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Abstract

We study the Cesaro operator A"£ * / ( ( / ) on the classical group G and give a necessary and sufficient
condition on the index a = ct(G) for which the operator A"£ * f(U) is convergent to f(U) for any
continuous function / as N —> oo. The result in this paper solves a question posed by Gong in the book
Harmonic analysis on classical groups.
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0. Introduction

Let G be a connected, simply connected, compact Lie group of dimension k. Let g
be the Lie algebra of G and t the Lie algebra of a fixed maximal torus T in G of
dimension /. Let A be a system of positive roots for (g, t), and let {i = 2~' J^aeA a.

Let |.| be the norm on g induced by the negative of the Killing form B on gc, the
complexification of g; then |.| induces a bi-invariant metric d on G. Furthermore,
since B\,cxtc is non-degenerate, given k e homc(t€, C) there is a unique Hk in t€

such that k(H) = B(H, Hx) for each H e tc. We let (, > and || || denote the inner
product and norm transferred from t to t* (the dual of t) by means of this canonical
isomorphism.

Let N = [H e t, exp H = / } , where / is the identity in G. The weight lattice P
is defined by P = {A e t, {k, x) e 2n1, any x e N} with dominant weights defined

A.

by A = {k e P, (X, a) > 0 any a e A}. We can identify G with this A because
A provides a full set of parameters for the equivalence classes of unitary irreducible
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[2] Cesaro kernels on classical groups 365

representations of G. For A. e A, the representation Uk has dimension

and its associated character is

= V
where x e t, W is the Weyl group and e(w) is the signature of w e W. For any
Lebesgue integrable function / on G, f has the Fourier expansion

(0.3) f(x) -

In this paper our particular interest is on the classical compact Lie groups: rotation
group SO(n), unitary group U(n) and unitary symplectic group USP(2n), since these
three groups are the Shilov boundaries of certain bounded symmetric domains in
several complex variables. More specifically, SO(n) is the Shilov boundary of the
real classical domain of type one; U(n) and USP(2n) are the Shilov boundaries of the
complex classical domain of type one and the classical domain of quaternions of type
one, respectively. Readers can see [C] and [H] for more details of how these domains
play important roles in the study of several complex variables.

Let Q be either the real or the complex classical domain of type one. Hua calculated
the automorphism group Aut(£2) and used its Jacobian determinant to define the
Poisson kernel P(X, F) so that he was able to solve the Dirichlet problem on £2
(see [H]).

After finding explicit formulas for the Poisson kernels, Gong defined the Cesaro
kernels K% on the classical groups (see 1.1 in the next section and 6.1,6.3 in Section 6).
An important feature of Gong's Cesaro kernels is that if one chooses a = a(G, N)
to be a certain sequence going to infinity then the Cesaro kernels will coincide with
the Poisson kernels in a certain sense, which enables one to find the Poisson kernel
on USP(2n) and solve the Dirichlet problem on the classical domain £2 of quaternions
where the automorphism group Aut(£2) is difficult to calculate. These details can be
found in Section 11.6 of [G].

Let dV be the normalized Haar measure on G. The critical index a = a(G)
of the Cesaro kernel on G is defined by a(G) = (n - 2)/(n - 1) if G = SO(n),
a(G) = (n - \)/n if G = U(n) and a(G) = (2n - 2)/{2n + 1) if G = USP(2n).

For a > — 1, let

-1 f - l a
N-X X JcXk N

and define the Cesaro (C, a) mean of the Fourier series for a function / by

2^, N.I
keA
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It is well known that SO(2) = U(l) is the one dimensional torus T1; from [G] one
easily sees that when G = SO(2) = U(l) the above definition is the classical (C, a)
mean of the Fourier series on ¥' . Also from [G], one knows that for a Lebesgue
integrable function /

Ba
NkdxXx * f(U) = I K»(VU)f(V)dV = (Ka

N * f)(U).

The following convergence theorem about this Cesaro operator K% * f can be
found in [G, Chapters 2, 7 and 11].

THEOREM A. Suppose that f is a continuous function on G, Then limjv^oo(^w *
/)(( /) = /(£/) for each U e G, provided a > a(G).

The condition a > a(G) in the above theorem is sharp when G = SO(2) (see [Z]),
so Gong asked in [G] whether the condition a > a(G) can be further improved when
dim(G) > 1.

The main purpose of this paper is to solve the above question. Readers will see
that the interesting fact is that on SO(n) the condition a > a(G) can be improved to
the sharp condition a > a(G) only if n is odd; on U(n) the condition a > a(G) can
be improved to the sharp condition a > a(G) only if n is even, and on USP(2n) the
condition a > ot(G) is sharp for any n.

In this paper, we are not able to give a unified proof for the above results on different
groups due to some slight differences among the Cesaso kernels and among the Weyl
functions. But the proofs on these three groups are essentially the same with minor
modifications only on some elementary computations. For this reason, we will give
the detail only on SO(«), and list the theorems on U(«) and USP(2«) in Section 6
without giving proofs.

As readers shall see the definitions of the Cesaro kernels, it is natural to define
an analogue of the Cesaro kernel on a general compact Lie group and study its
convergence properties. The possibility of such an extension will be discussed in the
last section. In contrast with this Cesaro kernel defined via the 'kernel side', on a
general compact Lie group one usually studies certain summability kernels via the
Fourier series side. For instance, one can consider suitable functions <&N on A such
that limw^oo ^NW = 1 for each A e A. Then one defines a summability kernel
K* = X^EA ^NWdxXx and studies the convergence property for lim^oo AT* * / .
Readers may refer [Cl, M, GST1, GST2 and F2] for further information about various
summability kernels on a general compact Lie group.
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1. Cesaro Kernels on SO(n)

For a > - 1 and a positive integer N, let Aa
N = (a + N) •• • (a + l)/N\. Then the

Cesaro kernel Ka
N(V) on SO(n) is defined by

O N N-j 1 \

AV + E V J + V'J)Z)A""! /A"N IK,
where

f l\ N N~J ) \
d-2) B«N = j det(-1)/2 ( j A" / + g (V> + V'̂ j ^ Ar' /A" 1 dV

and V is the transpose of the matrix V. One easily sees, from the above definition,
that for any integer N,

(1.3)
./SO(n)

Recall that any V e SO (2k) is conjugate to an element exp# in the maximal
torus T. Let 6 = (0i ...0,) be the regular coordinate and let ol(t) = 1/2 +
Hyii c o s Jt^N-j/A<N t>e t n e one-dimensional Cesaro kernel (see [Z]). Then from [Fl],
we know that the Cesaro kernel can be written by the following manageable form

(1.4)

where

= i
JS0(,n)

Let a0 = (n — 2)/(n — 1) be the critical index for the Cesaro mean on SO(n). We
will prove that if n — 2k + 1 then K% * f(U) converges to /(f/) for any continuous
function / if and only if a > a0; if n = 2k then K% * f(U) converges to /(£/) for
any continuous function / if and only if a > a0.

To prove the case of n — 2k + 1 and a = ot0, we notice that the kernel K^°(U)
in this case is positive so that we first prove a lemma on any compact Lie group G
which states that if for each positive integer N, TN(f)(U) = fG f(VU)KN(V)dV
is a positive operator and TN(l) = 1 then as Af -> oo, TN(f)(U) converges to
/(£/) for any continuous function / if and only if lim/v^oo fG d(V, I)2KN(V)dV =
0, where d(V, I) is the distance between V and / . Next we write the integral
fSOMd(V, I)2Ka

N°(V)dV = Ja
N°/Ja

N°. Thus the problem is reduced to proving that
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J%° = 0(N~k) and J%° > AN~k log N as N ->• oo, where A is a positive constant
independent of N. We obtain that result after dividing the integral into several pieces
and checking that each piece is under control. Some of this checking requires a careful
tracking of the exponents of TV in a large number of cases. In the case n = 2k + 1
and a < a0, the function g(V) = 1 — cos^ , with exp# being a conjugate matrix
of V, is proved to be a counter example showing that the convergence theorem fails.
For the case n = 2k and a < a0, we calculate the Lebesgue constants and show that
all of them are unbounded. The Banach-Steinhaus theorem then gives the divergence
conclusion.

Now we state our main results on SO(n) in the following theorems.

THEOREM 1. Suppose that / (£/) is a continuous function on SO(2k + 1). Then

(1-6) lim f Ka
N°(VU)f(V)dV = f(U).

THEOREM 2. There exists a exjunction g(U) on SO(2k + 1) such that

(1.7) lim sup / Ka
N(V)g(V)dV^g{I) for any - 1 < a < «o.

N->oo JSO(2k+\)

THEOREM 3. For sufficiently large N> 0, we have

(1.8) f \Ka
N°(V)\dV>AlogN,

JSO(2k)

where A is a positive constant independent of N.

THEOREM 4. For any — 1 < a < a0 there exists ane > 0 such that, for sufficiently
large N > 0,

(1.9) / \Ka
N(V)\ dV > AN',

JSOW)

where A is a positive constant independent of N.

Clearly, Theorems 1 to 4 and Theorem A together with the Banach-Steinhaus
theorem lead to the following theorem which solves the question of Gong on the
rotation group SO(n).

THEOREM B.Ifn is odd, then lim/v^oo K% * f(U) = f(U) for any continuous
function f on SO(n) if and only if a > (n — 2)/(n — 1).

Ifn is even, then lim/v-̂ oo K% * f(U) = f(U) for any continuous function f on
SO(M) if and only if a > (n - 2)/(n - 1).
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This paper is organized as follows. In the second section we will give some
preliminary lemmas for proving the theorems. Theorem 1 will be proved in the
third section. Theorem 3 and Theorem 4 will be proved in the fourth section and
Theorem 2 will be proved in the fifth section. In the sixth section we will answer the
same question on other two groups U(n) and USP(2«). Finally in Section 7, we will
discuss the possible extension of the Cesaro kernels to a general compact Lie group.

Throughout this paper, the letter A will denote a positive constant which may vary at
each occurrence but independent of the essential variables or functions. In particular,
this A will be independent of the integer N. This independence will be clear from the
context. Also we use fN = gN to mean that there exist positive numbers A, B and C
such that AfN < BgN < CfN, where A, B and C are independent of the variable N.

2. Some preliminary lemmas

Let KN (V) be a non-negative function on G for each integer N. The linear positive
operator TN associated to this kernel KN is defined by

(2.1) TN(f)(U)= [ f(VU)KN(V)dV.
JG

For N = 1,2,..., considering the operator sequence {7^}, we have the following
lemma that is true on any compact Lie group G.

LEMMA 2.2. Let d(V, I) be the distance between I and V e G. Suppose that
TN(l) = 1 for all integers N. Then

(2.3) lim I f(VU)KN(V)dV = f(U)
N-*ocJG

for any continuous function f(U) if and only if

(2.4) lim / d(V, I)2KN(V)dV = 0.
N^ocJc

PROOF. Let M be a positive constant such that ||/||oo < M. Now because G
is compact and / is continuous, for any e > 0 one can choose a 8 > 0 such that
- e < f(VU) - f(U) < € ifd(V, I) < S. Therefore for all U and V in G,

(2.5) -€ - 2M8'2d2(V, I) < f(VU) - f(U) < e + 2M8~2d2(V, I).

Noting that TN is a positive operator with rw(l) = 1, we easily obtain that

(2.6) - e - 2M8'2 [ d2(V, I)KN(V)dV < [ f(VU)KN(V)dV - / ( [ / )
JG JG

<€ + 2M8'2 f d2(V, I)KN(V) dV.
JG
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Therefore, (2.3) holds for any continuous function / if and only if

(2.7) lim f d2(V,I)KN(V)dV =0.

The lemma is proved.

We now recall the following estimates of the one dimensional Cesaro kernels <J"(9).

LEMMA 2.8. If a > - 1 and \9\ < N~\ then \a%(0)\ = N. If a > - 1 and
\9\ > AT1, then

(2.9)

[oa
N{9))n =sin" {(N + (1 +a)/2)6 - na/2] / \{a)n

N(2sm{0/2))Ma+]))
i Q /r^-(B-l)a-lg-(n-l)(a+l)-2\

where (a)N = T{a + N + \)/{T(a + l)r(N + 1)} = N" for N sufficiently large. In
particular, for a > — 1 and \6\ > N~] one has

(2.9') {<«?)}" = ° (N-"a\9\-Ma+[)).

The proof of the lemma can be found in [Z, p. 77 and p. 95]. More precisely, (2.9)
is an easy modification of (5.14) in [Z, p. 95].

LEMMA 2.10. Letn = 2k + 1 anda0 = (n - 2)/(n - 1) = (2k - l)/(2k). Then,
as N —> oo,

J— n J—n

:N

where D(9) = D(0,, ...,9k) = flLiC1 - c o s 0 ) fli <.•</<* (cos6/<-cos(9y)2 is the Weyl
function on SO(2A: + 1).

PROOF. The case k — 1 is [Fl, (16)]. For k > 2, we write

D(9U92,..., 9k) = (1 - cos0,)|~[*=i {(1 - cosft) - (1 - cos0,)}2 £»(02, . . . , 0,).

Now we notice that for 9 = (0,, 0 2 , . . . , 0*) with |0,-| < I/A', y = 2, 3 , . . . , k and
1/W < 0, < TT/4

D(0) = (1-c
1=2

f a , ^ a i 2 1
2* + > (1 - c o s 0 i ) 2 * ~ | - ' ' 0 ( A / ~ 2 ' ' ) > D(92, ...,9k).
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[8] Cesaro kernels on classical groups 371

We let

\/N r\/N k

/ Y]
pn/4 p\/N r\/N k

Ja°> / • • • / Y]\oa
N°(9j)\2k

J\/N JO JO j-i

By Lemma 2.8 we easily see

r ° >ANWk-l)-2p I |cC(0,)|2*(l - c o s f l , ) 2 * - ' ^ , ! ^ / , 1/AOI
J\/N

(2A —1 ^ . T T / 4

= 7, + J2.

pn/4

In the above estimate B(I, l/N) is the ball in SO(2& - 1 ) with center / and radius l/N,
and \B(I, l/N)\, = fj" • • • f^N D(92,..., 9k)d92 • • • d9k, is the Haar measure of
B(I, l/N) so that \B(I, l/N)\ = N-dmiSoak~U) = AT1*-1"2*"1'. Thus using the
estimate (1 — cos#) = 92 we have

/

jr/4

Jo 'CT/V°' ° de'
By using formula (2.9), we now obtain that

/»7r/4

7, >AN~k I sin2k{N + (a0 + l)/2)9 - an/2)/9d9
J\N

+ O (N~k-i/2k f 9~''-i/2kd9) > AN'11 log N, (N -+ oo).

Also by using the estimate <r£°(0) = ©(^/-""ler0"1-1) fora0 = (2Jt - I)/(2k), we see
that

/
Jo

P=\
2k-\ p/

/ ~k)( p

V N'k-2p / 0-'-2p J0 = O(N~k).
Thus the proof of Lemma 2.10 is complete.

Similarly to Lemma 2.10, we have the following lemma for n = 2k:
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LEMMA 2.10'. Letn = 2k anda0 = (n - 2)/(n - 1) = (2k - l)/(2k). Then

J"a= \ • \ I I K ^ T " ' A(0) dO, • • • d0k > A log N, (N -* oo)

A(^i , . . . , 8k) = rii<,<7«:(cos^ ~ cos^)2 is the Weyl function on
SO(2k).

PROOF. We write
k

, 02, . . . , e t ) = Y [ { ( l - cosOj) - (1 - c o s f l , ) ) 2 A ( 0 2 , 9 3 , . . . , 0k).
7=2

Then we have

/

\/N p\/N I pir/4 k

• \ / K^I)!2*"1 n (
JO \Jl/N j=2

K ( ^ ) | 2 ^ ' A(62, ...,ek)d&2--- d8k.

Now using the same argument as in Lemma 2.10 we can easily obtain Lemma 2.10'.

NOTE. We obtain the estimate a / a ° > AlogN in Lemma 2.10' instead of the
estimate tJ

ra° > AN~k log N in Lemma 2.10 since the Weyl functions A(#) and
D(6) are different.

LEMMA 2.11. Suppose that m is a positive integer and rj is any real number. Let

(2.12) / ; = I eivB(ja
N(e)2k-'smm{9/2)d9,

Jo
where k is any positive integer. If 0<a < (2k—2)/(2k — I) and (2k — l ) ( a + l ) — m >

a, we have

(2.13) Ia
N = O (N2k'2-m log N), (N - • oo).

If 0 < a < (2k - 2)/(2k - 1) and (2k - l)(a + 1) - m < a, we have

(2.13') la
N = O (N-°k-l)a-l+a).

If-I < a < 0 and (2k - I) (a + 1) - m > 0, we have

(2.14) Ia
N = O (N2k-2-m), (N -+ oo).

If—I < a < 0 and (2k — l)(a + 1) — m < 0, we have

(2.14') IN = O (AT"*2*-')-1) , (N -)• oo).
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PROOF. Let

+ / e'"e KC0)}2*- ' sinm(9/2)d9 = A, + A2.

By Lemma 2.8 it is easy to see that

/ fi/N \

(2.16) A, = O I Nlk~x I dmd6\ = O (AT2*"2-"1)

Applying (2.9) to A2, we obtain that the term A2 above is bounded by

(2.17) o(N-aak-X)( e1"0smlk-\{N + {a + \)/2)B-an

V J\/N
r

J\/\/N

To estimate A2,i, letting (N + (a + l)/2)) = M and —an/I = ft, we can write

+ (a + l)/2)0 - an/2] = C {e^
2k-l

eiliM9~fi)e~n2k~1~'KM0~P)

1=0

2k-l
n i(2l-2k+l)M8

1=0

where the C,'s and B;'s are constants independent of N and 9. Without loss of

generality we assume M — N and (21 — 2k + 1) = 1. Thus

N I e e
J]/N

When (2k — l)(a + \) — m > a > 0, using integration by parts we easily see that

A2J = O (N~a{21

Also since (2k - \)(a + \) - m >a> 0 implies -(2k- l)(a + l ) + a - l+m < -I,
we have

(2.19) A2,2 = O (N2k-2'm log N), (N -> oo).

Therefore (2.13) is proved.
To prove (2.13'), we again use (2.15). Noting that m > (2k - \)(a + 1) - a, by

(2.16), we obtain A, = O(N2k~2~m) = o(N2k-2-<-2k-lHa+1)+a) = o(Af-(2*-1)or-1+a).
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We write A2 = A2,i + A2,2 as in (2.17). Since (2k — l)(ar + l)— m < a implies
-(2k - l)(a + 1) + a + m - 1 > - 1 , we easily see that A2,2 = 0(N-"ak-2)~l) =
0(N-a(2k-n-\+ay U s j n g integration by parts and (2.18), we find that

A — O (yv~a(2*~1)~1+(2't~i)(a+1>~m>) = O (]\f-a(2k-v-l+a)

since m > (2k — l)(a + 1) — a. Therefore (2.13') is proved. If —1 < a < 0 and
(2k-l)(a + \)-m > 0, then-(2fc-l)(a + l ) + m + a - l < a - l < - 1 . Thus by
mimicking the proof of (2.13), one has no difficulty seeing 1% = O(N2k~2~m). This
shows (2.14). If - 1 < a < 0 and (2k - \)(ct + 1) - m < 0, we write /£ = A, + A2

as in (2.15). By Lemma 2.8, clearly

(2.20) A, = O (N2k-2'm) = O ^-D-m-ma+n^ = 0 ^-(a-Da-i j _

To estimate A2 we write A2 = A2,, + A2,2 as in (2.17). Notice that -(2k - \)(a +
1) — (1 — a) + m < —(1 — a) and 1 — a > 1. We have

(2.21) A2,2 = O (V^2*-2'-1 r 0-^~a)d9) = O (AT"0*"1'-1).
V Jl/N )

But using integration by parts, we also easily see that

(2.22) A2,, = O (M-"'2*-1'-1).

Now (2.14) easily follows by (2.20), (2.21) and (2.22). The proof of Lemma 2.11 is
complete.

3. Proof of Theorem 1

Let Exp# be an element in the maximal torus conjugate to V e S0(2A: + 1).
From [G, p. 153] we know that d(V, I)2 = £*= l sin0,-/2. From (1.5) we know that

is a positive kernel. Thus by Lemma (2.2), it suffices to prove

r k

(3.1) lim / Y62Ka
N°(V)dV = 0.

N^°°Jsoak+\)Z-t

Noting that Yl)=i 8fK%(V) is a central function, from formula (1.5) and a symmetry
argument we easily see that

f k

(3.2) /
JsO(2k+\) y_
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[12] Cesaro kernels on classical groups 375

where

(3.3) J*.= [ -..[ f\\aa
N(9j)\2kD(e)d9l.--d9k,

J-n J-n J=l

fTT /»7T k k

J-n J-n y_i j—\

and

(3.5) D(9) = ]~[(1 — cosfy) FT (cosOj — cosft)2.
7 = 1 l<i<7'<*

To prove (3.1), by Lemma 2.10, it is enough to prove

(3.6) Ja
N° = O (N~k).

By using symmetry and changing variables, we only need to prove that

(3.7) f ... [ 92f[ \aa
N"(9j)\2k D(9) d9x • • • d9k = O (N~k).

JO JO y = 1

By symmetry again, we need to prove

(3.8) [ I 92f\\o'*(9j)\
2k D(9)d9

Jo Jo j = x

+ f ••• [ 02f\\aa
N°(9j)\2kD(9)d9

J\/N J\/N j-i

Jl/N J I Jo Jo J J=l

k-\ i ri/N /•l/A'i i r" r" 1 \ *

E W •••/ }(/•••/ }knK^>r
M = 1 [JO Jo J [Jl/N J\/N\I J-[

(M) (k-)i)
k-\ k-\

First by Lemma 2.8 we easily see that 7, = O(N~k-2) = O(N~k). To estimate the

(M)

k-\ i r\/N

E /
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remaining terms, we notice that

D(9) = f\(\ -cos6j) Yl {(1-cos6»,)-(1-cos6^

f £
where (p) = (p\,..., pk) is a £-tuple of even integers between 2 and 4k--2,
£*_, Pj = 2k2, and for each (p), at most one Pj is equal to 4k — 2. Also by
Lemma 2.8, n*=1 |crj?(0,-)|a = O{Nk{'~2k) Y\k

j=] 0~AM). Thus we find that J2 is
equal to

Hi~2k) [ [[ " • • • [ " 0;4k+3+p> T l e ; A k + x + p > d d f . d e k(3.9) o (J2 N

If px is 4k - 2, then we easily see that £*=2 pj — 2(k - I)2 and pj < 4k - 4 for all
j = 2, 3 , . . . , k. After this observation, using Lemma 2.8, we easily calculate that for
this (p) the term in (3.9) is equal to

(3.10) Nk(l~2k) r ... f" 0, f ] er4k+i+p' dOf- dek

J\/N Jl/N j=2

_ Q (Nk(\-2k)-2(k-l)2+(k-lH4k-2)\ _ Q (/V"*)

In a similar way, we estimate each term in (3.9) by considering the different cases
Pt = 4k — 4, and pt < 4k — 4. It is easy to see that each term in (3.9) is O(N~k) as
TV ->• oo. This shows J2 = O(N~k). Next we estimate each term Jw in (3.8). We
write

D ( 0 u #2, . . . , 9 k

By Lemma 2.8,

( fl

N2kfk~^
Jo

I f ••• f 0?nKo(Oj)\2':D(ei,...,ek)/D(ell+t,...,ek)de]---ddA
[J\/N Jl/N j=l J
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where

.I/AT /.I/AT

/(3.11)
/ . I /AT / . I

/ • • • /
Jo Jo

since (k — (j,)(2k — 2/x + 1) is the dimension of SO(2(fc — /x) + 1).
Notice that as a polynomial in the terms (1— cosfy), D ( 0 | , . . . , #,t)/D(#M+1, . . . ,0k)

is a homogeneous polynomial with

(3.12) degree{D(0,, . . . , ek)/D(6^u ...,6k)} = n(2k - /x)

= degree D ( 0 , , . . . , 0k) - degree D(0 M + 1 , . . . , 9k).

Thus by definition,

D(0,, . . . , 0*)/D(0M + 1, . . . , 6k) = ( )

+ terms of homogeneous degree /x(2k — ix) that contain at least one (1 — cos 6j) with
j e ( / i + l i } , where (/) = ( / , , . . . , /M) is a /x-tuple such that ]T /; = /x(2ik - fx).

For ( e , , . . . , e M ) e ( l / ^ . n - f and (0,,+,, . . . , 0 t ) e [0, 1/JV)*-", since
(1 — cos0,-) = O(N~2) if y e [fi + I,..., k}, without loss of generality we can
assume

\ (') 7 = 1

By Lemma 2.8,

j=\ \ 7=1

Thus a simple computation shows that

(/.)
n/«;

(p)

In the above equality, ^ ( / J ) is a sum with finite number of terms, namely Y^=\ Pi =

2fx(2k — fx); these p / s have the same properties as we discussed in (3.9). Now
we estimate these terms J{>l)(p) in the following different cases that include all the
possible cases of J(lx)(p).

(1) P l = 4Jt - 2, all other Pj <4k - 4 (j = 2,..., /x).
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378 DashanFan [15]

(2) pi = 4k - 4, there is one pj =4k -2.
(3) pi = 4k — 4, all other p / s are less than or equal to 4k — 4.
(4) pi = 4k — 6, there is one pj = 4/: — 2.
(5) pi = 4k — 6, all other pj's are less than or equal to 4k — 4.
(6) p\ < 4k — 6, all other pj's are less than or equal to 4k — 4.
(7) pi < 4k — 6, there is one pj = 4k — 2.

In the case (1), noting that 51^=2 Pj = 2ix(2k — n) — 4k + 2, we easily compute
that

= O (•yv"*+2/i(1"M)A^(4*"2)(M"1)~2M(2*"M)+4':"2) = O (N~k)

In a similar manner, it is easy to compute that J(lx)(p) = O(N~k) in the other different
cases. Finally we estimate each Jw in (3.8). It is easy to see

U I/JV r'/^l i f
• • • / /

JO ) [Jt/

(M)

- / /

J0 i Ul/

\/N Jl/N I j=i

But I~[*=1 |o^°(fy)| D{9) is a symmetric function. So it is reduced to estimating the
previous case 7(M). Theorem 1 is proved.

4. Proofs of Theorem 3 and Theorem 4

Remember that A(6) — rii<i<j<A:(cos &• ~~ c o s fy)2- **ytne definition of the Cesaro
kernel on rotation group SO(2^), from (1.4) and a symmetry argument we know that

(4.1) / \Ka
N{V)\dV = f / J a ,

where

—71 J—7T ; _

and

— TC j — \
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By Lemma 2.10', we know that ^ / a ° > AlogN for sufficiently large N. So to
prove Theorem 3, it suffices to prove Ja* = 0(1) . By the definition of A(0), after
changing variables it suffices to prove that

(/>) y = l J0

where the pj's are even integers between 0 and Ak—A and there is at most one pj which
isAk —A, Yl(p) is a summation of a finite number of terms with £*=i Pj = 2k(k — 1).
By symmetry, we need only prove that

• l/N

/

T—T I t n, \1k— 1 n • I | / _ 11 i n •
17 I I I J rr ° /"^3 ^ l /3^ •/fl I I I yr(*0/'/3 \2fc—1/j^/ J/l

3 — 1 1 / \ N v / / I / t*"i | | I ^*w \Vi) "» t*t/i —

>=1 •'O J=M+1 ^ ' / ^

(̂ i = 1, 2 , . . . , / : — 1) for all (/?) = (P\,..., pt) satisfying the conditions in
(4.2). By Lemma 2.8 together with the conditions of (p), one easily sees that
£, = 0(#-2*(*-i)-*+*<2*-i)) _ 0 ( i ) N o w w e estimate E2. If all p / s are less

than Ak — A, then E2 is equal to

Ifthereisone/?; which equals 4/:—4, without loss of generality we assume pt = Ak—A;
then £* = 2 p7- = 2A:(A; - 1) - 4A: + 4 = 2&2 - 6A: + 4. By (2.9) we obtain that E2 is
equal to

(4.4) 0 (N-W-2™-"

Again by (2.9) together with a simple computation, we know that the above equality
is equal to

[ sin2*"1
(4.5) O (N^N-**2 [ sin2*"1 {(N + 1/2 + ao)0i - aow/2}/0

r
J\/N
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To estimate E3, if all pj 's are less than 4k — 4 or if one of p\, p2, • • •, p^ is 4k — 4,
one easily obtains, following the same estimates as in Et and E2, that

= O I ) ) = 0(1).

If one of Pn+i,..., Pk is 4k — 4, we may assume pk = 4k — 4. After a simple
computation we know that £"3 is equal to

a"

= o (V2*-" r {<C(0)}2*
V Jl/Nl/N

Thus the estimates (4.4) and (4.5) show that E3 = 0(1). This completes the proof of
Theorem 3.

Now we are going to prove Theorem 4. Noting that the Lebesgue constant in this
case is formulated by (4.1), we need to estimate both J?a and J25"" for —1 < a <
(2k - 2)/(2k - 1). We will consider the case 0 < a < (2k - 2)/(2k - 1) only, since
the proof for the case — 1 < a < 0 is similar. It is easy to see that J*a is bounded
below by

L
2k-\

sm2((0, - 6j)/2) sin2((0,

2 J t - l

The last inequality is true since for any i < j ,

sin2((9i - 0,-

Now we let £ = A; - [((2k - l)(a + 1) + 3)/4] = A: - [y], where [y] means the
integer part of y = ((2k - l)(a + 1) + 3)/4. Because - 1 < a < (2k - 2)/(2k - 1)
and y — 1 < [y] < y, one easily sees that

(4.6) 0 < (2k- l)(a + 1) - 4(k - ^) < 1 and

(2k - I)(a + 1) - 4(k - £ - 1) > 1.

In fact, since y = {(2k - \)(a + 1) + 3}/4, we have (2k - l)(or + 1) -4(Jt - | ) =
= 1 and(2Jt-l)(a+l)-4(Jfc-£-l) =
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(2k - \)(a + 1) - 4([y] - 1) > (2k - l ) (a + 1) - 4y + 4 = 1. This shows (4.6).
Let Q.\ denote the expression

fl
2k-\

for 1 < § < k - 1 and fi, = 1 if £ = it;

Q l ;i

for£ ^ 0, and S22 = 1 if £ = 0. Clearly ^ > £2,£22-
By Lemma 2.8, it is obvious that

By using formula (2.9), a simple computation shows that Q2 is greater than or equal
to

w f rr
•/TT/4>6I|>->2f- |0 (>l /A' y = |

•a/2)0j-an/2}\

By the choice of this £, for j = 1, 2 , . . . , § we have (2Jt - l ) (a + 1) - 4(it - j) <
(2k - l)(or + 1) - 4(it - f) < 1. Thus clearly we see that ^ 2 > AN-( 2*- | ) a ? , as
Af —> oo. We now obtain that

(4.7)

Next we estimate Ja. By the definitions of Ja and A(0), after changing variables,
we obtain that the absolute value of J2"" is bounded by

(4.8)
(m) («)

fl f"
i=\ Jo

sinmj+qj(8j/2)d0j
(m) («)

In formula (4.8), ]P(m) and ^( < ) ) are summations with a finite number of terms; both
(m) = (mu m2, • • •, mk) and (^) = (qt, q2,..., ^*) are permutations of (0, 2 , . . . ,
2(k — 1)). Thus without loss of generality, we may assume 0 < m^ +qx <m2 + qi<
• • • < mk + qk < A(k — 1). We estimate these Am,,'s in (4.8) in the following different

cases.
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CASE 1. If (2k - \)(a + 1) - mk - qk > a, then (2k - l)(a + 1) - my - q}, > a
for all j = 1,2,... ,k. In this case we use formula (2.13) to obtain

(4.9) Am., < ANc*-2»-£;-ii''J+iJ> log* N.

But we know £*= 1 mj + qj = k(2k - 2). This implies that

(4.9') Am., < A log* N (N-+oo).

CASE 2. If (2k - I)(a + 1) - m, - ^ < o; for all ; = 1 , . . . , A:, then by (2.13') we
have

(4.10) Am,q < AN-2k2a+2ak-k.

CASE 3. There exists an integer j 0 , which is bounded below by 1 and above by
k — 1, such that

4 (
(2k - l)(a + 1) - (mh+i + qh+l) < a.

By the choice of (m) and (q) we know that

(4.12)

By (2.13) we know that
k

(4.13) Am,, < ANM2k-2)-Z*=<(m'+*)logJo N

and

(4.14) a>,.(m, ?) = T {oa
N(ej))2k~' sin"^>(0,-/2

Jo

So by (2.9) and (2.13') we obtain that

coj(m, q) = O (^-(*-A)(O*-i)«^+i)) >

which leads to

(4.15) Am., < AiV(*--/0>(2-/°-2to+2o'-1) log* /V.
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Combining Cases 1 to 3, we easily see that the above inequality (4.15) is true for all
jo = O,l,...,k. Now we estimate the maximum value of (k — j0) (2j0 — 2ka+2a — 1)
for j0 = 0, 1 , . . . , k. Consider the quadratic function

(4.16) Q(x) = (k - x)(2x - 2ka + 2a - 1) x e [ 0 , J k ] .

It is easy to see that Q(x) reaches its unique maximum value at the point ft =
(2ka — 2a + 1 + 2k)/'4 < k. Notice that Q(x) being a quadratic function implies that
for all jo = 0, l,...,k,

(4.17) (k - jo)(2jo - 2ka + 2a - 1) < max{(A: - [0])(2\fi] - 2ka + 2a - 1)

(* - [p] - 1)(2[0] - 2*a + 2a + 1)}.

Thus by (4.8), (4.9') and (4.15), we have

< A log* N max { (̂* )

(4.18)

where

F(k,

Glk,

«) = ( * -

a) = (k —

Now by the definition of the Lebesgue constant together with (4.7) we know that when
0 < a < (2k - 2)1 (2k - 1) the Lebesgue constant of the Cesaro mean on SO(2ifc) is

"/•*" > A log"* N min {NF(k-a\ Nm'a)}

- 2ka +a)-(k- [P])(2ffl - 2ka + 2a- 1),

- 2ka + a) - (k - [0] - 1)(2[/S] - 2ka + 2a +

and y = {(2k - l)(a + 1) + 3}/4. Since y = fi + (a + l)/4 and \a\ < 1, we have
either [y] = [y3] or [y] = [/3] + 1. Therefore to finish proving the theorem, it suffices
to show that

(4.19) F ( £ , a ) > 0 and

In fact, if [y] = [0], then because a < (2k - 2)/(2k - 1),

F(k, a) = (1 - a)(k - [y]) > (1 - a)(k - y)

= (1 - a){(2& - 1)(1 - a) - l}/2 > 0.

If [y] — 1 = W\, then a simple computation shows that

F(k, a) = (k- [y])(2[y] - 2ka + a) - {k - [y] + \}{2[y] - (2k - l)o + a - 3}

= (1 - a)(fc - [y]) + 2(Jk - [y]) - 2[y] + a(2A: - 1) - a + 3.
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Since (1 — a)(k — [ / ] )> 0 from the previous proof, we need only show that

2(* - [y]) - 2[y] + a(2k - 1) - a + 3 > 0.

In fact 2(k - [y]) - 2[y] + a(2k -l)-a + 3 = 2k- 4[y] + a(2k - 1) - a + 3 >
2k -Ay +a(2k - 1) -a + 3 = 2k - (2k - l)(a + 1) +a(2k - 1) -a = (1 -a) > 0.
This shows F(k,a)>0.

Next we show that G( A;, a) > 0. By the definition of G(&, a), if [/3] = [y]thenfrom
the proof for F(k, a) we easily see that G(k, a) > 0. If [/3] = [y] — 1 then a simple
computation shows that G(k, a) = (k - [y])(l - a ) - 2k + 4[y] - (2k - l)a + 1 + a .
Again, to prove G(&, a) > 0 we only need to prove that

-2k + 4[y] -(2k-\)a + l+a >0.

Remember [y] = [y3] + 1, [p] > fi - 1 and y = P + (1 + a)/4. We now have

-2k + 4[y] - (2k - l)a + 1 + a = -2k + 4[0] + 4 - (2k - l)a + 1 + a

> -2k + 4y - (2k - l)a = -2k + (2k - \)(a + 1) - (2k - l)a + 3 > 0.

This shows G(k, a) > 0. Thus (4.19) is proved. Now we can find an e > 0, such that
when 0 < a < (2k - 2)/(2k - 1),

f \Ka
N(4.20) / \K"N(V)\ dV > ANe, N - • oo.

/SO(2«:)

Using the same argument, replacing (2.13) and (2.13') by (2.14) and (2.14'), we can
prove that formula (4.20) also holds for - 1 < a < 0. We leave these details to the
reader.

NOTE. On SO(4), we obtained some estimates which are more precise than (1.9).
The details can be found in [Fl].

5. Proof of Theorem 2

Recall that any V e SO(2k + 1) is conjugate to a (2k + 1) x (2k + 1) matrix
diag(S(0,), S(02), • • • - S(0k), 1). Clearly g(V) = (1 - cosfl,) is a C°° function and
g(I) = 0. Now we shall prove that the function g(V) furnishes Theorem 2. Since the
case k = 1 is proved in [Fl], we will only prove the case k > 2. By formula (1.5), we
know that

(5.1)
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where
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^

and

/«= [

For any fixed a e (— 1, (2k — I)/(2k)), there exists a natural number £ e {1, 2,
such that

, k]

(5.2)
2k(a + 1) - 2 - A(k - $ - 1) > 1.

Thus using the same argument as we did to prove Theorem 4,

A" > A ir/4>0i>2&2> ••>2l'-'ek>0 7 = 1

• • d9k

J jr/4>6[>262>->2k-'et>0
7 = 1

0 6

where

J i /
fl

if 1 < < < k - 1 and fl, = 1 if ̂  = it;

Jjr/4>ei>->2<-'ec>\/N 7=1

By Lemma 2.8, we know that

34(<t-<-l)+2
Jk-\vk del---dek.
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Since

2 + 6 + • • • + 4 ( * - ? - 1) + J ^ l l 2 = 2 (* - f ) + 4(1 + 2 + ••• + ( * - £ - 1))

= 2(*- f ) + 2(*

we easily see that

(5.3) fi, > AN2Hk~(

By (2.9) a simple computation shows that for large N, £22 is bounded below by

A M-2at;k I Q4k-(a+l)2ka4k-6-2k(a+l) a-(a Aa Aaf
Notice that 4k- (a + l)2it > 4 / t - 6 - 2 ) t ( a + l) > ••• > 4(fc-£) + 2-2&(a< + 1) =
—£a > — 1. It is easy to see that £22 is bounded below by AN~2a!;k if £a < 1 and by

2"^ log N if £„ = 1. Using this fact and (5.3), we conclude that

* * A \

' V l r Sa

But using Lemma 2.8 and formula (2.9), one has no difficulty calculating that

yy(*-?)(2£-l)-2a£* jf w < j

(5.4) and (5.5) furnish the proof of Theorem 2.

6. Results on U(n) and USP(2n)

As we mentioned before, the proofs of the theorems on the groups U(n) and
USP(2«) are essentially same as those on SO(n) although we are not able to give
a unified proof. In this section, we only list the results obtained in [F3] and [CF],
without giving proofs.

On U(n), the Cesaro kernel K%(V) is defined by (see [G])

(6.1) del" J2 \/{Ba
N (2A%f det"(/ - V')) ,

where Ba
N is the constant such that / Ka

N(V)dV = 1.

https://doi.org/10.1017/S1446788700000951 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000951


[24] Cesaro kernels on classical groups 387

THEOREM 6.2 [F3]. Ifn is even then

lim^J K°(VU)f(V)dV = f(U)

for any continuous function f on U(n) if and only if a > (n — l)/n. Ifn is even then

l im / Ka
N

for any continuous function f on U(n) if and only if a > (n — l)/n.

On USP(2n), the Cesaro kernel Ka
N is defined by (see [G])

(6.3) det"+1/2 I £ Aa~\Vk{I - V'-2k+l)\ /Ba
N (2A«)"<2n+l)detn+1/2(/ - V')

where Ba
N is the constant such that /USP(2n) K

a
N{V)dV = 1.

THEOREM 6.4 [CF]. lim^oo/USP(2n) Ka
N(VU)f{V) = / ( [ / ) for any continuous

function f on USP(2n) if and only if a > (2n - 2)/(2n + 1).

7. Extensions to compact Lie groups

From (1.4) and (1.5), we naturally define an analog of the Cesaro kernel on a
general compact Lie group G as follows.

Fix a maximal torus T in G of dimension /. Let 9 = (6U ..., 8t) be a regular
coordinate of T. We define the Cesaro kernel on G by

(7.1) Ka
N

m(x) = f\ [°N%))m IK™, a > - 1 ,

where m is a suitable positive integer,

(7.2) Ba
N

m = f {aa
N(9j)}m dx,

Jo

and x is conjugate to Exp del.
By this definition, we easily see that

(a) if G = U(n) and m = n, then Ka
N

n(x) is the Cesaro kernel on U(n) studied in
Section 6;
(b) if G = U(n), m = 2n and a — 1, then Klj2n(x) is the Jackson kernel studied

in [G, Chapter 4];
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(c) if G = SO(n) and m = n - 1, then K%n~l(x) is the Cesaro kernel on SO(«);
(d) if G = USP(2n) and m = In + 1, then K^2n~l(x) is the Cesaro kernel on

USP(2«) studied in Section 6.

Thus by the theorems obtained in this paper, naturally we will guess that, for a
suitable integer m, there exists a number a0 depending on m, I and dim(G) such that

(i) if m is even, then lim^oo K%m * f(x) = f(x) for all continuous function /
if and only if a > a0;

(ii) if m is odd, then linv^oo K^m * f(x) = f{x) for any continuous function /
if and only if a > a0.

Here, a suitable integer m means that the critical index a0 should be less than 1.
Otherwise (for instance when oe0 = 1), the Cesaro kernels K^°m will identically be
positive kernels no matter whether m is odd or even.

We will treat this general case in future publications.
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