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Compliant walls offer the tantalising possibility of passive flow control. This paper
examines the mechanics of compliant surfaces driven by wall shear stresses, with
solely in-plane velocity response. We present direct numerical simulations of turbulent
channel flows at low (Reτ ≈ 180) and intermediate (Reτ ≈ 1000) Reynolds numbers.
In-plane spanwise and streamwise active controls proposed by Choi et al. (J. Fluid
Mech., vol. 262, 1994, pp. 75–110) are revisited in order to characterise beneficial wall
fluctuations. An analytical framework is then used to map the parameter space of the
proposed compliant surfaces. The direct numerical simulations show that large-scale
passive streamwise wall fluctuations can reduce friction drag by at least 3.7 ± 1 %,
whereas even small-scale passive spanwise wall motions lead to considerable drag
penalty. It is found that a well-designed compliant wall can theoretically exploit the
drag-reduction mechanism of an active control; this may help advance the development
of practical active and passive control strategies for turbulent friction drag reduction.

Key words: boundary layer control, drag reduction, turbulent boundary layers

1. Introduction
Compliant wall technology originates from Gray’s paradox (Gray 1936) concerning

the apparent deficit between the muscle power of a dolphin and the power required
by the dolphin to sustain its motion while swimming. Gray suggested that the skin of
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FIGURE 1. Compliant wall models: spring and damper supported membrane as an
example of pressure-driven wall model with wall-normal deformation response (a);
pressure- and wall-shear-stress-driven anisotropic coating model proposed by Fukagata
et al. (2008) (b). Wall displacement components are denoted by ξ and Cartesian
coordinates by xi.

a dolphin may have anti-drag properties. One approach to drag reduction originated
from Kramer (1957, 1960, 1962) who proposed that compliant surfaces, such as
dolphin skin, could reduce friction drag by delaying laminar–turbulent transition.
Although the resulting research had mixed outcomes (Gad-el-Hak 2002), Kramer’s
hypothesis was proven through stability analysis (Carpenter & Garrad 1985, 1986;
Davies & Carpenter 1997a,b), experiments (Lee, Fisher & Schwarz 1993a,b, 1995),
and direct numerical simulation (DNS) (Wang, Yeo & Khoo 2005, 2006). Recently,
Bale et al. (2014) pointed out that muscle power had to provide thrust, rather than
exceed drag, highlighting a fundamental flaw in Gray’s hypothesis, confirmed also by
Fish et al. (2014).

Meanwhile, a second approach to drag reduction considered the turbulent boundary
layer over a compliant surface (Bushnell, Hefner & Ash 1977). Theoretical studies,
such as by Duncan (1986) and Kireiko (1990), focused primarily on pressure-driven
compliant surface models with wall-normal velocity response, as shown in figure 1(a).
Using the same model with DNS, Xu, Rempfer & Lumley (2003), Kim & Choi
(2014) and Xia, Huang & Xu (2017) reported either increased friction drag or else
a statistically unchanged flow field. These findings contradict theoretical predictions
(Duncan 1986; Kireiko 1990) and experimental results (Choi et al. 1997) where 7 %
drag reduction was measured on slender bodies coated with single-layer homogeneous
viscoelastic material. Ongoing research, for instance, Rosti & Brandt (2017), Xia
et al. (2017), Zhang et al. (2017), is aimed at understanding the interaction between
turbulent boundary layers and passive wall motions in the context of compliant wall
design.

Common practice involves first identifying beneficial wall motions based on active
flow control, and then developing and optimising a wall model that sustains favourable
deformations. Endo & Himeno (2002) and Xu et al. (2003) applied the spring and
damper supported membrane model in figure 1(a) to explore whether it could sustain
the wall-normal opposition control proposed by Choi, Moin & Kim (1994). During
opposition control, the wall-normal velocity of the surface is set equal in magnitude
and opposite in direction to the fluctuating wall-normal fluid velocity component at
a specified distance from the wall. Although Endo & Himeno (2002) believed they
measured a modest 2–3 % drag reduction, Xu et al. (2003) found that this was a
consequence of the short averaging time and concluded that pressure-driven compliant
walls cannot sustain wall-normal opposition control. Fukagata et al. (2008) examined
a compliant wall deformed both by pressure and streamwise wall shear stress as shown
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Method Load Response Test case Reτ

Endo & Himeno (2002) DNS p ξ̇2 Channel 150
Xu et al. (2003) DNS p ξ̇2 Channel 140
Fukagata et al. (2008) DNS p, τ1 ξ̇1, ξ̇2 Channel 110
Kim & Choi (2014) DNS p ξ̇2 Channel 140
Luhar, Sharma & Resolvent p ξ̇2 Channel 2000

McKeon (2015) analysis
Rosti & Brandt (2017) DNS p, τ1, τ3 ξ̇1, ξ̇2, ξ̇3 Channel 180
Xia et al. (2017) DNS p ξ̇2 Flat plate 150–420
Present study DNS τ1 or τ3 ξ̇1 or ξ̇3 Channel 180 and 1000

TABLE 1. Key features of the present study compared to recent numerical investigations of
compliant coatings. Load and response of the examined compliant wall models are listed,
where p is pressure, τ1 and τ3 are streamwise and spanwise wall shear stresses, ξ̇1, ξ̇2 and
ξ̇3 denote streamwise, wall-normal and spanwise wall velocity components and Reτ is the
friction Reynolds number.

in figure 1(b). This surface was designed to exploit the drag-reduction mechanism
of an active control proposed by Fukagata & Kasagi (2004) where the wall-normal
velocity was actuated according to streamwise wall shear stress. Fukagata et al. (2008)
utilised an evolutionary optimisation method that achieved 8 % drag reduction in a
turbulent channel flow. However, the optimised coating led to a statistically unchanged
flow field in a larger channel geometry.

Kim & Choi (2014) have investigated whether favourable wall-normal deformations
exhibiting streamwise travelling waves, first observed by Nakanishi, Mamori &
Fukagata (2012), can exist on a viscoelastic coating using the model depicted in
figure 1(a). For soft coatings Kim & Choi (2014) found that when pressure-induced
travelling waves on the coating surface have favourable convection velocity, the
wave amplitude is too high. Such large-amplitude waves result in a roughness effect,
leading to drag increase on the channel walls. Kim & Choi (2014) concluded that
stiff coatings sustaining small-amplitude deformations cannot significantly modify the
turbulent flow. These findings may explain why recent numerical studies consistently
report either an increase in drag or a statistically unchanged flow field in the presence
of travelling wave-like wall deformations (Xu et al. 2003; Fukagata et al. 2008; Rosti
& Brandt 2017; Xia et al. 2017). More recently, Zhang, Miorini & Katz (2015),
Zhang et al. (2017) have reported pioneering experiments that capture compliant
wall deformations and turbulent velocity field in a water channel simultaneously.
These experiments confirmed unequivocally the existence of travelling waves on the
surface. The results also demonstrated that small-scale deformations do not have an
appreciable impact on the flow.

As summarised in table 1, the majority of former studies focused on solely
pressure-driven surfaces promoting wall-normal deformations in low Reynolds number
channel flow (Endo & Himeno 2002; Xu et al. 2003; Kim & Choi 2014; Luhar et al.
2015; Xia et al. 2017). However, it was found that streamwise wall-shear-stress
fluctuations are sufficient input to active flow control (Fukagata & Kasagi 2004),
and furthermore it was demonstrated that in-plane wall oscillations can lead to
significant drag reduction (Quadrio & Ricco 2004). For these reasons, the present
study aims to quantify the effect of wall-shear-stress-driven in-plane wall fluctuations
and extend the analysis to intermediate Reynolds number flow. First, the streamwise
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FIGURE 2. Schematic drawing of the double periodic channel flow in a Cartesian
coordinate system.

and spanwise wall velocity controls proposed by Choi et al. (1994) are revisited
to identify beneficial in-plane wall fluctuations and propose wall-shear-stress-driven
compliant wall models to sustain favourable wall velocities. These active controls
have attracted scant attention (Lee & Kim 2002) since the original study by Choi
et al. (1994). Second, inspired by the work of Benschop & Breugem (2017a,b),
linear analytical solutions derived for the coupled system of pulsatile channel flows
and wall-shear-stress-driven surfaces are used to restrict the parameter space. Finally,
direct numerical simulations of channel flows are carried out to evaluate the impact
of passive in-plane wall fluctuations on turbulent friction drag.

The paper is structured as follows. Section 2 includes an introduction to the channel
flow of interest, a description of the numerical procedure with active and passive
controls presented as boundary conditions (§ 2.1), followed by derivation of analytical
solutions for passive controls (§ 2.2). Section 3 presents DNS results with active flow
controls (§ 3.1), frequency analysis of passive controls based on analytical solutions
and DNS results with passive controls (§ 3.2). Section 4 summarises the key findings.

2. Problem formulation and solution methods
Canonical channel flows are investigated in order to quantify the effects of active

and passive flow controls. Figure 2 displays a schematic drawing of the rectangular
channel geometry and Cartesian coordinate system, where xi denotes streamwise
(i = 1), wall-normal (i = 2) and spanwise (i = 3) coordinate directions, and Li the
domain length (i= 1), height (i= 2) and width (i= 3). The governing non-dimensional
equations for incompressible Newtonian fluid flow comprise the continuity equation

∂ui

∂xi
= 0, (2.1)

and the Navier–Stokes momentum equations

∂ui

∂t
+ uj

∂ui

∂xj
=−

∂p
∂xi
+

1
Re

∂2ui

∂xj∂xj
−

dP
dx1

δi1, (2.2)

where ui denotes Cartesian velocity components, t time, p static pressure fluctuations,
P the driving pressure and δij the Kronecker delta. Re is the Reynolds number defined
as Re= u∗bδ

∗/ν∗, where the asterisk superscript (∗) is used to distinguish dimensional
quantities from their dimensionless counterparts. Quantities without special distinction
(asterisk superscript or tilde) symbolise non-dimensional variables using the channel
half-height as reference length (δ∗= L∗2/2), and the bulk velocity as reference velocity
(u∗b), so that, for instance, x= x∗/δ∗ and u1 = u∗1/u

∗

b.
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FIGURE 3. (Colour online) Sketches of the implemented active flow controls (a)
streamwise u′1-control based on (2.3), and (b) the spanwise u′3-control based on (2.4).
Dotted arrows mark input (fluid) velocities of the control and dashed arrows show output
(wall) velocities.

2.1. Numerical procedure
The governing equations (2.1) and (2.2) are advanced in time using an exact projection
method (Van Kan 1986). A second-order implicit Crank–Nicolson scheme is utilised
for convective and viscous terms in the wall-normal direction, and a third-order
low-storage Runge–Kutta scheme for all other terms. Spatial derivatives are discretised
using second-order central differences on a Cartesian staggered grid. The pressure
Poisson equation is solved directly using fast Fourier transforms in the periodic
directions (x1 and x3) and a tridiagonal matrix algorithm in the wall-normal direction
(x2). Beratlis, Balaras & Kiger (2007) and Posa & Balaras (2016) used the same
solver with an immersed boundary formulation for treating complex geometries. A
description of the numerical scheme along with a detailed validation can be found in
Balaras (2004).

2.1.1. Boundary conditions
Following previous active and passive flow control studies (Choi et al. 1994;

Fukagata et al. 2008; Kim & Choi 2014), periodic boundary conditions (BCs) are
imposed for static pressure fluctuations (p) and velocity (ui) in the streamwise and
the spanwise directions on the A−B and E−F surfaces of the channel (figure 2). At
the walls, i.e. C and D surfaces, a Neumann type boundary condition is prescribed for
pressure, so that ∂p/∂x2|wall= 0. The wall-normal velocity of the wall is invariably set
to zero (u2|wall= 0). To maintain constant volumetric flow rate in the channel (ub= 1),
the time-dependent driving pressure P in (2.2) is altered. Baseline simulations are
performed with no-slip boundary conditions at channel walls, so that ui|wall = ξ̇i = 0.

To model active and passive flow controls, various Dirichlet BCs are prescribed
for the wall velocity components. Figure 3 shows the revisited active controls first
introduced by Choi et al. (1994). Here the angled brackets 〈 〉 enclose quantities
that are averaged in the homogeneous directions (x1 and x3) and time, unless
indicated otherwise. The prime superscript ′ denotes the fluctuating component of
a time-dependent quantity obtained by Reynolds decomposition. The upper indexes t
and t−1t denote the present and the previous time steps (delay is introduced between
sensing and actuation). The active in-plane wall velocity controls in figure 3(a,b) are
listed below:

(i) Active streamwise control (u′1,a-control): the fluctuating streamwise fluid velocity
is measured at x2,c distance from the wall (u′1|x2,c) (sensing), and the wall velocity
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FIGURE 4. Compliant wall models promoting in-plane wall velocity fluctuations: (a) tiled
surface attached to a no-slip wall with tree-like structures; (b) array of surface-mounted
discs with rotation axes parallel to the surface.

directly below the measurement location (u1|wall = ξ̇1) is equal to the measured
streamwise velocity fluctuation both in direction and magnitude (actuation). Based
on figure 3(a), the u′1,a-control is implemented as

ξ̇ t
1 = u′1|

t−1t
x2,c
= u1|

t−1t
x2,c
− 〈u1|

t−1t
x2,c
〉s. (2.3)

Streamwise velocity fluctuations along the wall-parallel detection plane (u′1|x2,c)
are computed every instant, based on Reynolds decomposition using the spatial
averaged streamwise velocity (see the last term on the right-hand side of (2.3)).

(ii) Active spanwise control (u′3,a-control): the fluctuating spanwise fluid velocity is
measured at x2,c distance from the wall (sensing), and the wall velocity directly
below the measurement location (u3|wall = ξ̇3) is equal to the measured spanwise
velocity fluctuation in magnitude but its direction is opposite (actuation). Based
on figure 3(a), the u′3,a-control is implemented as

ξ̇ t
3 =−u′3|

t−1t
x2,c

. (2.4)

Passive u′1,p- and u′3,p-controls are supposed to exploit a drag-reduction mechanism
similar to that of the active u′1,a- and u′3,a-controls with wall-shear-stress components
(streamwise τ1 or spanwise τ3) as inputs, and corresponding wall velocity components
(streamwise ξ̇1 or spanwise ξ̇3) as outputs. To the authors’ knowledge, passive
compliant walls with in-plane wall velocity response driven purely by the wall shear
stress have not been investigated previously.

In-plane wall velocity based active controls lead to fundamental difficulties in
terms of theoretical compliant wall design, because they require sustained unrestricted
unidirectional in-plane wall velocities, and localised interaction of solid and fluid
motions. Exploitation of passive wall-normal opposition control leads to similar
issues (Endo & Himeno 2002; Xu et al. 2003; Fukagata et al. 2008). In addition,
the present wall motions are not restricted by the deformation of their environment.
Local wall displacements occur independently from the neighbouring points, therefore
the wall velocity field does not satisfy the incompressible continuity equation (2.1).

Figure 4(a,b) shows two conceptual compliant wall models which could sustain
wall velocities required to exploit u′1,a-control. The models are introduced to visualise
how the idealised conditions considered in the present work could lead to functional
prototypes of compliant walls. Figure 4(a) illustrates a tiled surface attached to
a no-slip wall with tree-like structures. Figure 4(b) illustrates an array of passive
surface-mounted discs with rotation axes parallel to the surface. The latter concept is
inspired by recent active control studies of Ricco & Hahn (2013), Wise, Alvarenga
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& Ricco (2014) and Wise & Ricco (2014), where surface-mounted disc actuators
with wall-normal rotation axes have been investigated numerically. The mounted-disc
model ensures local interaction with the fluid mechanical forces and unrestricted
wall displacements. With appropriately chosen design parameters, both models
sustain approximately unidirectional localised in-plane wall fluctuations. Additive
manufacturing, such as 3D printing (Wong & Hernandez 2012), can be used to
obtain a functional prototype of these surfaces.

The derivation of the passive control equation based on the mounted disc model in
figure 4(b) is available in appendix A. Passive wall fluctuations are governed by

Λmξ̈
t
i +Λd ξ̇

t
i +Λsξ

t
i =

∂ui

∂x2

∣∣∣∣t−1t

wall

. (2.5)

The control parameters, namely the inertia parameter Λm, the damper parameter Λd
and the spring parameter Λs are related to the fluid properties and the mounted-disc
model as described in appendix A. Due to the time shift between the left and right-
hand sides of (2.5), a weak coupling scheme is implemented. Equation (2.5) is solved
numerically at every cell, independent of its neighbours at the controlled walls (C
and D in figure 2). Temporal derivatives on the left-hand side are discretised using a
fourth-order Runge–Kutta scheme. A second-order central differencing scheme is used
for the spatial derivative on the right-hand side.

2.1.2. Initial conditions
For the direct numerical simulations a three-stage initialisation procedure is applied.

First, a statistically steady state uncontrolled turbulent channel flow is obtained for
both Reynolds numbers. Second, controls are activated until a new quasi-steady state
is reached. Third, the equations are further integrated for 126 and 20 eddy turnover
times for low and the intermediate Reynolds number simulations, respectively. Spatio-
temporal averages are computed in the last stage. Active control simulations do not
require special initialisation. For passive control simulations, the control is started from
a force equilibrium, established by setting the initial displacement (ξi,initial) and velocity
(ξ̇i,initial) at the beginning of the second simulation stage. The initial displacement (pre-
stretching) is prescribed to balance the mean directional wall shear stress, such that

ξi,initial =
1
Λs

〈
∂ui

∂x2

∣∣∣∣
wall

〉initial

s

. (2.6)

The initial wall velocity (ξ̇i,initial) is chosen to balance the wall-shear-stress fluctuations
so that at the walls

∂u′i
∂x2

∣∣∣∣initial

wall

= 0. (2.7)

Here i= 1 and 3.

2.1.3. Simulation details
Table 2 lists the main parameters used in the present simulations. Quantities with
+ superscripts have been non-dimensionalised with respect to the friction velocity
u∗τ =
√
〈τ ∗1 〉/ρ

∗ and the viscous length scale δ∗ν = ν
∗/u∗τ of the baseline (uncontrolled)

direct numerical simulations unless indicated otherwise. Furthermore, 〈τ ∗1 〉 denotes
the spatio-temporal average of the streamwise wall shear stress (calculated from
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Reynolds number Re= u∗bδ
∗/ν∗ 2857 20 000

Friction Reynolds number Reτ = u∗τ δ
∗/ν∗ 180.7(≈ 180) 990.2(≈ 1000)

Domain size L1 × L2 × L3 4π× 2× 4π/3 2π× 2×π

Number of nodes n1 × n2 × n3 290× 251× 290 770× 1001× 770
Streamwise and spanwise resolution 1x+1 ×1x+3 7.8× 2.6 8.1× 4.1
Wall-normal resolution 1x+2 0.19–3.11 0.16–4.79
Temporal resolution 1t+ =1t∗u∗2τ /ν

∗
≈ 0.115 ≈ 0.196

Integration time t+ = t∗u∗2τ /ν
∗

≈ 23 000 ≈ 19 600
Eddy turnover time t∗u∗τ/δ

∗
≈ 126 ≈ 20

TABLE 2. Baseline direct numerical simulation parameters.

the pressure drop in the channels), and ρ∗ is the fluid density. Figure 5 shows a
comparison of the baseline simulations and the recent spectral DNS results presented
by Lee & Moser (2015). Key turbulence statistics, (including mean velocity, Reynolds
stress and fluctuating vorticity profiles) are in satisfactory agreement; therefore the
simulation settings are found to provide a reasonable compromise between accuracy
and computational cost. The minor differences are probably due to the larger domain
size used by Lee & Moser (2015).

2.2. Analytical solutions
A turbulent channel flow with the compliant wall model shown in figure 4(b) is a
coupled fluid–structure interaction problem. The local wall motions are approximated
by (2.5). There are numerous combinations of the three passive control parameters
(Λm, Λd, Λs) that could result in different dynamics. Scanning this three-dimensional
parameter space and its potential for drag reduction by DNS is prohibitively expensive.
For this reason, inspired by the work of Benschop & Breugem (2017a,b), we consider
a reduced problem and derive linear analytical solutions of pulsatile laminar channel
flows and wall-shear-stress-driven in-plane wall motions. These exact analytical
solutions are used to narrow the parameter space for direct numerical simulations and
to validate the weak coupling scheme.

Linear pulsatile flow solutions can be derived for a driving pressure in the following
form (Womersley 1955):

P∗ = P∗0 + P∗Ax∗1eiω∗p t∗, (2.8)

where P∗0 denotes the reference pressure, P∗A the pressure gradient along the channel
and ω∗p is the angular frequency of the sinusoidal pressure oscillations. The oscillatory
pressure leads to a solely streamwise velocity field, u∗ = [u∗1, 0, 0], where

u∗1 = u∗1,Aeiω∗p t∗ . (2.9)

Substitution of (2.8) and (2.9) into the momentum equation (2.2) leads to the
following ordinary differential equation in dimensionless form (Benschop & Breugem
2017a):

d2ũ1,A

dx̃2
2
− iω̃pũ1,A + ω̃p = 0. (2.10)

Here the length scale δ∗, and velocity scale F∗P/ω
∗

p are defined according to a forcing
term F∗P =−P∗A/ρ

∗, and the corresponding dimensionless quantities are distinguished
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FIGURE 5. (Colour online) Validation of baseline (uncontrolled) direct numerical
simulations: (a) mean velocity profiles as functions of wall distance; (b) non-zero
Reynolds stress components as functions of wall distance; and (c) root-mean-square (r.m.s.)
vorticity components as functions of wall distance. Solid lines correspond to the direct
numerical simulations of Lee & Moser (2015) at Reτ ≈ 180 and 1000.

by a tilde; for instance, ũ1,A = u∗1,Aω
∗

p/F
∗

P and ω̃p = ω
∗

pδ
∗2/ν∗ (Benschop & Breugem

2017a).
At the top and bottom walls of the channel (x̃2=−1 and 1) the following Dirichlet

boundary conditions are imposed:

ũ1,A(x̃2 =−1)= ũ1,A(x̃2 = 1)= ũ1,if , (2.11)

where ũ1,if is the dimensionless complex amplitude of the wall velocity. The solution
of equation (2.10) is the dimensionless complex velocity amplitude as a function of
the dimensionless wall-normal coordinate:

ũ1,A =

cos
[√

1
2 ω̃p(1− i)x̃2

]
cos
[√

1
2 ω̃p(1− i)

] (ũ1,if + i)− i. (2.12)

The no-slip boundary condition on the channel walls is ensured by substituting ũ1,if =0
into (2.12).

In order to solve the coupled fluid–solid equation system, ũ1,if needs to be
determined using (2.5) as demonstrated by Benschop & Breugem (2017a,b).
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According to (2.9) and (2.12) the wall velocity is

ξ̇ ∗1 = u∗1,if e
iω∗p t∗ . (2.13)

The displacement and acceleration are then obtained from the wall velocity as

ξ ∗1 =

∫
ξ̇ ∗1 dt∗ =

u∗1,if
iω∗p

eiω∗p t∗
+C∗ξ1

and ξ̈ ∗1 =
dξ̇ ∗1
dt∗
= iω∗pu∗1,if e

iω∗p t∗ . (2.14a,b)

The integral coefficient of the displacement is zero (C∗ξ1
= 0) because (2.8) implies

that the streamwise pressure gradient has a zero mean value. Similarly to the wall
displacement, the velocity, acceleration and wall shear stress (wall-normal velocity
gradient) also undergo exponential time-dependent oscillations. Substituting (2.13) and
(2.14) into (A 2), simplifying the time-dependent terms and utilising the reference
quantities (δ∗, and F∗P/ω

∗

p), we obtain the dimensionless form as

Λ̃mũ1,if + Λ̃dũ1,if + Λ̃sũ1,if =
dũ1,A

dx̃2

∣∣∣∣
wall

, (2.15)

with dimensionless coefficients,

Λ̃m =
4C∗mω

∗

pδ
∗

D∗2A∗sν∗ρ∗
i, Λ̃d =

4C∗dδ
∗

D∗2A∗sν∗ρ∗
, and Λ̃s =−

4C∗s δ
∗

D∗2A∗sν∗ρ∗ω∗p
i. (2.16a−c)

The complex wall velocity amplitude is obtained by calculating the derivative of the
velocity profile using (2.12), and expressing ũ1,if as

ũ1,if =

−i
√

1
2 ω̃p(1− i) tan

[√
1
2 ω̃p(1− i)

]
√

1
2 ω̃p(1− i) tan

[√
1
2 ω̃p(1− i)

]
− (Λ̃m + Λ̃d + Λ̃s)

. (2.17)

In summary, the oscillating pressure field described by (2.8) leads to a fluid flow
characterised by a solely streamwise velocity component, in the form of (2.9). Spatial
dependence is governed by a dimensionless complex velocity amplitude defined by
(2.12). Solutions with ũ1,if = 0 correspond to a no-slip wall. Equation (2.17) defines
ũ1,if such that the wall velocity, governed by (2.12) at x̃2 = ±1, also satisfies the
governing equation for a passive wall. Therefore, equations (2.12) and (2.17) are
special solutions of the fluid–structure interaction problem formed by the coupled
equations (2.2) and (2.5). The simplified form of the Navier–Stokes momentum
equation (2.2) in this special case is linear, and so the velocity fields resulting from
various pulsatile pressure forcings can be superimposed.

3. Results and discussion
3.1. Active flow control

Active flow control simulations are carried out to identify beneficial wall fluctuations
resulting in reduced friction drag. Drag reduction (DR) obtained by a flow control is
defined based on the average streamwise pressure gradient (〈∂P/∂x1〉) in the baseline
and the controlled turbulent channel flow as

DR= 1−
〈∂P/∂x1〉controlled

〈∂P/∂x1〉baseline
. (3.1)
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FIGURE 6. (Colour online) Drag reduction as a function of friction Reynolds number and
detection plane distance: (a) streamwise u′1,a-control; (b) spanwise u′3,a-control. The lines
correspond to fitted third-order (a) and second-order (b) polynomial functions determined
by the method of least squares. Relative change in r.m.s. streamwise wall-shear-stress
fluctuations in the case of streamwise u′1,a-control (c); relative change in r.m.s. spanwise
wall-shear-stress fluctuations in the case of spanwise u′3,a-control (d). The lines in (c,d)
correspond to linear interpolation between the data points.

DR> 0 indicates decreased friction drag, whereas DR< 0 indicates increased friction
drag. Figure 6(a,b) displays the drag reduction measured with direct numerical
simulations of u′1,a- and u′3,a-controls as a function of friction Reynolds number
(Reτ ) and detection plane distance (x+2,c). Here the dimensionless detection plane
distance is defined according to nominal friction Reynolds number: x+2,c = 180x2,c and
x+2,c = 1000x2,c for low and intermediate Reynolds number flows, respectively. The
results at Reτ ≈ 180 are in satisfactory agreement with values presented by Choi et al.
(1994). The peak drag reduction achieved by u′3,a-control at Reτ ≈ 180 is ≈24 %,
three times higher than the maximum drag reduction measured with the u′1,a-control
(≈8 %). At the intermediate Reynolds number, the maximum measured drag reduction
drops substantially. Performance degradation with increasing Reynolds number is a
well-established bottleneck affecting friction-drag-reduction control; previous studies,
such as by Pamiès et al. (2008) and Deng et al. (2014), have tried to overcome this
limitation. Touber & Leschziner (2012) attributed the performance degradation to
large-scale motions of the log layer (Hutchins & Marusic 2007; Balakumar & Adrian
2007) which are practically unaffected by regular control schemes. Nevertheless,
the streamwise and spanwise control performance shows only slight dependence on
Reynolds number when the control distance is in the viscous sublayer (x+2,c < 5).
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In such cases the controls interact with wall shear stresses, which might allow the
same drag reduction mechanisms to be exploited passively.

In order to characterise beneficial wall fluctuations, the effect of flow control on
wall-shear-stress fluctuations is first investigated. The relative change (RC) of an
averaged quantity (q) is defined by comparing it to its baseline value as

RC{q} =
qcontrolled − qbaseline

qbaseline
. (3.2)

Figure 6(c,d) shows the relative change in root-mean-square (r.m.s.) wall-shear-stress
fluctuations when active streamwise and spanwise controls are invoked. Comparison
between figure 6(c,d) highlights a key difference between the in-plane active controls:
whereas the streamwise u′1,a-control exhibits a decreasing wall-shear-stress mode
(RC{τ ′1,rms} < 0) and an increasing wall-shear-stress mode (RC{τ ′1,rms} > 0), the
spanwise u′3,a-control reduces the friction drag only if the corresponding spanwise
wall-shear-stress fluctuations are amplified. Spanwise control weakens the near-wall
cycle responsible for turbulence production (Jiménez & Pinelli 1999) by counteracting
quasi-streamwise vortices (rollers) in the buffer layer (Choi et al. 1994). Opposing
the rollers results in increased spanwise wall-shear-stress fluctuations. However, it is
somewhat counter-intuitive that the peak drag reduction provided by streamwise
control is accompanied by increased streamwise wall shear stress fluctuations
(compare figures 6a and 6c). Streamwise control provides ≈4 % drag reduction
when the corresponding wall-shear-stress fluctuations are practically cancelled (in
figure 6(c) the relative change is ≈−100 % with x+2,c = 1).

Figure 7 presents the Reynolds stress statistics. As displayed in figure 7(g,h) the
drag reduction achieved by the active controls manifests itself as a reduction in
Reynolds shear stresses, as expected according to the Fukagata–Iwamoto–Kasagi
identity (Fukagata, Iwamoto & Kasagi 2002). Active spanwise control dictates
wall velocities acting against the quasi-streamwise vortices (Choi et al. 1994), and
so the induced wall velocities directly weaken the spanwise velocity fluctuations,
figure 7(e, f ). Consequently, the near-wall cycle (Jiménez & Pinelli 1999) is damped
and both the streamwise and wall-normal Reynolds stress components are significantly
decreased (figures 7(a,b) and 7(c,d), respectively). Conversely, active streamwise
control amplifies streamwise velocity fluctuations in the viscous sublayer and the
buffer layer. The induced wall velocity directly strengthens near-wall streamwise
velocity streaks (Kline et al. 1967) as indicated by the increase magnitude of the
associated streamwise Reynolds stress peaks in figure 7(a,b). Figure 7(a,b,e, f ) also
reveals that streamwise control requires one order of magnitude larger wall velocities
compared to spanwise control.

It is somewhat surprising that the relatively large-scale wall velocities induced by
the u′1,a-control decrease friction drag by amplifying the most energetic streamwise
velocity fluctuations. Streamwise control has a direct impact on the spanwise vorticity
fluctuations (ω′3) visualised in figure 8(e, f ). With x+2,c = 1, the active streamwise
control cancels the majority of spanwise vorticity fluctuations at the wall. This is
equivalent to cancellation of the streamwise wall-shear-stress fluctuations, as observed
in figure 6(c). With x+2,c = 8, the u′1,a-control induces spanwise vorticity fluctuations
(equivalent to increasing the streamwise wall shear fluctuations, figure 6c) and the
r.m.s. spanwise vorticity curve exhibits a local minimum (figure 8e, f ). This local
minimum can be associated with a flattening of the fluctuating velocity profile linked
to the streamwise velocity streaks. The increased wall-normal vorticity fluctuations
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FIGURE 7. (Colour online) Reynolds stress statistics corresponding to active streamwise
(u′1,a) and spanwise (u′3,a) controls, and passive compliant walls promoting streamwise wall
fluctuations. u′1,p Lo0Lo at Reτ ≈ 180 and u′1,p Lo0Lo at Reτ ≈ 1000 are relatively soft
compliant walls providing maximum drag reduction measured in this study, whereas u′1,p
Lo0Hi is a stiff surface increasing the r.m.s. wall-shear-stress fluctuations.

in figure 8(c,d) indicate increased shear between the amplified velocity streaks of
the viscous sublayer and the buffer layer as a result of the streamwise control.
By comparison, the spanwise control directly modifies the streamwise vorticity
trends shown in figure 8(a,b), which indicate steepening of the near-wall velocity
profile associated with the quasi-streamwise vortices. In the case of spanwise control,
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FIGURE 8. (Colour online) Vorticity statistics corresponding to active streamwise (u′1,a)
and spanwise (u′3,a) controls, and passive compliant walls promoting streamwise wall
fluctuations. u′1,p Lo0Lo at Reτ ≈ 180 and u′1,p Lo0Lo at Reτ ≈ 1000 are relatively soft
compliant walls providing maximum drag reduction measured in this study, whereas u′1,p
Lo0Hi is a stiff surface resulting in r.m.s. wall shear stress increase.

strengthened streamwise and spanwise vorticity fluctuations are present near the wall
because of the induced wall motions (figure 8a,b,e, f ). However, due to the weakened
near-wall cycle the wall-normal, streamwise and spanwise vorticity fluctuations further
away from the wall are remarkably decreased.

The statistics corresponding to spanwise control are reminiscent of other drag-
reduction techniques, such as riblets (Walsh 1983; Choi, Moin & Kim 1993;
Garcia-Mayoral & Jimenez 2011), polymer additives (Virk et al. 1967; Min, Choi
& Yoo 2003), isotropic (Hahn, Je & Choi 2002; Rosti, Cortelezzi & Quadrio 2015)
and anisotropic porous walls (Abderrahaman-Elena & Garcia-Mayoral 2017). The
common features of these controls seem to be that, when drag reduction occurs, they
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FIGURE 9. (Colour online) Typical velocity streaks along a cross-section of the turbulent
channel flow at Reτ ≈ 1000: baseline (a); u′1,a-control with x+2,c = 1 (c); u′1,a-control
with x+2,c = 8 (e). Planes are coloured according to the instantaneous streamwise velocity
fluctuations. Profiles along the S1 and S2 sampling locations are shown in the graphs so
that (b) corresponds to (a), and so on.

weaken the near-wall cycle by repelling quasi-streamwise vortices from the wall. This
results in a drop in the momentum transfer between the velocity components leading
to a significant reduction of turbulent energy production and fluctuation intensity
in the entire boundary layer. From this perspective, the statistics corresponding to
the streamwise control are rather unusual, as they show that near-wall events are
energised. Exploration of the drag-reduction mechanism of the streamwise control
is outside the scope of the present study. Nevertheless, we aim to identify wall
motions during active controls and their connection with near-wall events (i.e. wall
shear stresses), in order to evaluate whether similar wall motions can be sustained
passively.

The instantaneous flow fields are now examined in the vicinity of two types of
characteristic flow feature: streamwise velocity streaks in the case of the streamwise
control; and counter-rotating quasi-streamwise vortices in the case of spanwise control.
Streamwise velocity streaks identified in the baseline simulation are visualised in
figure 9(a), whereas the streaks shown in figure 9(c,e) correspond to channel flows
with u′1,a-control. The corresponding near-wall velocity profiles are displayed in
figure 9(b,d, f ). Similarly, figures 10(a,b) and 10(c,d) show the near-wall spanwise
velocity field in the baseline case and in a channel flow with u′3,a-control, respectively.
Based on the presented statistics and flow visualisations, instantaneous beneficial
near-wall velocity profiles associated with energetic near-wall events are identified, as
shown in figure 11. Pearson correlation coefficients (PCC), available in Supplementary
materials (available at https://doi.org/10.1017/jfm.2019.145), confirm that the sketched
profiles are statistically significant.

Based on our analysis, active streamwise wall fluctuations lead to drag reduction in
three different ways:
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u′1,a-control with x+2,c > 1. (d) Instantaneous spanwise fluctuating velocity profiles: baseline
(e); u′3,a-control ( f ).

(i) Decreased spanwise vorticity fluctuations without reversing their direction at the
wall, as shown in figure 11(b). This provides less than 4 % drag reduction.

(ii) Total cancellation of spanwise vorticity fluctuations, as indicated by the tangent
of the velocity profile at the wall in figure 11(c). This reduces friction drag by
4 %.

(iii) Decreased or increased spanwise vorticity fluctuations, by reversing their direction
at the wall as sketched in figure 11(d). A drag reduction between 4 and 8 % can
be achieved.
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Active spanwise wall fluctuations are favourable only if the wall velocity increases the
streamwise vorticity fluctuations without changing its direction at the wall as shown
in figure 11(e, f ). This leads to a drag reduction of no more than 25 %.

The question then arises: for how long does a successful control need to apply
unidirectional wall motions to sustain the sketched velocity profiles? Figure 11
presents near-wall velocity profiles corresponding to energetic fluid motions. The
average duration of unidirectional actuation (tact) can be estimated based on the
characteristic length scale (Lc) and convection velocity (Uc) of such motions as

tact =
Lc

Uc
. (3.3)

The convection velocity of the near-wall flow features is approximately Uc = 10uτ
(Carpenter et al. 2007). The characteristic length scale for the streamwise control
can be estimated using the streamwise extent of velocity streaks lying between
Lc = 1000δν and Lc = 10 000δν according to Carpenter et al. (2007) and Jiménez
(2013). For the spanwise control, the streamwise extent of quasi-streamwise vortices
can be estimated as Lc = 100δν given by Jiménez (2013). The average duration of
unidirectional actuation is therefore between tact = 100δν/uτ and 1000δν/uτ for the
streamwise control, and tact = 10δν/uτ for the spanwise control. This indicates that
streamwise control requires a wall that can sustain almost unchanged local velocity
for a relatively long time. By comparison, the spanwise control requires a higher
actuation frequency.

3.2. Passive flow control
If the passively controlled wall cannot sustain one of the velocity profiles depicted in
figure 11 for a sufficiently long time, then lower drag reduction is expected compared
to active control. Furthermore, increased friction drag is expected (negative drag
reduction) if the modified near-wall velocity profiles are the opposite of the beneficial
scenarios. Observing figure 11(d, f ), we can conclude that the required wall velocities
are opposing the wall shear stresses. This means that sustained beneficial spanwise
wall velocities would require a power supply. For this reason, spanwise wall velocity
control cannot be realised passively and it is expected that passive spanwise wall
fluctuations lead to drag increase. For the same reason, the drag reduction peak
of the active streamwise control cannot be exploited passively either. However, we
hypothesise that the proposed compliant wall model can sustain profiles similar to
figure 11(b), and exploit the shear decreasing drag-reduction mechanism of the active
streamwise control.

3.2.1. Frequency response based on analytical solutions
Although the drag-reduction potential of compliant walls cannot be predicted

analytically, the solutions derived in § 2.2 allow us to validate the shear cancelling
ability of in-plane deforming surfaces. Furthermore, the solutions can be utilised to
narrow the parameter space of compliant walls and find the region of interest. To
this end, analytical tests are conducted for the low Reynolds number case (Re= 2857,
Reτ ≈ 180).

Firstly, the analytical solutions are applied to investigate the frequency response of
the surface. The compliant walls represented by damped harmonic oscillator systems
are characterised by the undamped natural frequency ωud =

√
Λs/Λm and the damping
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FIGURE 12. (Colour online) Monoharmonic analyses of the wall velocity and the wall
shear stress. Frequency response of the wall velocity (a), and the r.m.s. wall shear stress
as a function of the damping parameter (b), inertia parameter (c) and spring parameter (d).
For these calculations the pressure gradient amplitude is set to unity (PA = 1.0).

ratio γ = Λd/2/
√
ΛsΛm. The wall velocity response as a function of the angular

frequency of the oscillating pressure is observed based on figure 12(a). Fluid in the
channel acts as additional viscous damping, and so wall oscillations are bounded
even when the wall itself is undamped. If the coupled system is underdamped,
a resonance peak is present at a frequency somewhat lower than the undamped
resonance frequency of the surface. With increasing damping the resonance peak
vanishes as the coupled system becomes overdamped. This behaviour is similar to
classical damped harmonic oscillators with independent external forcing.

Considering that drag reduction with the present active controls is linked to the
wall-shear-stress fluctuations, attention is turned towards the wall-shear-stress change
compared to the baseline case (no-slip wall). Figure 12(b–d) shows that as the surface
parameters increase the surface becomes more rigid and the flow converges to the
baseline state. Figure 12(b) highlights that total shear cancellation is possible at
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the resonance frequency only if the wall is undamped (Λd = 0). Furthermore, shear
increase is possible only if the coupled system is underdamped. As the damping
parameter increases, compliant walls (i) become less responsive but (ii) interact with
the flow in a wider frequency range. On the contrary, figure 12(c,d) shows that
increasing inertia and spring parameters cause the responsive frequency range to
decrease and the interaction between the fluid and the solid system to weaken.

Secondly, the superposition principle is applied and a semi-analytical model is
created to approximate compliant wall behaviour in the turbulent channel flow. The
semi-analytical model accounts for multiple Fourier modes that are tuned to be
somewhat representative about turbulent wall-shear-stress fluctuations. Modes are
computed based on the wall-shear-stress fluctuation history because wall shear stress
is the load acting on the proposed compliant wall models. The oscillatory pressure
modes of the model are determined so that the wall shear stress in the pulsatile
channel flow matches a quasi-periodic turbulent wall-shear-stress signal segment
in the baseline turbulent channel flow at a single location. For further details of
this procedure we refer to Józsa (2018). The idealised semi-analytical framework
enables rapid prediction of r.m.s. wall shear stress and wall velocity as a function
of the control parameters in the turbulent channel flow. Figure 13(a–f ) depicts some
semi-analytical predictions corresponding to u′1,p-control with N = 15 and 300 Fourier
modes.

Finally, the region of interest in the parameter space can be identified using the
semi-analytical model. According to the monoharmonic analysis the shear cancelling
potential increases as the compliant wall parameters approach zero. For this reason,
maximal shear increase is sought. Parameters are optimised for the maximum
r.m.s. streamwise wall shear stress with N = 15 Fourier modes:

max(τ ′1,rms); Λm ∈ [4,∞], Λd ∈ [0,∞], Λs ∈ [0,∞]. (3.4)

The lower bound of Λm = 4 is given by the numerical stability of the weak coupling
scheme at Reτ ≈ 180. Constrained, gradient-based numerical algorithms were tested
(Nash 1984; Kraft 1988; Byrd et al. 1995; Zhu et al. 1997; Nocedal & Wright 2006),
all of which found the optimum within the restricted parameter space at Λm = 4,
Λd= 0, Λs= 96.59. This compliant wall induces intense wall velocities resulting in an
r.m.s. wall shear stress ≈10 % higher than the baseline case. This case is identified
as u′1,p Lo0Hi, where the first part refers to the streamwise passive control and the
second part contains information about the compliant wall parameters as explained
under table 3.

3.2.2. Direct numerical simulation results
The compliant wall u′1,p Lo0Hi is selected as a starting point to investigate the effect

of the three passive control parameters with direct numerical simulations. Parameters
relating to the tested compliant walls are listed in the Supplementary materials.
Figure 13 summarises the results. A sweep in the spring coefficient is conducted
because the frequency analysis indicates that lowering the spring parameter broadens
the frequency range of integration and enables more efficient shear cancellation.
Figure 13(c, f,i) displays the effect of the spring parameter. The parameter sweep
reveals that u′1,p Lo0Lo (Λm = 4, Λd = 0, Λs = 1.0) is a compliant wall providing
3.68 % drag reduction, the peak value over the parameter space considered herein.
This wall achieves drag reduction by decreasing the r.m.s. streamwise wall-shear-stress
fluctuations by ≈60 %. The shear increasing–decreasing modes of the compliant walls
can be observed in figure 13(c).
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FIGURE 13. (Colour online) Effect of passive control parameters on r.m.s. streamwise
wall-shear-stress fluctuations (a–c); r.m.s. wall velocities (d–f ); and drag reduction (g–i).
DNS results are indicated by circles and squares. The lines correspond to analytical
solutions at Re = 2857, with N = 30 and 300 modes fitted to turbulent signal segments
of lengths 1.3 and 11.9 eddy turnover times.

Decreasing the spring parameter of an undamped compliant wall with fixed
inertia parameter (Λm = 4) leads to wall-shear-stress cancellation, flattening out
at approximately −95 % as evident in figure 13(c). This substantial shear cancellation
requires wall velocities in the order of 2uτ as revealed in figure 13( f ). With
increasing spring parameter the wall becomes stiffer and the flow converges towards
the uncontrolled states. However, before a plateau is reached in figure 13(c) at
around Λs = 104, a local maximum forms at Λs = 102. This peak corresponds to
r.m.s. wall-shear-stress increasing behaviour. It is somewhat surprising though that a
local maximum is not present in the wall velocity curve in figure 13( f ).

The influence of inertia and damping parameters is examined by conducting further
direct numerical simulations using u′1,p Lo0Lo as a starting point. Figure 13(a,b) shows
that the wall-shear-stress fluctuations for the given spring parameter Λs= 1 cannot be
decreased by more than 60 %. As the inertia and the damping of the compliant wall
are raised, the wall behaves increasingly like a no-slip wall and the flow converges
towards the uncontrolled state. This means that the compliant wall becomes inactive,
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Control ID Reτ Λm Λd Λs DR (%) Comment #

u′1,p Lo0Hi ≈180 4 0.0 96.59 0.86 Optimised for 12
max RC{τ ′1,rms}

u′1,p Lo0Lo ≈180 4 0.0 1.00 3.68 u′1,p max drag 5
reduction

u′1,p LoHiLo ≈180 8 32.0 2.00 1.95 — 33
u′1,p LoLoLo ≈180 4 1.0 0.50 3.61 Same as #44 40
u′1,p LoHiLo ≈1000 28 7.0 3.50 1.47 Same as #40 44
u′1,p LoLoLo ≈1000 8 1.0 1.00 2.35 u′1,p max drag 45

reduction
u′1,p — ≈1000 8 0.0 0.10 −0.64 u′1,p max drag 46

increase
u′3,p — ≈180 4 1.0 1.00 −58.77 u′3,p max drag 51

increase
u′3,p LoLoLo ≈180 16 1.0 1.00 −49.00 — 53
u′3,p Lo0Hi ≈180 4 0.0 646.93 −3.67 Optimised for 63

max RC{τ ′3,rms}

u′3,p — ≈180 4 0.0 1024.00 −1.77 u′3,p min drag 64
increase

TABLE 3. Compliant walls promoting streamwise (u′1,p) and spanwise (u′3,p) wall
fluctuations selected for detailed analysis. The ID is related to the material properties,
so that, for instance, ‘u′1,p Lo0Lo’ is a coating realising passive streamwise control with
relatively low inertia parameter, zero damping and low spring parameter. Compliant walls
are considered the same if their dimensional inertia, damper and spring parameters are
equal. The #column refers to the coating number in the Supplementary materials which
includes a complete list of passive control simulations.

as confirmed by ξ̇+1,rms → 0 in figure 13(d,e). The r.m.s. wall-shear-stress and wall
velocity trends seem to be qualitatively similar at Reτ ≈ 180 and ≈ 1000.

Semi-analytical predictions at Re = 2857 provide reasonably good estimates of
the described trends. Considering that the input of the semi-analytical model is a
wall-shear-stress signal segment from a single location of the baseline turbulent
channel flow, it is expected that a sufficiently long signal segment is required for
accurate predictions. As the input wall-shear-stress signal segment lengthens, the
Fourier transformation includes increasing numbers of low frequency modes which
are essential to capture the wall-shear-stress trends accurately. However, these low
frequency modes truncate the predictions and introduce non-physical resonance peaks
to the r.m.s. wall velocity trends as visible in figure 13(d, f ). Even though the
τ ′1,rms and ξ̇ ′1,rms predictions are reasonably acceptable, the results obtained with the
semi-analytical model should be treated with caution. Nevertheless, the semi-analytical
model approximates satisfactorily the limiting behaviour of the compliant walls.
Furthermore, it provides useful insight into the fascinating physics of the fluid–solid
system which exhibits different behaviour through six orders of magnitude of the
control parameters.

Passive streamwise flow control reduces turbulent friction drag in most of the cases
investigated. Maximum drag reduction (3.68 %) is measured for u′1,p Lo0Lo at Reτ ≈
180. A similar drag reduction, 3.61 %, is measured for an underdamped compliant wall
(u′1,p LoLoLo in table 3 at Reτ ≈ 180). However, only a 1.47 % drag reduction can
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be measured with the same compliant wall at Reτ ≈ 1000 (u′1,p LoHiLo in table 3).
(Compliant walls are considered the same if their dimensional physical properties are
equal.) It seems that even with an idealised compliant surface such as presented in
figure 4(b) the achievable drag reduction is rather modest in turbulent boundary layers.

Figure 13(g–i) shows drag-reduction curves as functions of control parameters. As
the control parameters tend to zero, shear cancellation becomes more efficient and
a peak drag reduction of approximately 4 % occurs at Reτ ≈ 180. Whereas a drag-
reduction plateau is reached in figure 13(h,i) at Reτ ≈ 180, the drag reduction in
figure 13(g) might increase slightly further if the inertia parameter is decreased. This
could not be tested because of the stability limit of the weak coupling scheme.

It is somewhat surprising that at Reτ ≈ 1000 the drag reduction curve shows a rapid
breakdown with decreasing spring parameter (see figure 13i). In figure 13(g,h) drag
reduction is more or less proportional to r.m.s. wall velocity and inversely proportional
to wall-shear-stress change. However, in figure 13(i) maximum drag reduction is
measured at Λs= 1, before the compliant walls exhibit maximum r.m.s. wall velocity
and maximum wall-shear-stress cancellation. This finding highlights that τ ′1 = 0
(total shear cancellation) is not optimal for passive streamwise control. Correlations
between measured drag reduction and modified wall quantities are unclear, and the
exact drag-reduction mechanism of the streamwise wall velocity fluctuations remains
to be developed.

Whereas the least successful passive streamwise control resulted in a 0.64 % drag
increase at Reτ ≈ 1000, the passive spanwise controls give a consistent drag increase
ranging from 1.77 to 58.77 % (see, for instance table 3). For the simulation parameters
we refer to the Supplementary materials. Considering that (i) spanwise slip leads to
increased friction drag (Min & Kim 2004), and (ii) in-plane deforming compliant
surfaces promote slip condition, it is not surprising that passive spanwise wall motions
lead to drag penalty. The results confirm our hypothesis that solely streamwise passive
wall fluctuations can modestly decrease friction drag, whereas solely spanwise passive
wall fluctuations increase friction drag.

In previous numerical studies on compliant wall drag reduction, it has been
demonstrated that simulation parameters, namely averaging time (Xu et al. 2003)
and computational domain size (Fukagata et al. 2008), have a significant impact on
estimating drag reduction. In the present study, a detailed uncertainty quantification
is provided for the low Reynolds number channel flow and the most successful
passive control (u′1,p Lo0Lo). To this end, additional simulations were carried out
changing the key simulation settings, including (i) spatial resolution; (ii) temporal
resolution; (iii) domain size; and (iv) sample size. The total uncertainty (etotal

DR ) is
estimated as the L2-norm of the individual uncertainties multiplied by a safety factor
equal to two. This leads to etotal

DR = ±1 %. Appendix B summarises the results. The
uncertainty quantification justifies the drag-reduction capabilities of in-plane passive
wall fluctuations.

In the present study, the parameters of compliant walls have been mapped
throughout six orders of magnitude. The question arises as to whether the simulated
parameters can be used for designing a functional prototype. A compliant wall
prototype has been devised based on the rotating disc model in figure 4(b). Detailed
comments on the realisation are given in appendix C where parameters are chosen to
preserve a hydrodynamically smooth surface. The constraints lead to a geometrical
arrangement with only half of the surface being covered with moving elements; hence
the expected drag reduction is ≈1 %.

In order to evaluate the second part of the hypothesis, namely that, u′1,p-control can
sustain the same drag-reduction mechanism as u′1,a-control, certain turbulence statistics
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FIGURE 14. (Colour online) Premultiplied energy spectra of the streamwise fluctuations as
a function of wall distance and spanwise wavelength (λ3). Here k3 is the spanwise angular
wavenumber and E11 denotes the streamwise energy spectra.

are investigated. Figure 7 displays the Reynolds stresses in the channels obtained for
the most successful active and passive controls. The active streamwise controls,
u′1,p Lo0Lo at Reτ ≈ 180, and u′1,p LoLoLo at Reτ ≈ 1000 result in qualitatively
similar Reynolds stress trends. However, even the most flexible compliant wall cannot
support wall fluctuations with as high amplitude as the active control according to
figure 7(a,b). This is because of the flattening of the near-wall fluctuating velocity
profile which inevitably leads to decreased wall-shear-stress fluctuations, and hence
the lack of driving force which could accelerate the compliant wall further.

Figure 14 displays the premultiplied streamwise energy spectra in terms of wall
distance and spanwise wavelength. The peaks centred about x+2 = 15 and characteristic
wavelength approximately 100 viscous units correspond to near-wall velocity streaks
(Kline et al. 1967; Jiménez & Pinelli 1999) both at Reτ ≈ 180 in figure 14(a) and
Reτ ≈ 1000 in figure 14(b). Energetic large-scale motions in the log layer (Balakumar
& Adrian 2007; Hutchins & Marusic 2007) can be observed at Reτ ≈ 1000 in
figure 14(b) above x+2 = 100, with wavelengths ranging between ≈300 and 3000.
Figure 14(c,d) indicates that the u′1,a-control energises remarkably the near-wall
streamwise fluctuations. Figure 14(c–f ) shows that both u′1,a and u′1,p-controls have
greatest impact over a relatively narrow wavelength range between 100 and 200
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Minimum Maximum R.m.s. DR
displacement displacement displacement (%)

u′1,a, x+2,c = 1 −1052δν 1173δν 431δν 3.48
u′1,a, x+2,c = 8 −717δν 1185δν 305δν 7.98
u′1,p Lo0Hi −24δν 85δν 14δν 0.86
u′1,p LoHiLo −238δν 342δν 100δν 1.95
u′1,p LoLoLo −600δν 688δν 258δν 3.61
u′3,a, x+2,c = 12 −81δν 97δν 33δν 24.29
u′3,p LoLoLo −178δν 215δν 62δν −49.00
u′3,p Lo0Hi −12δν 11δν 2δν −3.67

TABLE 4. Results of Lagrangian wall displacement analysis at Reτ ≈ 180 after 1.25 eddy
turnover times.

viscous units associated with streamwise velocity streaks. When successful, the passive
streamwise control energises the streamwise fluctuations in the viscous sublayer in a
similar fashion to the active u′1,a-control with x+2,c = 1. Even though compliant walls
cannot provide such strong amplification of near-wall events.

The performance degradation of the controls at Reτ ≈ 1000 is probably due to
the formation of large-scale motions in the log layer. These large-scale events make
an increasing contribution to the Reynolds shear stresses, and hence to skin friction
at increasing Reynolds numbers (Hutchins & Marusic 2007; Touber & Leschziner
2012). Modification of these outer layer structures is a major challenge for future
control development. Mathis, Hutchins & Marusic (2009) and Ganapathisubramani
et al. (2012) demonstrated that the large-scale motions influence the near-wall velocity
streaks through frequency and amplitude modulation. Figure 14(d, f ) suggests that the
introduced streamwise wall motions are capable of a weak reversed modulation. The
modified spectra shed light on a strengthened connection between near-wall events
and the large-scale motions of the log layer as visualised by the consistent contours
stretching from x+2 = 1 to 700. It is somewhat counter-intuitive that the energised
streaks and strengthened connection between near-wall and log-layer events lead to
a slight drop in the streamwise Reynolds stress fluctuations (see figure 7(b) above
x+2 = 100). The evidence from Reynolds stress and vorticity statistics in figures 7
and 8, and turbulence spectra in figure 14 confirms that the u′1,p-control modifies the
flow similarly to u′1,a-control with x+2,c = 1.

Given that the compliant walls considered herein do not restrict wall displacements,
and exhibit intensive velocities, we quantify the wall displacement responsible
for observed drag increase and drag reduction. The introduced wall motions
are unidirectional and depend on two spatial coordinates. This means that an
incompressible, isotropic surface cannot sustain the modelled wall velocities. To
assess whether such wall motions could occur using a compressible material, and
identify the challenges related to the physical realisation, the Lagrangian displacement
field on the wall is examined. The velocity of Lagrangian particles on the wall is
equivalent to the computed wall velocity (ξ̇i) at every point. Displacements of the
material points are integrated using a first-order forward Euler scheme. Table 4
presents the results obtained with passive flow controls after 1.25 eddy turnover
times, along with displacements corresponding to active controls.

Noting that the coating deformations are driven by streamwise velocity streaks in
the case of wall-shear-stress decreasing passive streamwise control, the displacements
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can be estimated from the average properties of the streaks. A material point is
influenced by a high/low momentum region (streak) as long as the region is convected
downstream above the point. The time taken can be estimated from the streak length,
convection velocity and r.m.s. wall velocity (computed by analytical solutions or
DNS). Then a Lagrangian particle needs to move in the same direction for a time
equal to

tunidir. motion =
Lc

Uc − ξ̇1,rms
. (3.5)

The average streamwise Lagrangian displacement (ξL1,rms) can then be approximated by

ξL1,estimated = ξ̇1,rmstunidir. motion. (3.6)

Assuming that the streaks are unchanged by the control, the estimated typical
Lagrangian displacement ranges from 100 to 1000 viscous units for u′1,p LoHiLo and
from 200 to 2000 viscous units for u′1,p LoLoLo. A unidirectional motion lasting
for 1.25 eddy turnover times leads to displacements of 230 and 460 viscous units
for u′1,p LoHiLo and u′1,p LoLoLo respectively. This is in satisfactory agreement with
the values presented in table 4. The computed deformations are expected to show
an inner scaling with Reynolds number because they are strongly related to sublayer
streaks (scaling with δν and uτ ). Similar calculations might be conducted based on
the characteristic properties of quasi-streamwise vortices to estimate the displacements
required for active and passive spanwise controls. However, such calculations cannot
be carried out when wall motions are determined by impulsive load changes present
between high and low momentum regions (for instance, u′1,p Lo0Hi).

Active and passive streamwise controls require relatively large displacements of
the wall. The wall needs to support large deformations in the positive and negative
directions within a short distance (approximately 100δν) in order to cancel wall shear
stress fluctuations originating from streaks. Such behaviour is difficult to imagine
beyond the rotating disc model in figure 4(b). Compared to streamwise controls
the spanwise controls exhibit one order of magnitude smaller wall displacements.
Spanwise wall displacements of the order of δν increase friction drag considerably.
As long as compliant walls cannot utilise the drag reducing potential of spanwise wall
motions, the spanwise rigidity of compliant walls should be as high as possible to
avoid a drag penalty. This finding underlines the necessity of investigating anisotropic
walls, as also proposed by Yeo (1990), Carpenter & Morris (1990), Fukagata et al.
(2008) and Luhar et al. (2015).

4. Conclusions
This study has investigated the effect of solely in-plane active and passive wall

fluctuations on fully turbulent canonical channel flows at low and intermediate
friction Reynolds numbers. Direct numerical simulations were in close agreement
with spectral DNS results obtained by Lee & Moser (2015) for fully turbulent flow
in a rectangular channel with stationary walls. Active and passive flow controls were
modelled using periodic in-plane wall velocity conditions following Choi et al. (1994).
It was found that active streamwise control could provide drag reductions of 8 % at
low (Reτ ≈ 180) and 7 % at intermediate (Reτ ≈ 1000) friction Reynolds numbers.
Active spanwise control led to drag reduction more than 19 %, primarily because
the wall motions counteracted quasi-streamwise vortices and steepened the near-wall
velocity profile (wall-shear-stress increasing mode). Conversely, streamwise control
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utilises wall motions in the same direction as the near-wall streamwise velocity
fluctuations, and also provides drag reduction in wall shear stress increasing and
decreasing modes.

Analytical solutions of pulsatile channel flow and direct numerical simulations
indicated that positive streamwise wall fluctuations can lead to 3.7 % and 2.3 % drag
reductions at low and intermediate friction Reynolds numbers, depending on the
control parameters. Our results show that the superior performance of active spanwise
control cannot be exploited passively, and passive spanwise wall fluctuations can
result in a drag penalty exceeding 50 %. Analysis of the Lagrangian displacement of
the wall showed that streamwise displacements of the order of 1000 viscous length
scales are required to obtain drag reduction solely by means of streamwise wall
fluctuations. However, solely spanwise wall displacements of the order of 1 viscous
length scale can lead to a drag increase of approximately 4 %. For the first time,
it has been shown that passive wall fluctuations can decrease friction drag in fully
turbulent wall-bounded flows by exploiting the same drag-reduction mechanism as
a well-established active control. These results highlight the importance of material
anisotropy in compliant wall design and may eventually have repercussions for
drag-reduction measures in practice.
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Appendix A

The equation of motion of an individual disc in figure 4(b) is

C∗mθ̈
∗

i +C∗d θ̇
∗

i +C∗s θ
∗

i = T∗f , (A 1)

where θ∗i denotes angular displacement, θ̇∗i angular velocity, θ̈∗i angular acceleration
and T∗f torque acting on the disc. The i subscript is used to differentiate between
discs with spanwise aligned axis (i = 1) and streamwise aligned axis (i = 3). The
coefficients C∗m, C∗d and C∗s are the moment of inertia, the viscous damping coefficient
and the torsion spring coefficient, respectively. For simplicity, the damping coefficient
is assumed constant.

Throughout this study, the mounted discs are designed so that they preserve a
hydrodynamically smooth surface; hence, D∗(1− cos β)/2 6 5δ∗ν based on figure 4(b).
The wall velocity induced by a disc is approximated by the tangential velocity of
the disc (D∗θ̇∗i /2 = ξ̇

∗

i ≈ u∗i,wall). This assumption leads to less than 5 % error in the
induced wall velocity so long as β 6 π/6. With these geometrical restrictions in
mind, the torque can be estimated from the wall shear stress as T∗f ≈D∗A∗s τ

∗

i /2 where
A∗s ≈ D∗H∗Dβ is the disc surface area in contact with the fluid, calculated from the
disc height H∗D. Substituting the simplified torque formula into (A 1), replacing the
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angular displacement (θ∗i ) with tangential displacement (ξ ∗i ), and rearranging lead to

2C∗m
D∗

ξ̈ ∗i +
2C∗d
D∗

ξ̇ ∗i +
2C∗s
D∗

ξ ∗i =
D∗

2
A∗s ρ

∗ν∗
∂u∗i
∂x∗2

∣∣∣∣
wall︸ ︷︷ ︸

τ∗i

. (A 2)

The coefficients in (A 2) can be rewritten as Λ∗j = 4C∗j /D
∗2/A∗s/ρ

∗ν∗, with j = m
denoting the inertia parameter, j = d the damper parameter and j = s the spring
parameter incorporating the physical properties of the mounted discs as well as the
fluid flow. In dimensionless form using δ∗, u∗b, ρ∗, and ν∗, equation (A 2) becomes

4CmRe
D2As︸ ︷︷ ︸
Λm

ξ̈i +
4CdRe
D2As︸ ︷︷ ︸
Λd

ξ̇i +
4CsRe
D2As︸ ︷︷ ︸
Λs

ξi =
∂ui

∂x2
. (A 3)

Equation (A 3) is equivalent to (2.5) and highlights the influence of the dimensionless
control parameters.

Appendix B

The uncertainty originating from various error sources is quantified following the
procedure described below:

(i) Truncation error from spatial resolution: baseline and controlled channel flow
simulations are repeated on medium and coarse grids. Retaining the case with
default settings as the fine grid, the number of cells is halved, and halved
again, as presented in figure 15(a). The related drag-reduction uncertainty is
estimated as the difference between the grid-independent value obtained by
Richardson extrapolation (Roache 1998) and the value measured on the fine grid:
espat

DR =±0.02 %.
(ii) Truncation error from temporal resolution: baseline and controlled channel flow

simulations are repeated with a doubled and a halved time step size as shown in
figure 15(b). The related drag-reduction uncertainty is estimated as the difference
between the ‘fine’ and ‘medium’ time step values: etemp

DR =±0.08 %.
(iii) Modelling error from domain size: baseline and controlled channel flow

simulations are repeated in a domain doubled and halved both in the streamwise
and the spanwise directions as displayed in figure 15(c). The related drag-
reduction uncertainty is estimated as the difference between the ‘large’ and
‘medium’ domain values: edom

DR =±0.48 %.
(iv) Sampling error from finite sample size: figure 15(d) shows the drag reduction

if only every second, third, etc. pressure gradient value is taken from the series.
The drag-reduction value remains unchanged even if only every one in a hundred
elements of the series are kept (value corresponding to 5× 10−4 in figure 15d).
Sampling error is computed for baseline and controlled channel flows using the
method described by Trenberth (1984) and Oliver et al. (2014). The related drag-
reduction uncertainty is then estimated based on the uncertainty propagation using
(3.1): esmpl

DR =±0.01 %.
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FIGURE 15. (Colour online) Effect of simulation settings on drag reduction measured with
u′1,p Lo0Lo: spatial resolution (a); temporal resolution (b); domain size (c); and sample
size (d). The arrows indicate the default simulation results.

Appendix C

This appendix presents some basic calculations related to the realisation of a
wall-shear-stress-driven surface promoting streamwise wall fluctuations. A water
channel with L∗2 = 0.2 m height is considered, with intermediate Reynolds number,
Reτ = 1000. Such flow conditions can be tested in various experimental facilities
(Schultz & Flack 2013; Zhang et al. 2017). The #40 parameter set (equivalent to
#44) is used because this compliant wall model leads to drag reduction in both low
and intermediate Reynolds number channel flows.

The diameter of the discs is set to 5 mm and β = π/6 rad. The axis of the discs
is located at an elevation 2.2 mm below the channel wall. The penetration of the
discs into the channel is 3.3δ∗ν so that a hydrodynamically smooth wall is preserved.
The height of each discs is chosen based on the spanwise wavelength of the streaks
because the discs need to support opposing wall velocities within this distance. The
disc height 3 mm is determined so that there are about 5 discs below each high/low
momentum region (streaks). Based on the inertia parameter defined in appendix A, the
corresponding disc density is 40 kg m−3, typical of polymer foams, such as expanded
polystyrene (EPS) (Horvath 1994) and polyurethane (PU) (Thirumal et al. 2008). With
these design parameters only half of the surface can be covered with moving elements.

If a constant moment of inertia is considered, decreasing the disc diameter
proportionally increases the density. Hollow and composite structures can be
considered to broaden the palette of suitable materials and overcome difficulties
originating from low density requirements. The simulation parameters provide a
relatively large degree of freedom, suggesting that a feasible design should be a
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compromise between size and density. If the minimum disc diameter is approximately
1 mm, then the disc density needs to be a fraction of the fluid density. This suggests
that passive control of turbulent flows in low-density fluids (for instance air) can face
serious stumbling blocks.
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