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ULTRAPOTENTIALS AND POSITIVE EIGENFUNCTIONS
FOR AN ABSOLUTELY CONTINUOUS
RESOLVENT OF KERNELS

LUCIAN BEZNEA

Intro duction

Let (X, #) be a measurable space and ¥ be a submarkovian resolvent
of kernels (with the initial kernel V proper) on X which is absolutely
continuous and has a dual resolvent (with the same properties) with
respect to a ¢-finite measure.

A positive numerical function s on X is called V-ultrapotential if it
is ¥ -excessive (in particular 7-a.e. finite) and if the following condition
is fulfilled: for every integer n > 1, there exists a positive Z-measurable
function f, on X such that s = V*(f,), where V" is the n-th iteration of
the kernel V.

The main purpose of this paper (see Theorem 3.5 and Corollary 3.6)
is to prove that, under a “regularity” condition (which will be discussed
in the last part of Section 2) on the resolvent ¥, for each V-ultrapotential
s there exist a finite positive Borel measure ¢ on the open interval
10, o[ and a family (s;)y<1<., S; being a positive i-eigenfunction of V (i.e.
V(s;) = 2+s; and s, is 7 -a.e. finite), for any 1 > 0, such that for each
x € X the numerical function 2 — s,(x), defined on ]0, o[, is o-measurable
and

s(x) = j s(x)da(d) .

In fact, this type of representation is given for a slightly more general
class of excessive functions, as the V-ultrapotentials.

An uniqueness of the representation and a converse statement are
also proved.

These results ar: analogous, in this context, with those obtained by
M. Ité6 and N. Suzuki in [7] (see also [6]) for the set up of diffusion semi-

Received May 6, 1987.
125

https://doi.org/10.1017/5S0027763000001173 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001173

126 LUCIAN BEZNEA

groups. (The V-ultrapotentials are corresponding to the completely A-
superharmonic measures with zero conditions considered in [7]).

We shall use the technique developed in [6] and [7] and also the
duality theory for standard H-cones (see [1]).

As in [7], the Bernstein theorem on complete monotone functions is a
consequence of these results (see §4, Example 1). Another one is that
the convex cone of V-ultrapotentials is one dimensional if the resolvent
satisfies an ellipticity condition (Example 2 in §4).

Let us notice that the existence of the dual resolvent is not essential
for our aim. This assumption may be substituted by the duality theory
of standard H-cones (see Remark 3.9).

§1. Ultrapotentials-first results

In this section, ¥ = (V,).», will be a submarkovian resolvent of
kernels (on the measurable space (X, %)) with the initial kernel V
proper.

We denote by &, the usual ordered convex cone of ¥ -a.e. finite ex-
cessive functions associated to ¥". (For more details see [1] or [8]).

DEFINITION. A ¥ -excessive function se &, is called V-ultrapotential
iff: for any integer n > 1 there exists a positive %-measurable (numerical)
function f, on X such that s = V*(f,).

In the above definition, the function f, may be chosen to be ¥ -
excessive and in this case it is uniquely defined and denoted by s™.

Let us denote by #(V) the convex cone of all V-ultrapotentials.
Thus:

#(V) = {se &, /for any integer n>1 there exists s" ¢ &, such that
s = V™(s"l.

Remark 1.1. %(V) generalises the convex cone of “‘ultrapotentials
associated to a second order elliptic differential operator” from [2]. (See
Corollary 4.c) in [2]).

For an excessive function se &, we have: se (V) iff there exists
(uniquely) a sequence (s"),», € &, such that s® = V(s"*'), for any integer
n >0, where s° = s,

If ¢ is an ordered convex cone, we denote by [£] the ordered vector
space canonically generated by & (see §2.1 in [1]).
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DerFiniTION. If @ >0 and B >0 are real numbers, we define the
map ¢; from &,. into [£,] by:

#5(s) = s — BV, 4(8), seé,.

For every « >0, 8> 0, ¢5 and V, being additive and positive homo-
geneous, we may extend them to linear operators on [&£,].

DerFINITION. Let o >0 be fixed. We denote by #,(V) the totality of
those excessive functions s which for any integer n >1 and 8, -+, 5, >0
satisfy: (§5,0 - o p5)S) €6,

For any o« >0, #,(V) is a convex subcone of &,. We write %(V)
instead of # (V).

Paper [3] has already underlined the convex cone #(V) (denoted there
by &., its elements being called “¥ -complete supermean functions”) and
has studied it under other points of view.

Remark 1.2. If 0< o, < @, and g >0, then

(1.1 35%(8) = ¢5'(8) + Blar — ) Voo o(Viyis(8)),  s€8,;
(1.2) $5(Z (V) S . (V);
(1.3) U V) S U (V).

Proof. (1.2) is a consequence of (1.1) since for any @« >0 and 8> 0:
VATV S TLV), $5(TV) S DLV). 0

In order to establish other connections between the convex cones
(V) and % V), « >0, let us recall from [9] that any ¥ -excessive
function s has an unique decomposition s = s’ + s, where s’ is an
invariant function (i.e. aV (s") = s, « > 0) and s” is purely excessive (i.e.
NasoaV,(s”) =0, the sign “A” having the usual meaning of lattice
operation in &,).

Remark 1.3. a) Let se&, be such that one of the following two
conditions is satisfied:

(i) W(s)es,;

(i) s = V(f), where f is a positive measurable numerical function.
Then s is purely excessive. In addition, the function f is ¥ -a.e. finite.

b) Any V-ultrapotential is a purely excessive function.

ProrosiTION 1.4. a) If o, >0, then:

U V)= () 4LV).

a>ag
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b) For every a >0 we have:

Z(V) = {seé&,/for any integer n > 1 there exists s* e &, such that
s = Visi)}.

¢) The V-ultrapotentials are exactly the purely excessive elements of
a(V).

Proof. If @, > a, and B> 0, from (1.2) and (L.3) it follows that
z*(Q AV)CS N HLV).

a>ap

As a consequence, if s € (Nae ZV) and g > 0, using also (1.1), it follows
successively: ¢2%(8) = A usao $5(S) € oy $5°(8) € Masao Z V), s € #,(V). Thus,
assertion a) is clear, using also (1.3).

We denote by %, (V) the set of the right side in the equality of b).
First, we show that, if « >0 and g > 0, then:
(1.4) ¢ U(V)) S V),
where %y(V) = w(V).

Indeed, let n be an integer, n > 1 and se %, (V). Then:

935(5) = ViVu(si*) — BVass(8) = Vi(Vorg(si™) + Va(BVaig(s2*)) — BV 4(9)
= Vi(Vaus(s2*D)

i.e. (1.4) is proved. As a consequence, for any «a > 0: % (V) S % (V).
Let us now prove that: if se Z,(V), « >0, (resp. se€#(V) and s is
purely excessive) then s e %, (V) resp. s e %(V)).
From ¢5(s) € 6,, for every g >0, it results:

Bi(s) < B'gils),  for p< B
and we define the function 5, by:
8. = sup fi(s).
If s, s,e % (V), « >0, then:
(1.5) (8D + (—32—)—:: = (8 + S)a-

If se@(V), «a>0, (resp. sc#%(V) and s is purely excessive) then:
V(82 = sups, BVu(s — BV, s(8)) = suppsy BV..5(8) = s. By Remark 1.3 a) it
follows that 5,e¢&, if « >0 (resp. 5,¢&, and s, is purely excessive.).
From s = ¢i(s) + BV..x(), ¢x(s) e Z V), BV, i(s) e Z V), using (1.5), it
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results: ¢5(5,) = (T&;‘;(?)),, €é,, for any p>0. Thus, we have by induction:
5,e¥(V), se%(V). Assertion b) is now clear.

Finally, assertion c) follows from the above considerations and
Remark 1.3 b). O

DerFINITION. a) For every real numbers « >0 and 1> 0, the convex
cone E(V, 2) of all positive 1-eigenfunctions of V, is defined by:

E(V,2) ={se&,/Vs) = 25},

where V, = V, and we write E(V, 2) instead of E(V, 2).
b) Let us denote by E(V, o) the convex cone of all invariant func-
tions. Hence

E(V, 00) = E,,(V, _1.), for any a>0.

(44
We remark that:
E(V,)={0} ifa>0and <2,
[44

From the resolvent equation, it is easy to see that for «, § >0 we

have:
2 . 1
16 EaV,,l:E(V,—————) fo<i<t,
(1.6) V, A I -
. .01 oo 1
where the convention is: = = o0, —— = = E(V, 00) = E(V, ).
0 14 Boo B
Let us point out that
@ U BV, ) S UV)
<AL 0
and by (1.6) we have
(1.8) U E(\V, )= U E«(V,2, for any o > 0.
0<21< o 0<21<51/a

§2. Resolvents in duality and the natural topology

Let v = (V) and # = (W,).s, be two submarkovian resolvents
of kernels (on the measurable space (X, #)) which are absolutely con-
tinuous and in duality with respect to a o-finite measure m, their initial
kernels V and W being proper.
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At first we summarize generalities of standard H-cones. For more
details and proofs one should consult [1].

¢, and &, stand as basic examples of standard H-cones.

In order to simplify the exposition, let us suppose that v = W(1) is
a function on X with strictly positive values. We write: v > 0.

DeFiNITION. a) Let us fix ueé,, u >0. An element te &, is called
u-continuous if for any ¢ > 0 and for any family F C &, increasing to ¢
there exists £, ¢ F' such that t < ¢ + ¢ u.

The convex cone of all u-continuous elements of &, is denoted by
@)

b) An element teé&, is called wuniversally continuous if it is u-
continuous for every ued,, u > 0.

We denote by (&,), the convex cone of all universally continuous
elements of &,.

(2.1) There exists a countable subset D of (&,), which is increasingly
dense in &, (i.e. for every te &, there exists a sequence (¢,),.y C D such
that ¢, 7~t) ([1], Theorem 4.4.6).

(22) For any ueé,, u>0 and te(&,), there exists ae R, such
that ¢ < au. ([1], Proposition 4.1.2. b))

DEerFiNITION. The energy form is the map (s, t) — (s, t) from &, X &,
into R, defined by:

G5, &) = sup {[ Wg)dmlf, ge #, V) <s, We) <1},

where & is the set of all #-measurable positive numerical functions on
X
(2.3) For any fe & such that V(f) e &, and for any te&,, we have:

vip), &y = [ fedm.
([1], Theorem 1.2.2 a))

DErFINITION. An H-integral on &, is a map g from &, into R, with
the following properties:

¢ is additive;

¢ is increasing;

¢ is continuous in order from below (i.e. if (¢.).eny S &, increases
to teé,, then (u(t,).en increases to u(t));
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there exists u e &,, u >0 such that u(u) < co (or equivalent: ut) < oo
for every te(&,)).

DeriniTION. If s€&,, the map § from &, into R, is defined by:
3() = (s, t, for any teé, .

For every seé,, § is an H-integral on &, ([1], Theorem 1.2.2).

For every H-integral ux on &, there exists an uniquely defined se &,
such that ¢ = 3. ([1], Proposition 1.2.3).

(2.4) Hence, by means of the energy form we may identify &, (resp.
¢,) with the set of all H-integrals on &, (resp. on &,).

(2.5) An additive and increasing map px: (&,), — R, is the restriction
to (&,), of an H-integral on &,. ([1], Theorem 4.2.11)

The resolvents ¥ = (V). and # = (W,), being in duality, from
Hunt’s approximation theorem and (2.3) it follows:

(2.6) (Vs), &) = (s, WD)y,
for every « >0, seé&, and teé,.

DerFiniTION. The natural topology on &, is the coarsest topology
which makes continuous the maps s — (s, tD, £ € (&y).

(2.7 The vector spaces [¢,] and [(&,),] are in duality (by means of
the energy form) and the natural topology on &, is the restriction to
&, of the weak topology o([€,], [(€,)]). ([1], page 106)

The natural topology on &, is metrisable. ([1], Proposition 4.2.8)

DeFiniTION., For any wueé,, u >0 we put:
K, = {se&,/Ks uy <1}.

If ueé,, u>0, then K, is a compact convex subset of &,.

(2.8) The coarsest topology on &, which makes continuous all the
functions s — (s, t), t e(&,),(v) coincide with the natural topology on K,.
(See the proof of Proposition 4.2.4 in [1]). In addition
2.9) &, = U K,.

=y
u>0

({11, Proposition 4.2.3 a))
(2.10) A subset M of &, is relatively compact in the natural topology
iff there exists u e&,, u >0 such that M < K, ([1], Proposition 4.2.7).
Let us now discuss some ‘‘regularity” properties of the resolvents.
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DEFINITION. a) Let ued,, u >0 be fixed. We say that the resolvent
v = (V,)., satisfies condition (%,) if:

V,: K,— &, is continuous (in the natural topology), for any « > 0.
b) The resolvent ¥~ = (V,),., satisfies condition (Z) if:
V,: &,— &, is continuous, for every o >0.
The dual properties are the following:

DeFiNITION. a) If ueé&,, u>0, the resolvent #" = (W,),, satisfies
condition (Z¥) if:

WA(E4)) S (Ey)(w),  for any « > 0.
b) The resolvent #" = (W,),>, satisfies condition (#*) if:
WA(E)0) S (Edos for any a > 0.

In [1], page 150, the maps W,, « >0 are called regular if condition
(Z#*) is satisfied.

From (2.10) we have: ¥ satisfies condition (%) (resp. ¥~ satisfies
condition (#*)) iff v~ satisfies (#,) (resp. # satisfies (%)) for every

ueé,, u>0.
By (2.6) and (2.7) it is easy to see that:
(B) & (#%).
If ueé,, u>0, using also (2.8), it follows:
(ZE) = (X)) .

LEmMA 2.1. Suppose that there exists an increasingly dense subset
D < &, such that for every a >0 we have: W (D) < (&,), (resp. WD) <
(& )(w), for a fixed element ueé,, u>0). Then # = (W,)., satisfies
(%*) (resp. (Z¥)). :

Proof. Let us take ueé,, u>0,tc(é,), and (¢,),ey & D with ¢, 7t

Then for any integer k2 >1, there exists n, € N such that t< ¢, + —Ii—u

Hence |W,(t) — W, (t.)] < —kl—u, for any integer k2 > 1. Proposition 4.1.2
o
d) in [1] implies that W,(¢) is u-continuous and the proof is finished. [

Remark 2.2. Let veé,, v >0 be such that W(v) is a nearly con-
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tinuous element of &, (i.e. W(v) e &, and there exists a sequence (f,).cn
< (&,), with W(v) = > .ent.). Then there exists ueé&,, u > 0 such that
W = (W,).>, satisfies condition (Z¥).

Proof. From Proposition 5.6.1 in [1] there exists weé,, u > 0 such
that W(v) is u-continuous. Using (2.2), we obtain W(¢) e (&,),(uv), for every
te(&,),. Condition (Z¥) now follows from the resolvent equation. O

Remark 2.3. Let us suppose that X is a locally compact space with
countable base (with the associated Borel ¢-field), 1€ &, and W,(f) is
continuous and tends to zero at infinity, for any « > 0 and any bounded
positive measurable function f with compact support. Then #" = (W,).s,
satisfies condition (Z}).

Proof. Let us first remark that every ¢ e &, is lower semi-continuous.
We denote by ./ the set of all positive bounded Borel measurable
functions with compact support. If fe ./, using the complete maximum
principle, it is easy to see that W(f) €(&,),. The set W(«) being increas-
ingly dense in &,, we obtain that the % -excessive functions which are
continuous and tend to zero at infinity are exactly the 1-continuous elements
of £,. We may now apply Lemma 2.1, taking D = W(&). O

§3. Integral representation of the ultrapotentials

We maintain the context of the previous section.
For a convex subset K of &,, let us denote by ex(K) the set of all
extreme points of K.

PropositioN 3.1. If « >0 and ueé,, u>0, then
(3.1) ex(Z (V)N K,) S U EV,2.
0<2g

Proof. If seex(Z (V)N K,)\{0}, then (s, u) = 1.
Let >0 be fixed. We put

aﬂ = ﬁ<Va+ﬁ(s>, u> .

Thus 0<a;,<1. If a; =0, then V, () =0, s=0. If ay,=1, then
(s = BV,s(8),uy =0, BV, (s) =s, scE(V, ). Hence we may suppose
that 0 <a, <1.

If we put s, = i—ﬂ V..5(8) and s, = Kl 1 #5(s), then it follows s,,
s
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s,e % (V)N K,. The equality s = a,8, + (1 — a,)s, and the extremality of

s imply that seE,, B(V, “Zﬂ

). (3.1) is now a consequence of (1.8). [

Remark 3.2. a) Let ueé&,, u>0 be such that v = (V,),., satisfies
condition (#£,), « >0 and B, 2> 0. Then the restrictions of V, and ¢;
to K, are continuous. In addition, E(V, 2) N K,, Z(V) N K, are compact
convex subsets of &,.

b) If condition (£) is satisfied, then E(V, 1), and # (V) are closed
convex subcones of &,, for any ¢« >0 and 2> 0.

Proof. Assertion a) is a direct consequence of condition (#,) and
(1.6). Assertion b) follows from a) and (2.10). O

Let us point out that, even if condition (%) is satisfied, the convex
cone % (V) of all V-ultrapotentials is not necessarily a closed subset of
&, (see Remark 4.1).

If M is a subset of &,, we denote by cl. con(M) the closed convex
hull of M.

COROLLARY 3.3. a) Let ueé,, u >0 be such that condition (%,) is
satisfied. Then:

3.2) Z(VYNK, =%(V)N K,, for any a >0;

and

(3.3) #(V)N K, = cl. con(0 U E(V,)NK).
<AL o

b) If condition (%) is satisfied, then
(V) =4[(V), for any a > 0.

Proof. Let « >0 be fixed. Then, by (1.3): #(V)NK, < % (V)N K,.
From (3.1) and (1.7) it follows:

ex(ZV)N K,) € #4(V)N K,

and the equality (3.2), of compact convex sets (see Remark 3.2 a)), is now
clear.

We have cl.con({Uoic. E(V, ) N K,) € %(V) N K, and from (3.1)
results (3.3),

Assertion b) follows from (3.2) and (2.9). O
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DerFINITION. If A € Upcic E(V, D)\{0}, we define by A(h) the uniquely
defined positive real number such that

V(h) = ACh)-h
and we put A(h) = oo if he E(V, ).

Remark 34. f ueé,, u >0 is such that condition (#,) is satisfied,
then the above defined map A: (Ujcico E(V, ) N K, \|{0} = ]0, o0] is con-
tinuous.

THEOREM 3.5. Let ¥ = (V)0 and # = (W,),>, be two submarkovian
resolvents of kernels (with the initial kernels V and W proper) which are
absolutely continuous and in duality with respect to o o-finite measure.
Suppose that ueé&,, u>0 such that v = (V,).s, satisfies condition (Z,).

If seé, and (s, u) < oo, the following assertions are equivalent:

a) seU (V) (resp. se%(V)).

b) There exist a finite positive Borel measure o on 10, o[ (resp. on 10, o<])
and a family (8)yc1c. (resp. (8vcicw)s 82 € E(V, 2) such that for every teé,,
the map A+ (s, t) defined on 10, oo[ (resp. on 10, oo]) is a-measurable and:

*) 5 = [5doty
(i.e. (s, ty = J(sl, tYdo(2), for every te £w> .

Proof. We may suppose that s ¢ K,.
“b)=>a)” Let « >0 and neN be fixed. If teé&,, from (*) it follows:

Gt = [ (F Y (i), o,

where = if 2 = 0. Thus

1+ ad
A

j (1_*;_“&) (85 Wo(w)ddo(l) < 1.

If we define on ¢, the map ¢ by:

w0 = [ (2 s, dod,  tes,

then the above inequality implies that z* is an H-integral on &,. More-
over, with the identification given by (2.4), we have:
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we) = [ (1 *ed ) si@dod,

for any xeX, where ¢, is the H-integral on &, given by the Dirac
measure at x € X. Hence the function s”: X— R, defined by

s(x) = f ( 1 W; o )nsl(x)da(/'l)

is an element of &, and § = g~
For every te &, we have (V(sh), t> = (s, W(t)) = p(W™5)) = (s, t).
It follows successively: %‘) =35 Vs =s,se(V)NK, = #%V)NK,.
Let us remark that s is purely excessive if the measure ¢ is supported
by 10, o[ in the representation (*).

Indeed, (aV(s), £ = f %@1, £5da(2) < oo, for any te(&,), Let-
[44

ting « \\ 0 we obtain that
inf{aV,(s), t) = 0, for every te(&,),,
a>0

hence s is purely excessive.

From Proposition 1.4 ¢) it now results that the proof of “b) = a)” is
complete,

“a)=>b)’. If s e %(V), then s is an element of Z(V)N K,, a metrisable
compact convex subset of &, (see Remark 3.2 a)). From the Choquet
representation theorem there exists a finite measure ¢ on ex(Z(V)N K,)\{0}
with barycenter s. Then

5= fﬁdgo(h)

(i.e. (s, 8> = j<h, tyde(h), for any ¢e é",,,).
If te(&,), we define the measure ¢, on ex(#(V)NK,)\{0} by:
oo =19,
where t is the H-integral on &, defined by ¢.
The measure ¢, is finite and ¢, € ¢ (i.e. ¢, is absolutely continuous

with respect to ¢).
From (3.1) and Remark 3.4 it follows that we have a Borel measurable

function 4: ex(Z(V) N K,)\{0} — 10, oo].
Let us denote by ¢ and o, the images of ¢ and ¢, under 4. Hence
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o and o, are finite Borel measures on ]0, <] and ¢, € 0. More precisely

(34) [ewdo@ = [gtamnin ey, gea,,

where %, denotes the set of all positive Borel measurable functions on
10, oo].

In addition e,,,,, = o, + o, if &, ,e(&,),. It te(&,), by (2.2), there
exists a positive real number a, such that £ < a,-u, hence < a, on K,
and f gda.,(}) < a, Ig(l)do(/’l), for any ge 4,.

Let us denote by f, the Radon-Nikodim density of o, with respect to
o. Then f, < a, o-a.e. It follows f, e ¥=(o), f,, + fiy = [i,+:, 0-a.e., for any
t, t, t,e(&,), and f, <f, o-ae. if ¢, <t. Using the lifting theorem of
C. Ionescu-Tulcea, for every te(8,), we may choose f, ¢ £~(s) such that
fu + fia = fovrs 00 10, o0} (With ¢, ¢, €(8,),) and f,, < f,, on 10, oo] if ¢, < ¢,
For any 21€]0, o] we have obtained an additive and increasing map
t—f(2) from (&,), into R,. Hence, by (2.5), there exists s;e &, such
that {s, t) = f,(2), and the map 1+ (s}, t) is g-measurable for any teé&,.

If teé, and ge %,, from (3.4) results:

[ swsiirdom = [ eam)cn, tydgh).
Thus, for every « > 0:
[ gt Wy do = [ ettt Wydot

A(h) -
_f 1+ ad(h) = 8(A(M))h, tydp(h) = f

2 ,
T 8(2)<s, tHda(2) .

It follows (V,(s), t> = T—_{——TGQ, t) o-a.e. From (2.1) it derives that there
[44

exists a Borel measurable set B of ]0, o] such that o(B) = 0 and sj¢
E(V, 2) for every 2¢ B. Let us put:

s5, if Ai¢ B
S, =
‘7 lo, if 2eB.
Hence s, € E(V, ), for every 2 €10, o], the map 1+~ {s,, ) is g-measurable

for any teé&, and (s, &) = I(h, t5dg(h) = I(sx, t>da(h). O

COROLLARY 8.6. If, in Theorem 3.5, condition (Z) is satisfied, then
we have a) &b) for every seé,.
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Remark 38.7. If se%(V) has the representation (*) from the above
theorem, then:

(3.5) s(x) = js,(x)da(/‘l), for any xe X.

In addition:
(3.6) the invariant part of s is a({c0})-s.. and I s,da(2) is the purely
10,00
excessive component of s.

Proof. (3.5) is a consequence of (*) since ¢, is an H-integral on &,
for every xeX. Assertion (3.6) is clear (see the final remark in the
proof of “b) = a)”). O

We have the following unicity result:

ProrosiTiON 3.8. With the same assumptions as in Theorem 3.5, let
s e (V) be such that {(s,uy = 1. Then there exist a positive Borel measure
o on 10, o] and a family (8))icic, S: € E(V, ) such that for any te &, the
map A+ (s, ty is o-measurable, {s,, u) = 1 g-a.e. and s has the representa-
tion (*). (In particular fda = 1.) Moreover, ¢ and (8)yc:<.. are uniquely
determined. (Two o-measurable maps 1+~ s, and i+ s, are equal if s, = s
o-a.e.)

Proof. By Theorem 3.5 there exists a finite Borel measure ¢’ on
10, o] and a family (s)y<i<cw, S;€E(V, 2) such that the map 2+~ (s}, ) is
o’-measurable for any te &, and § = J.§§da’(1). Since f(sﬁ, uydo'(2) < oo,

we may suppose that (s}, u) < oo for every 1¢]0, «]. Let us put

1 e
Sx={m’ if sf£0
0, if 8,=0.

and
do(2) = (s}, udda’(3).
Then ¢ and (8)yc;<.. satisfy the required conditions.
In order to discuss the unicity, let us point out the following simple
consequence of Stone-Weierstrass theorem:
(8.7 If o, ¢” are positive finite Borel measures on ]0, o[ such that

J(l i 2 )nd"(z) = f(l i P )nda"(l), n>0,

then ¢ = o”.
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Let 6”, (s{)<i< be another system which satisfies the required con-
ditions. From (3.6) we may suppose that ¢ and ¢” are carried by ]0, oo.

Then 1 = (s, u) = jda = Ida” and for any integer n > 1 we have %
— | 7o _ A
= [ Vieado = [ (14

(3.8) j(l i : )”‘<sz, tyda(2) = f (l_iz_)’ksg', t5da”(3) ,

)nézda(k). Hence

for any teé, and n > 0.

Applying (3.8) for t = u, from (3.7) we obtain: ¢ = o”.

If te(&,), let a, be a positive real number such that ¢ < a,u, hence
(s ty < a, for any 2> 0. Thus (s, t)-da(2) and (s/, t)-da(2) are finite
measures on ]0, oof. Again (3.8) and (3.7) imply that (s, t)-do(2) =
(s, ty-da(2). Hence, for any te(&,), {(S»t) ={s/,t) og-a.e., and from
(2.1) it follows: s, = s} o-a.e. O

We finish this section underlining some additional connections with
the duality for standard H-cones. As a consequence, our hypothesis
should be slightly modified.

The dual of the standard H-cone &, is by definition the set of all
H-integrals on &, and will be denoted by &3.

We have already observed, see (2.4), that &% = &,.

The equality (2.6) shows that, considered as a map on &%, W, is
exactly the dual of the H-morphism V,, for any « >0. (With the nota-
tions of [1]: V, e Hom(¢&,, &,) and W, = V*)

The strictly positive # -excessive functions u € &,, u > 0 are precisely
the weak units of the standard H-cone &Z%.

Summarizing, we have the following:

Remark 3.9. The results of this section are valid for the following
set up:

¥ is a submarkovian resolvent of kernels (with the initial kernel
proper) which is absolutely continuous with respect to a o-finite measure,
and it is such that &, coincides with its bidual.

§4. Examples

ExampLE 1 (The Bernstein theorem). Let (X, #) be the measurable
space ]0, o[ (endowed with the g-algebra of Borel sets), and let the sub-
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markovian resolvents of kernels 7" = (V,),s, and # = (W,),>c on X be
defined by:

VU@ = e [ e,
W.(F)(x) = e-** L ef)du, for any fe F and xeX.

Thus ¥ and #" are absolutely continuous and in duality with respect
to the Lebesgue measure. We may verify that s e &, is universally con-
tinuous iff it is continuous, bounded and there exists x, >0 such that
s(x,) = 0. As a consequence, condition (#£*) is satisfied. Also, it is easy
to see that:

a) The positive constant functions are the only invariant excessive
functions. If 0 <2< oo then E(V,2) = {x—c-e"“?*[ceR,}.

b) A real function s is a V-ultrapotential iff s is complete monotone
(i.e. s is infinitly differentiable and (—1)"D"s >0, for any integer n > 0,
where D"s is the n-th derivative of the function s) and lim,._. s(x) = 0.

¢) % (V) coincides with the convex cone of all complete monotone
functions.

Let us point out that the intermediate characterization for the com-
plete monotone functions established in the Choquet’s proof of Bernstein
theorem (see [4] or T. 40 in [8]) may be considered as the analogous,
with the associated semigroup of kernels language, of that given by the
above assertion c¢) in the resolvent terms.

From Corollary 3.6 we obtain the Bernstein theorem.

Remark 4.1. The convex cone #(V) is not closed.

Proof. The constant function 1 (which is not a V-ultrapotential) is

the limit of the following sequence (s,),ex S #(V): s,(x) = e ¥ xeX.
O

ExampLE 2 (The elliptic case). With the notations of Section 2, if

& is a convex subcone of &, and ued,, u>0, then the convex cone
&, is defined by:

6, = {secé/{s,uy < o}.

ProprosITION 4.2. Let V be such that it induces a bounded linear
operator on L'(m). Suppose that 1€ &, condition (%)) and also the follow-
ing assumptions are satisfied:
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(C) Some power of V is compact;

(E) VAf) is strictly positive if fe F and V(f) + 0.
Then, the convex cone %(V), is one dimensional (i.e. there exists s e %(V),,
s #+ 0, and any other element of %(V), is proportional with s).

Proof. Condition (E) implies that V is an irreducible kernel operator
on L'(m) in the sense of H.H. Schaefer, and from Theorem 6.6, ch. V in
[10] it follows that there exists exactly one eigenvalue r > 0 for V which
has positive eigenvectors and the corresponding eigenspace is one dimen-
sional. Remarking that every element of E(V, 1), is mi-integrable for
0 < 2 < o0, we conclude that E(V, r), is one dimensional and E{(V, 2) = {0}
if 2# r, 2e R. Theorem 3.5 implies now that #(V), = E(V,r), and the
proof is finished.

Remark 4.3. a) If in the above proposition we know in addition
that every V-ultrapotential is m-integrable, then #(V) = #(V),, hence
(V) is one dimensional.

b) Condition (E) is equivalent with the following one:

any 7 -excessive function is strictly positive.

Thus, in connection with the characterization of the elliptic harmonic
spaces (see [5]), condition (E) might be understood as an “‘ellipticity
property” of the kernel V.

COROLLARY 4.4. Let V be the Green kernel of a second order elliptic
differential operator (with indefinite differentiable coefficients) in a bounded
domain (with a sufficiently regulate boundary) of R*. Then %(V) is one
dimensional.

Proof. In this case V and W are bounded kernels. Hence V is a
bounded linear operator on L'(m). Also, condition (E) is fulfilled.

The structure of the associated Green function (see [2] page 275)
implies that there exists an integer & >0 such that V¥ maps L'(m) in
L=(m). By Example 5, page 337 in [10], it results that condition (C) is
satisfied. From Remark 2.3 it is easy to see that condition (Z}) is also

satisfied.
The desired assertion is obtained from the above proposition. (See
also Remark 4.3 a).) 0

Let us point out that Corollary 4.4 shows that Proposition 4.2 is a
generalization of the results of this type obtained in [2] Theorem 12 and
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[7] Corollary 83.

Indeed, we have already observed (see Remark 1.1) that the “‘ul-
trapotentials associated to a second order elliptic differential operator” in
[2] are from (V).

By Proposition 81 and the equality (4.7) in [7] we obtain that in
this case the “completely L-superharmonic functions with zero conditions”
are also elements of #(V).
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