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ABSTRACT. A simple momentum model, assuming that snow compacts along 
a prescribed pressure- density curve, is used to calculate the pressure attenuation of 
shock waves in snow. Four shock-loading situations are examined: instantaneously 
applied pressure impulses for one-dimensional, cylindrical and spherical shock-wave 
geomctries, and a onc-dimensional pressure impulse of finite duration. Calculations 
show that for an instantaneously applied impulse the pressure attenuation for one­
dimensional, cylindrical and spherical shock waves is determined by the pressure 
density (P- p) compaction curve of snow. The maximum attenuation for a one­
dimensional shock wave is proportional to (Xr - Xot!'5 for the multi-stage (P­
p) curve and (Xr - xot2 when compaction occurs in a single step (single-stage 
compaction), where (Xr - Xo) is the shock-wave propagation distance. Cylindrical 
waves have a maximum attentuation that varies from (R - Ho)-2 for single-stage 
compaction and (R - Rat!.5 for multi-stage compaction, when (R - Ra) « Ho, 
where R is the propagation radius and Ra is the interior radius over which a pressure 
impulse is applied, to R-4 when (R - Ra) »Ho. Spherical waves have a maximum 
attentuation that varies from (R - Rat2 for single-stage compaction and (R -
Ho)-15 for multi-stage compaction to R-6 when (R - Ra) » Ho. 

The shock-wave pressure in snow for a finite-duration pressure impulse is deter­
mined by the pressure impulse versus time profile during the time interval of the 
impulse. After the pressure impulse ends, shock-wave pressure attentuation is the 
same as for an instantaneously applied pressure impulse containing the same total 
momentum. Pressure attentuation near a shock-wave source, where the durat­
ion of the shock wave is relatively short, is greater than for a shock wave farther 
from a source where the shock wave has a relatively long duration. Shock-wave 
attenutation in snow can be delayed or reduced by increasing the duration of a 
finite-duration pressure impulse. A sufficiently long-duration impulse may result 
in no shock-wave pressure attenuation in a shallow snow cover. 

NOMENCLATURE M(Xr) Total mass of the compacted material. 
Mass per unit area and its derivative. 
Shock-wave pressure. Q 
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Time a t which the applied pressure impulse 
ends. 
Times that define the constant pressure 
squarewave segments. 
[11;-1 2(Xn;) -1'v;jX,,; 2 

Weighting coefficients determined from f(t). 
,Vi· 
Shock-wave propagation speed. 
Distance from a line charge. 
Function describing the shape of a variable 
pressure impulse. 
Total momentum per unit area applied to the 
snow. 
Momentum per unit area applied to the snow 
in the ith square-wave segment. 
Momentum per unit area in the snow and its 
derivative. 
Instantaneously applied pressure impulse. 
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t, dt 
tr 
to 
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Maximum pressure amplitude of the 
shock wave. 
Shock-wave pressure amplitude as a 
function of time. 
Current position of the inner radius of 
a cavity surface. 
Shock-wave propagation radius. 
Initial radius of a cavity surface in the snow. 
Time and its derivative. 
Time required for the shock wave to reach Xr. 
Time at which the pressure impulse is applied. 
Distance snow surface has moved. 
Snow-particle velocity. 
Snow-particle velocity in the ith square-wave 
segment. 
Shock-wave front position at t = a. 
Shock-wave front position at t = ai. 
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Shock-wave front position; Xr = Xr - Xo 
for Xo = O. 
Current snow-surface position. 
Initial snow-surface position. 
Decay coefficient. 
Pressure-dependent relative snow 
compaction (1 - Pol pr). 
Po f3 I Pr(1 - (3 ). 
R-~. 

Pr Pressure-dependent compacted snow density. 
Po Initial snow density. 

INTRODUCTION 

An understanding of shock-wave attenuation (that is, 
the pressure-amplitude reduction of a shock wave over 
a given propagation distance) in snow is needed to solve 
a number of problems in planetary science, cold regions 
and military engineering, shock-wave isolation, and seis­
mic monitoring. For example, astronomers are inter­
ested in determining the stresses associated with impacts 
between low-density frost clouds and planetary bodies, 
avalanche-control professionals are interested in know­
ing the effectiveness of explosives in initiating avalanches, 
and military engineers are primarily interested in the ex­
tent to which their explosive methods are degraded in 
snow-covered terrain. Shock-wave isolation, using snow, 
is a technique for protecting an object from shock dam­
age by causing shock waves to attenuate in a protective 
layer of snow around the object. 

The mechanical properties of snow for high strain­
rate, large-amplitude shocks are not now well under­
stood. Consequently, attempts to estimate shock-wave 
attenuation in snow have relied on field measurements 
of pressure attentuation from explosions in snow and on 
theoretical constitutive descriptions. Melior (1977) used 
the results from field measurements of explosive deton­
ations in snow to estimate the attenuating properties of 
snow for spherical shock waves. He estimated that the 
attenuation of shock-wave pressure, combining geometric 
spreading and internal dissipation, near an explosion at­
tenuates as R-4 (R being the propagation radius), and 
close to the elastic limit the attenuation is approximately 
an R-3 attenuation. Brown (1980, 1981, 1983) estimated 
shock-wave attenuation for plane waves in snow. He 
used two theoretical volumetric constitutive laws, one for 
medium- to high-density snow and one for low-density 
snow, to estimate shock-wave attenuation. His results 
indicate that plane shock waves can attenuate by more 
than 80-90% after propagating through only 0.06- 0.1 m 
of snow. These are large attenuations that are, at their 
maximum, proportional to (Xr-xot1.2 ([Xr-XoJ is the 
propagation distance). 

Some of the difficulties in determining shock-wave 
attenuation in snow are that the attenuation is affected 
by the pressure, geometry and duration of a shock wave, 
in addition to the mechanical properties of the snow. 
The objective of this paper is to use a simple analytical 
model to show the influence of a pressure impulse (the in­
tegral of pressure over the time interval during which the 
pressure acts) and its geometry on shock-wave pressure 
attenuation, in addition to the effects caused by the mec­
hanical behavior of snow. The effects of shock-wave geo-
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mctry are accounted for by calculating the attenuation 
of plane, cylindrical and spherical shock waves in snow. 
The effects of shock-wave duration and initial pressure 
amplitude are analyzed by applying a variable pressure­
time profile shock impulse to the snow and calculating 
pressure as a function of shock-wave propagation dis­
tance . 

MOMENTUM MODEL 

Shock-wave attenuation, in this model, is the result of a 
mechanical process in which attenuation occurs through 
momentum transfer from an applied pressure impulse 
to the snow. The momentum model, also known as 
the "snow-plow" model, was used in early attempts to 
develop constitutive relations to analyze the dynamic 
behavior of porous materials (Herrmann, 1971). The 
porous material is assumed to compact to its final density 
at a negligible stress and then be incompressible (an ideal 
single-stage locking material). The snow-plow model can 
be extended to include porous materials that compact 
along a prescribed pressure- density (P- p) curve. Pres­
sure changes in the porous material will cause it to col­
lapse to a density consistent with the (P- p) curve. Af­
ter compaction, the material is assumed to be incom­
pressible until pressure changes cause a collapse to a 
new density state (an ideal multi-stage locking material 
(Hanagud, 19G7)) . The change in momentum caused by 
a pressure impulse is spread uniformly over the mass 
of the compressed material producing a constant pres­
sure and particle velocity in the mass behind an advanc­
ing shock wave (Herrmann, 1971). The shock wave is 
lengthened in time and reduced in amplitude as more 
of the material is compacted by the propagating shock. 
Hence, attenuation is caused by momentum spreading. 
Attenuation attributable to plastic deformation, fractur­
ing and release waves are not considered. Although plas­
tic deformation and fracturing may significantly affect 
the behavior of snow, the compaction is treated phen­
omenologically since little data exist from which to deter­
mine the mechanisms that produce a given compaction 
curve. Release waves (tensile waves generated at bound­
aries or following a pressure impulse) are also an im­
portant source of attenuation. The momentum model, 
presented here, is not capable of treating attenuation 
caused by release waves. A following paper using experi­
mentally derived compaction data for snow will treat the 
more complicated problem of release-wave attenuation. 
In this paper, attenuation solutions are first developed 
for a single-stage locking material and then extended to 
include a multi-stage locking material. 

INSTANTANEOUSLY APPLIED IMPULSE 

Consider a pressure impulse (10) applied normal to the 
plane surface of snow, and assume that snow is an ideal 
single-stage locking material. Snow next to the plane 
surface will be immediately compacted to its defined final 
density stage. Since the compacted snow is rigid, it will 
move at a uniform pressure and particle velocity after 
the pressure impulse is applied. The stress wave will 
propagate into the snow as a compaction shock wave, 
moving with a velocity D at a pressure P, and particle 
velocity V. At the shock front, these parameters are 
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Fig. 1. D eformation geometry for plane shock­
wave propagation in snow. 

related by the Ra nkine- Hugoniot jump conditions for the 
conservation of mass and momentum across the shock 
front (Kolsky, 19(3) 

PoD = pr[D - V] (1) 

and 

P= PoDV (2) 

where Po is the initial density of the snow and Pr is the 
compacted snow density. 

Figure 1 shows the deformation geometry in one di­
mension for a pressure impulse applied at the initial snow 
surface Xo. The location of the surface of the snow and 
the shock front at some time after the application of the 
pressure impulse are Xi and Xr, respectively. During the 
time that the shock front has traveled to Xr, the snow 
surface has moved a distance Uo . Uo is a function of 
time or, alternatively, a function of shock-wave propag­
ation position Xr. At any time, the location of the snow 
surface is 

Xi = Xo + Uo. (3) 

The displacement of the snow surface can be calcul­
ated by integrating the particle velocity over time using 

1
,·r 

Uo = Vdt 
to 

(4) 

where to is the time that the pressure impulse is ap­
plied and tr denotes the time required for the shock wave 
to reach Xr. The equation describing shock-wave at­
tentuation can be formulated as a function of time or 
shock-wave propagation distance. Knowing the shock­
wave pressure attentuation as a function of propagation 
distance is of more practical interest than following the 
pressure as a function of time. Shock-wave attenuation 
as a function of propagation distance can be developed 
by reformulating the snow-surface displacement in terms 
of shock-wave position rather than time by using 

D= dx 
dt 

and rewriting Equation (4) as 

1
X r V 

Uo = D dx . 
Xo 

(5) 

(6) 

Johnson : Simple model of shock-wave attenuation in snow 

From Equation (1) 

v = (1 _ po) = f3 
D Pr 

(7) 

where f3 describes the relative snow compact ion (the 
mechanical behavior of the snow). Substituting Equat­
ion (7) into Equation (6) and solving for the position of 
the surface at time tr as a function of Xo and Xr gives 

Xi = (1 - (3)Xo + f3Xr. (8) 

The mass and the momentum per unit area of the snow 
contained in a length dx between the current snow­
surface position Xi and shock-front position Xr are 

dm = prdx (9) 

and 
dHs = prVdx . (10) 

Since the compacted snow is assumed to be rigid, V and 
Pr are constant through the region Xi to Xr, where V 
is equal to the particle velocity at Xr, i.e. V = V(Xr). 
Consequently, the momentum per unit area in the snow 
at the time the shock wave has reached Xr is 

1
X r 

Hs = prVdx = V pr(Xr - Xi). 
Xi 

(ll) 

Substituting Equation (8) into Equation (11) gives 

Hs = pr(1 - (3)V(Xr - Xo). (12) 

The momentum per unit area in the snow Hs must be 
equal to the momentum per unit area applied to the snow 
from the instantaneously applied pressure impulse that 
is given by 

(13) 

Equating Hs and Hp and solving for V gives 

V = 10 
po(Xr - Xo) 

(14) 

Using Equations (7) and (14) in Equation (2) to deter­
mine the pressure at the shock front gives 

POV 2 10 2 

P(Xr) = /3 = pof3(Xr _ Xo)2 . (15) 

Figure 2 shows the shock-front pressure for snow sub­
jected to an instantaneous pressure impulse and com­
paction to a final density occurring in one step (sin­
gle stage). The pressure attenuates as (Xr - X o)-2, 
with proportionality constant determined by pressure 
impulse, initial snow density and relative snow com­
paction. The proportionality constant determines the 
pressure amplitude that the snow is capable of support­
ing at a given (Xr - X o), but not the attenuation with 
distance. Increasing the pressure-impulse amplitude pro­
duces a greater momentum transfer to snow that results 
in higher shock-wave pressures at a given propagation 
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Po=390 kg m-3 
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-, 
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Fig. 2. Pressure attenuation with distance for 
an instantaneously applied plane shock-wave 
pressure impulse (605 Pas), predicted by the 
snow-pLow model using single-stage snow com­
pactions from an initiaL density of 390 kg m-3 

to 410,600 and 900kgm-3
• 

distance, Po and {3 remaining constant. A larger {3, with 
constant 10 and Po, causes a lower shock-wave propagat­
ion velocity at a given (Xr - X o), as required by mass­
conservation Equation (7), which results in reduced pres­
sures in the snow. 

When snow compaction is pressure-dependent (Fig. 
3), the momentum equation (Equation (11)) cannot be 
directly integrated as Pr is not constant through the reg­
ion Xi to Xr. Since the material behind the shock wave 
is rigid, V is constant from Xi to Xr and the momentum 
(Equation (11)) is 

1
Xr 

Hs = V prdx 
Xi 

where 
(Xr 

Jx prdx = M(Xr) 
, 

is the mass of the compacted material behind the shock 
wave. Although the density varies over the limits of 
integration, it is only the total mass behind the shock 
wave that is needed to determine the momentum. The 
mass can be determined from 

where Pr(Xr) is the final density at the shock front and 
Xi is determined from Equation (8). The pressure and 
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Fig. 3. PressuTe- density curve (multi-stage 
compaction curve) fOT snow with an initial 
density of 390 kg m-3 derived from experim­
ental data (Johnson and others, 1990). 

pr(Xr) at the shock front are determined by solving 
Equation (15) iteratively until P(Xr) and pr(Xr) lie on 
the specified (P- p) compaction curve (Fig. 3). Shock­
pressure attentuation is approximately (Xr - X o)-1.5 for 
the prescribed multi-stage compact ion (P-p) curve used 
in this study as compared to (Xr - xot2 for single-stage 
compaction (impulse B compared to impulse A; Fig. 4) . 
The pressure attentuation with distance is a direct result 
of the form of the compaction curve and may be differ­
ent for various snow types. A single-stage compaction 
will always have a larger attentuation with distance than 
a multi-stage compaction. For single-stage compaction, 
Pr will remain constant as the shock pressure decreases 
whereas for multi-stage compaction Pr decreases with a 
decrease in pressure. 

CONSTANT-PRESSURE IMPULSE OF 
FINITE DURATION 

The solution given by Equation (15) is not a very sat­
isfying way of evaluating shock-wave attenuation, since 
it assumes instantaneous application of the pressure im­
pulse. This is unrealistic, as it implies infinite pressure at 
x = X Q, and does not show how pressure impulses with 
different amplitudes and durations, but each having the 
same total momentum, arc attenuated. An analytical 
solution can be derived for a constant-pressure impulse 
of finite duration, given by 

P(t) = Po 

p(t) = 0 

O:St:Sa 

a < t 
(lG) 

where a is the duration of the applied pressure pulse. 
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Fig. 4. Comparison of pnssure attenuation 
with distance in snow with an initial den­
sity of 390 kg m-3 for plane shock waves, each 
having a total applied pressure impulse of 
605 Pa s, predicted by the snow-plow modeL 
The pressure impulse was applied instant­
aneously fOT impulse A (single-stage com­
paction) and impulse B (multi-stag e co m­
paction), with a squar'e wave of 0.17ms durat­
ion for square A (single-stage compaction) 
and squan B (multi-stage compaction) , and 
an exponential pulse of 1.6ms duration fOT ex­
ponential A (single-stag e compaction) and ex­
ponential B (multi-stage compaction). 

The momentum per unit area caused by the pressure 
impulse is 

for 0 <:::: t <:::: a (17) 

and 

f a 
Hp = lo Podt for a < t. (18) 

Equations (17) and (18) show that the momentum during 
application of the pressure impulse will vary with time, 
while the momentum after the impulse has been applied 
is constant. Therefore, separate solutions for shock-wave 
pressure attenuation are needed during the time period 
of pulse application and for the time period after the 
pulse has been applied. Equations (17) and (18) can be 
transformed into spatial coordinates by use of the results 
of Equations (5) and (7), giving 

aV 
for 0 < Xr-Xo <:::: 73' (19) 

Johnson: Simple model of shock-wave attenuation in snow 

The limits of integration are 0 to Xa = a V / (3. Equating 
momentum in the snow (Equation (12)) to the pressure­
impulse momentum (Equation (19)), letting Xo = 0 and 
differentiating gives 

Po(3 = V~[vXrl = ~~ [~V2Xl] . (20) 
pr(1 - (3) dx Xr dx 2 

Integrating Equation (20) gives the particle velocity 

[ 
Po(3 ] ! 

V = pr(1 - (3) for 0 <:::: Xr <:::: Xa. (21) 

Hence, during the period of pressure impulse applicat­
ion, the density, relative snow compaction and particle 
velocity are constant and there is no attenuation of the 
shock-wave pressure. The distance that the shock wave 
has traveled at t = a is given by 

(22) 

After the pressure-impulse momentum has been ap­
plied to the snow, the relationship between the pressure­
impulse momentum and snow momentum is 

Poa = prV(l - (3)Xr for Xa < Xr. (23) 

Solving for the particle velocity and using the definition 
of Xa in Equation (22) gives 

V = [ Poa ] 
pr(1 - (3)Xr . 

(24) 

The shock-wave pressure as a function of distance can 
now be determined from Equations (2), (7), (21) and 
(24), giving 

P(Xr) = Po for 0 <:::: Xr <:::: Xa (25a) 

Po 2a2 

P(Xr) = {3 X 2 for Xa < Xr· (25b) 
Po r 

Since P is constant while the pressure impulse is being 
applied, Pr and (3 are also constant and Xa can be directly 
calculated for either single-stage or multi-stage com­
paction. After the pressure impulse has ended, solving 
Equation (25b) for multi-stage compaction requires that 
pr(Xr) be iterated until pr(Xr) and P(Xr) lie on the (P­
p) curve (Fig. 3), as was the case for the instantaneously 
applied pressure impulse. Figure 4 shows the shock­
wave attenuation for single-stage compaction (square A) 
and multi-stage compaction (square B). The shock wave 
does not begin attenuating until after all of the pressure­
impulse momentum has been applied to the snow sur­
face, and then it attenuates as X r-

2 for the single-stage 
compaction and approximately as X r-1.

5 for the multi­
stage compact ion curve. The propagation distance at 
a constant shock-wave pressure differs between squares 
A and B. This difference is controled by the amount of 
relative snow compaction. With a large amount of co m­
paction, the shock wave propagates a shorter distance 
before it attenuates than it does for a smaller amount of 
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compaction. Comparison of the square-wave pressure­
impulse (squares A and B) to an instantaneous pressure 
impulse (impulses A and B) shows that the pressure is 
lower for the square wave during its duration of applic­
ation than for an instantaneously applied pressure im­
pulse. After the square-wave momentum has been com­
pletely transferred to the snow, both the square wave 
and instantaneously applied impulse pressures are the 
same. Changing the duration of a square-wave pressure 
impulse with constant total momentum will also affect 
shock-wave pressure attenuation. Decreasing the durat­
ion of an impulse causes the initia l pressure of a shock 
wave to increase. The shock wave will also being atten­
uating at Xf

2
, for single-stage compaction, and Xr-1.

5 , 

for multi-stage compaction, earlier. 

VARIABLE PRESSURE IMPULSE OF 
FINITE DURATION 

Simulating a realistic applied pressure impulse requires a 
function that can represent variable pressure impulses of 
finite duration. These variable-pressure impulses must 
be modeled by non-linear differential equations that 
do not have closed-form solutions and whose numerical 
solutions can be unstable (Hornbeck, 1971). In addition, 
the form of the differential equations depends on t he form 
of the pressure impulse applied to the snow surface. To 
reduce these computational difficulties, here the variable 
pressure impulses were approximated by a sequence of 
square waves. The accuracy of such an approximation 
depends on the duration specified for each square-wave 
segment comprising the total applied pressure impulse. 
Instead of exactly formulating the problem and obtain­
ing a numerical solution, the pressure impulse is approx­
imated and solved analytically within the sequential time 
steps. The variable-pressure impulse of finite duration 
beginning at t = 0 is approximated by 

bo = 1 for 0 :s: t < al 

bl = f ( a2 ; al ) 

P(t) = POb i 

bn- l _- f (an +2an- l ) for an-l :s: t < an 

bn = 0 for an :s: t. 
(26) 

A smooth curve, f(t), fitted to the sequence of square 
waves passes through a series of points, bi (weighting 
coefficients), at the midpoint between the beginning time 
and ending time for each square-wave segment f[ (ai+ l + 
ai)/2] , where each square-wave segment ends at time ai 
where i = 1,2,3, .. . , n - 1 (Fig. 5)). 

Solving for t he pressure in snow as a function of dis­
tance, using Equation (26), requires that the problem be 
formulated for three conditions. The first is for the time, 
or spatial increment, of the first square-wave segment. 
The next solution must account for the momentum that 
has been applied to the snow at the time, or spatial posit­
ion, of interest. Finally, a solution must be found after 
all of the pressure-impulse momentum has been applied 
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to the snow. The conservation of momentum conditions, 
for Xo = 0, can be expressed as 

1
X r (3 

Pobo-(-)dx = prVo(Xr)(l- (3)Xr 
o Vo X 

for 0 :s: Xr < X o, (27a) 

1
Xr (3 

HPo + POb l if, (x)dx = prVl(Xr)(l- (3)Xr 
x., I 

n-2 { Hr (3 t; Hpi + ) X.n_,Pobn-1 Vn- I (X) dx = prVn-1 (Xr)(l - (3)Xr 

n-l 

for XOn _, :s: Xr < XOn 
(27b) 

L Hpi = prv', (Xr)(1 - (3)Xr 
i=O 

for XOn :s: Xr. (27c) 

There are n + 1 equations to solve b efore the complete 
particle-velocity solution can be found. Each equation 
depends on the solutions of the previous segments. 

Equation (27a) is a constant-pressure impulse with a 
particle velocity of 

(28) 

where 

(29) 

and 
Po(3 

I = ---:---'-'---:::-pr(1 - (3) . (29) 

Equation (27b) can be solved sequentially to give a set 
of recursion relations for position, and particle velocity 
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where 

and 

i = 1,2, ... , n - 1 

Ai = [\1;-1 2(Xa,) - ')'bi]Xai 2 

Bi =')'bi. 

(30) 

(31) 

After all of the pressure impulse has been applied to the 
snow, the particle velocity is 

where 
n-I 

LHpi =Hp 
i=O 

is the total momentum per unit area applied to the snow. 
Equations (28) and (29) are used to start the solution 
and the recursion relations (Equations (30) and (31)) 
are used to follow the progression of the shock wave. 
Equation (32) is used to calculate particle velocities after 
the pressure impulse has ended. 

Figure 4 (exponentials A and B) shows the results of 
using Equation (28) through (32), (2) and (7) to cal­
culate the shock-wave attenuation for an exponentially 
decaying pressure impulse given by 

P = Poe-ot (33) 

where a is a decay constant and Po is the initial pres­
sure, and f(t) = e-ot . Exponential A is the shock-wave 
pressure attenuation resulting from a single-stage com­
paction to Pr and exponential B is the attenuation that 
results from a multi-stage compaction. The exponen­
tial A and B shock waves each begin attenuating im­
mediately upon application of the exponential pressure 
impulse. The attenuation for exponential A gradually 
increases to X r-

2 as the pressure impulse ends. Atten­
uation of exponential B is about X r-1.5 after the pressure 
impulse ends, which is consistent with the results for 
instantaneous and finite-duration impulse and a multi­
stage compaction. As with the constant-pressure impulse 
of finite duration, the attenuation of shock waves gen­
erated by finite-duration exponential pressure impulses 
depends on impulse duration. A short-duration impulse 
will produce a higher initial shock-wave pressure than an 
impulse with the same total momentum content but of 
longer duration. 

ATTENUATION OF CYLINDRICAL AND 
SPHERICAL GEOMETRY SHOCK WAVES 

Geometric spreading can greatly increase shock-wave 
attenuation in snow. Torvik (1971) developed equat-

Johnson: Simple model Dj shock-wave attenuation in snow 

ions describing pressure attenuation for cylindrical and 
spherical geometry shock waves using a single-stage com­
paction snow-plow model and assuming instantaneous 
application of pressure impulse. For a cylindrically 
spreading shock, the pressure is given by 

(34) 

(35) 

The pressure for a spherically spreading shock wave is 

(36) 

where 
(37) 

10 is the instantaneously applied pressure impulse, Ho is 
the initial radius of the cavity surface in the snow on 
which the pressure impulse is applied, R is the shock­
wave propagation radius and r is the location of the inner 
radius of the cavity at some time after the application of 
the pressure impulse (Fig. 6). 

When R = Rn + E, where E « Rn, a cylindrical geo­
metry shock wave attenuates as c 2 for single-stage com­
paction and about cl.5 for the multi-stage compaction 
curve shown in Figure 3, increasing to an attenuation of 
R-4 for E » Rn (Fig. 7) . A spherical geometry shock 
wave attenuates as c 2 for single-stage compaction and 
about cl.5 for multi-stage compact ion when E « Ho, 
increasing to R-6 for E » Ho (Fig. 8). Pressure atten­
uation, for cylindrical and spherical shock waves, varies 
significantly depending on the initial radius over which 
the pressure impulse is applied and the distance from the 
initial radius. 

PRESSURE ATTENUATION OF A LINE 
CHARGE ON SNOW 

Line charges are used to clear minefields and to remove 
snow cornices from mountain ridge tops. Therefore, it is 
of practical interest to know the extent that snow atten-

Compacted 
Snow o 

Undisturbed 
Snow 

Fig. 6. D efOTmation geometr'Y faT' diverging 
shock 'Waves. 
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Fig_ 7. Pressure attenuation with distance 
for instantaneously applied cylindrical pres­
sure impulse (605 Pas) with initial radii of 
0.01 and 1. 0 m, predicted by the snow-plow 
model. The solid lines represent the results 
for single-stage compaction and the dashed 
lines represent the results for multi-stage co m­
paction. 
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Fig. 8. Pressure attenuation with distance for 
instantaneously applied spherical pressure im­
pulse (605 Pas) with initial radii of 0.01 and 
1_ 0 m, predicted by the snow-plow model. The 
solid lines represent the results for single-stage 
compaction and the dashed lines represent the 
results for multi-stage compaction. 
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Table 1. Air-blast measurements - shot 2 (after Ford, 
1986) 

Distance Positive- Peak Peak 
from phase air-blast impulse 

line charge duration pressure 

m ms MPa kPas 

0.96 1.6 3_4 0.61 
2.99 11.0 1.64 1.36 
6.97 16.0 0.36 0.76 

11.00 18.0 0.16 0.61 
23.97 29.2 0.07 0.60 

uates shock waves produced by line-charge detonations. 
For a line charge resting on or above a snow cover, the 
cylindrical pressure wave that hits the snow surface prop­
agates primarily through the air. 

Ford (1986) has measured air-blast pressure, positive­
phase duration and total pressure impulse at the ground 
as a function of lateral distance from the axis of a line­
charge explosion (Table 1). The positive-phase duration 
is defined as the duration of the compressive (positive) 
shock-wave pressure. It is assumed, for this example, 
that the air-blast pressure given in Table 1 would also oc­
cur over snow. Furthermore, the snow is assumed to be 
deep and shock-wave pressures are determined only for 
small propagation depths into the snow so that 10 ~ Ra, 
where Ra is the distance from the line charge to the 
point of interest on the snow surface. With these condit­
ions, the snow- ground boundary can be neglected and 
shock-wave pressure in the snow can be estimated from 
the equations for a one-dimensional variable-pressure im­
pulse of finite duration (Equations (28)- (32), (2) and 
(7)), and an exponentially attenuating pressure pulse 
(Equation (33)). Figure 9 shows the shock-wave pressure 
(air blast) as a function of distance from the line charge 
(dLc) along the snow surface, using the pressure-impulse 
data from Table 1. Figure 9 also shows the calculated 
pressures as a function of (dLC ) for shock-wave propag­
ation depths into the snow of 0_06, 0.2, 0.4 and 0.6 m 
calculated using the compaction curve given in Figure 3. 

Air-blast shock-wave pressures do not attenuate the 
same amount for a given depth in the snow for differ­
ent values of (dLC ). Shock-wave attenuation is greatest 
near the line charge (dLC = 0 _96 m) and least at the 
farthest distance (dLC = 23.97 m). This occurs because 
the duration of the applied air-blast pressure impulse 
(positive-phase duration) increases with dLC (Table 1)_ 
The increasing positive-phase duration allows the shock 
wave to propagate through a greater depth of snow be­
fore starting the 10-1.5 attenuation. These findings sug­
gest that, for shallow shock-wave penetration depth into 
a snow cover, line-charge pressure reduction depends on 
the positive-phase duration in addition to the total pres­
sure impulse. Also, shock-wave pressure attenuation in 
a shallow snow cover can be reduced or eliminated by in-
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Fig. 9. Pressure attenuation witlt distance 
from the line charge for differ'ent shock propag­
ation depths into the snow, predicted by the 
snow-plow model using exponential pressure 
impulses and multi-stage compaction. The 
air-blast curve is drawn from data given in 
Table 1. 

creasing the positive-phase duration of a given pressure 
impulse. 

DISCUSSION AND CONCLUSIONS 

The snow-plow model has a limited ability to describe 
shock-wave propagation and attenuation in snow because 
of the simplifying underlying assumptions. The model 
is, however, capable of illustrating some of the impor­
tant features and giving conservative estimates of shock­
wave attenuation in snow. Shock-wave pressure atten­
uation predicted by the snow-plow model will be less for 
a multi-stage snow compaction than for a single-stage 
compact ion to the final snow density. 

The snow-plow model predicts that maximum shock­
wave pressure attenuations will proceed as a function 
of X r-

2 for plane waves (where Xo = 0), R-4 for cylin­
drical waves, and R-6 for spherical waves with a single­
stage snow compaction. Attenuation for multi-stage 
compaction depends on the form of the (P- p) curve used 
to describe snow compact ion and ranges from a function 
of X r-1.

5
, for the compact ion curve used in this study, to 

the maximum for plane, cyclindrical and spherical shock 
waves. 

Comparison of instantaneous, finite-duration square­
wave and finite-duration exponential pressure impulses 
(each with the same total momentum) shows that shock­
wave attenuation can be markedly different during the 
period of pressure-impulse application. The instant­
aneously applied pressure impulse applies all of its mom­
entum at once, resulting in infinite initial pressure that 
immediately begins attenuating as X r-

2 for single-stage 
compact ion and as X r-1.

5 for multi-stage compaction. 

Johnson: Simple model of shock-wave attenuation in snow 

The square-wave presure impulse maintains a constant 
pressure equal to the applied pressure until all of its 
momentum has b een transferred to the snow and then 
begins to attenuate. Finally, the exponential pressure 
impulse gradually attenuates while its momentum is be­
ing transferred to the snow, asymptotically approaching 
an X r-

2 attenuation for single-stage compaction and an 
X r-

L5 attenuation for multi-stage compaction. Once a 
pressure impulse has b een applied to the snow, pressure 
attenuation is controled by the mechanical properties of 
the snow and the magnitude of total pressure impulse . 

Mellor (1977) estimated that spherical geometry 
shocks, where E » Ho, attenuate as R-3 to R-4 as com­
pared to the snow-plow model prediction of R-6• It may 
be that the snow-plow model predictions are grossly in 
error b ecause of the simple snow-compact ion path used 
in the model or that the field measurements used by Mel­
Ior to make his estimates of attenuation were not the 
result of shock-wave propagation in snow. The pressure 
sensors used in many of the field tests could not sur­
vive near-source pressures and were, consequently, loc­
ated well outside the zone of shock-wave-induced snow 
compaction. Outside this zone of snow compaction, pres­
sure attenuation is due to viscous dissipation and geo­
metric spreading that produce much less pressure atten­
uation than the pore-collapse mechanisms described by 
the snow-plow model. If, in fact, this was the case, M el­
Ior's estimates of press ure attenuation in snow for spher­
ical shocks may be too low, but a final conclusion is not 
possible until better snow-compaction and release paths 
are used in the model calculations, or more field tests are 
conducted. 

Estimating shock-wave attenuation requires some 
thoughtful application of the results of this study. 
Explosive-induced shocks in snow often result from an 
explosive-charge detonation on the snow or in the air 
above the snow. In this situation the shock wave will 
be transmitted into the snow primarily by an air-blast 
wave propagat ing over the snow surface. If the initial 
radius for the air-blast pressure wave is large compared 
to the snow depth, then the shock wave may be approx­
imated by a plane wave rather than a spherical wave or 
cylindrical wave. Attenuation will then proceed as c1.5 

rather than as R-6 for spherical waves or R-4 for cylin­
drical waves. 

Pressure attenutation of shock waves in snow can 
be reduced, delayed or even eliminated by using a suf­
ficiently long-duration pressure impulse. Shock-wave 
propagation and attenuation in snow are affected by 
shock-wave geometry, pressure- impulse time variation 
and the mechanical properties of snow. Consequently, 
determining the mechanical response of snow to shock 
loading requires an accurate knowledge of the shock­
loading conditions in addition to a knowledge of stresses 
and particle velocities in the snow. 
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