.

(ii) The requirement that the cone P <=,Z has a non-empty interior can, under
certain circumstances, be quite restrictive as it dominates the choice of spaces
allowed for the range of H. Several recent results allow certain relaxations of this
requirement.

(iii) The requirement that a strictly feasible solution for the constraints must
exist is in fact a constraint qualification. Several other constraint qualifications are
available.
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