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ULTRAPOTENTIALS AND POSITIVE EIGENFUNCTIONS
FOR AN ABSOLUTELY CONTINUOUS

RESOLVENT OF KERNELS

LUCIAN BEZNEA

Intro duction

Let (X, 0) be a measurable space and f be a submarkovian resolvent
of kernels (with the initial kernel V proper) on X which is absolutely
continuous and has a dual resolvent (with the same properties) with
respect to a σ-finite measure.

A positive numerical function s on X is called V-ultrapotentίal if it
is ^-excessive (in particular ^-a.e. finite) and if the following condition
is fulfilled: for every integer n >, 1, there exists a positive ^-measurable
function fn on X such that s = Vn(fn), where Vn is the n-th iteration of
the kernel V.

The main purpose of this paper (see Theorem 3.5 and Corollary 3.6)
is to prove that, under a "regularity" condition (which will be discussed
in the last part of Section 2) on the resolvent iΓ, for each F-ultrapotential
s there exist a finite positive Borel measure σ on the open interval
]0, oo[ and a family (sx\<λ<oa, sx being a positive Λ-eigenfunction of V (i.e.
V(sx) = λ sx and sλ is T -̂a.e. finite), for any λ > 0, such that for each
x € X the numerical function λ »-• sλ(x), defined on ]0, oo [, is o -measurable
and

s(x)= [sλ(x)dσ(λ).

In fact, this type of representation is given for a slightly more general
class of excessive functions, as the F-ultrapotentials.

An uniqueness of the representation and a converse statement are
also proved.

These results aiv analogous, in this context, with those obtained by
M. Itό and N. Suzuki in [7] (see also [6]) for the set up of diffusion semi-
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126 LUCIAN BEZNEA

groups. (The F-ultrapotentials are corresponding to the completely A-
superharmonic measures with zero conditions considered in [7]).

We shall use the technique developed in [6] and [7] and also the
duality theory for standard iϊ-cones (see [1]).

As in [7], the Bernstein theorem on complete monotone functions is a
consequence of these results (see §4, Example 1). Another one is that
the convex cone of V-ultrapotentials is one dimensional if the resolvent
satisfies an ellipticity condition (Example 2 in §4).

Let us notice that the existence of the dual resolvent is not essential
for our aim. This assumption may be substituted by the duality theory
of standard iϊ-cones (see Remark 3.9).

§ 1. Ultrapotentials-first results

In this section, Ψ* = (V«)α>o will be a submarkovian resolvent of
kernels (on the measurable space (X, &)) with the initial kernel V
proper.

We denote by $r the usual ordered convex cone of f̂ -α.e. finite ex-
cessive functions associated to °Γ. (For more details see [1] or [8]).

DEFINITION. A f-excessive function seδr is called V-ultrapotential
iff: for any integer n > 1 there exists a positive ^-measurable (numerical)
function fn on X such that s = Vn(fn).

In the above definition, the function fn may be chosen to be Ψ*-
excessive and in this case it is uniquely defined and denoted by sn.

Let us denote by <%(V) the convex cone of all V-ultrapotentials.
Thus:

%(V) — {s eiψ jίoT any integer n>1 there exists sn e$r such that
8 = Vn(sn)} .

Remark 1.1. %{V) generalises the convex cone of "ultrapotentials
associated to a second order elliptic differential operator" from [2]. (See
Corollary 4.c) in [2]).

For an excessive function s e ^ we have: seW(V) iff there exists
(uniquely) a sequence (sn)n>0 c: $r such that sn = V(sn+i), for any integer
n > 0, where s° = s.

If $ is an ordered convex cone, we denote by \$\ the ordered vector
space canonically generated by £ (see §2.1 in [1]).
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RESOLVENT OF KERNELS 127

DEFINITION. If a > 0 and β > 0 are real numbers, we define the

map φ"β from S^ into [<SV] by:

φa

β(s) = s - β Va+β(s), se£r.

For every a > 0, /3 > 0, φa

β and V̂  being additive and positive homo-

geneous, we may extend them to linear operators on [$r].

DEFINITION. Let a > 0 be fixed. We denote by 4?β( V) the totality of

those excessive functions s which for any integer n > 1 and βu , βn > 0

satisfy: (^, o . . . o ̂ J (s) e <£V.

For any a > 0, 4?β(V) is a convex subcone of $r. We write ^(V)

instead of €0(V).
Paper [3] has already underlined the convex cone %{V) (denoted there

by Sf^, its elements being called "^-complete supermean functions") and
has studied it under other points of view.

Remark 1.2. If 0 < a, < a2 and β > 0, then

(1.1) φa

β*(s) = φfis) + β(a2 - aϊ)Vaχ+β(Va2+β(s)\ seSr\

(1.2) Φ?(

(1.3) ί

Proof. (1.2) is a consequence of (1.1) since for any α > 0 and j3 > 0:

In order to establish other connections between the convex cones

<tί(V) and €a(V), a>0, let us recall from [9] that any ^-excessive
function s has an unique decomposition s = s/ + s/;, where s/ is an
invariant function (i.e. aVa(s') ~ sf, a > 0) and s" is purely excessive (i.e.
Λaxj^V^s") = 0, the sign " Λ " having the usual meaning of lattice

operation in £r).

Remark 1.3. a) Let s e ^ f be such that one of the following two

conditions is satisfied:

(i) V{s)eir;

(ii) s = V(f), where / is a positive measurable numerical function.

Then s is purely excessive. In addition, the function / is f-a.e. finite.

b) Any V-ultrapotential is a purely excessive function.

PROPOSITION 1.4. a) If a0 > 0, then:
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128 LUCIAN BEZNEA

b) For every a> 0 we have:

$a(V) = {5 6 $r\for any integer n>l there exists s« e $r such that

8 = V%8$}.

c) The V-ultrapotentials are exactly the purely excessive elements of

).

Proof. If a, > a0 and β > 0, from (1.2) and (1.3) it follows that

π
α>«0 α>α0

As a consequence, if s e Π«>*o^«(^O a n d β > 0, using also (1.1), it follows

successively: #•(*) = Λ«>«0#?(«) e ^ , φ?(s) e Π«>«0 C(V), 5 e €ao(V). Thus,
assertion a) is clear, using also (1.3).

We denote by Φa(V) the set of the right side in the equality of b).

First, we show that, if a > 0 and β > 0, then:

(1-4) « ( * . ( V ) ) c * β ( V ) ,

where %(V) = <W(V).

Indeed, let n be an integer, n > 1 and s e Wa(V). Then:

i.e. (1.4) is proved. As a consequence, for any a >. 0:

Let us now prove that: if se$a(V), a>0, (resp. s e f ( V ) and s is

purely excessive) then s e Wa(V) resp. se^(V)).

From ^ (̂s) e Sr> for every j8 > 0, it results:

βψ}(s) < £'#,(*), for j8 < ^

and we define the function sa by:

sa = s u p βφa

β(s).
β>0

If 51? s2 e CCV'), α > 0, then:

(1.5) JsΣ

If s e C ( ^ ) 5 a > 0, (resp. se%(V) and s is purely excessive) then:

Va(sa) = suvβ>oβVa(s - βVa+β(s)) = suvβ>oβVa+β(s) = s. By Remark 1.3 a) it

follows that sae£r if a > 0 (resp. s0 e δr and s0 is purely excessive.).

From s = φa

β(s) + βVa+β(s), φ«β(s)e€a(V\ βVa+β(s) e®a(V), using (1.5), it
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RESOLVENT OP KERNELS 129

results: φa

β(sa) = (φa

β(s))a e Sri for any β > 0. Thus, we have by induction:

sae$a(V), s e t α ( V ) . Assertion b) is now clear.

Finally, assertion c) follows from the above considerations and

Remark 1.3 b). •

DEFINITION, a) For every real numbers a > 0 and λ > 0, the convex

cone Ea(V, λ) of all positive λ-eίgenfunctions of Va is defined by:

where VQ = V, and we write E{V, λ) instead of EQ(V, λ).

b) Let us denote by E(V9 oo) the convex cone of all invariant func-

tions. Hence

E(V, oo) = Ea(v, i-Y for any a > 0.
\ a /

We remark that:

Ea(V, λ) = {0} if a > 0 and — < λ.
a

From the resolvent equation, it is easy to see that for a, β > 0 we

have:

(1.6) E.(V, λ) = Eβ(v, ——j _ ) if 0 < λ < 1
\ 1 + (β — <x)λ / a

where the convention is: — = 00, °° = —, E0(V, 00) = E(V, 00).
0 1 + βoo β

Let us point out that

(1.7) U E(V9λ)^ <%(V)

and by (1.6) we have

(1.8) U E(V, λ) = U Ea(V, λ), for any a > 0.

§2. Resolvents in duality and the natural topology

Let y = (Va)a>0 and ^ = (Wa)a>Q be two submarkovian resolvents

of kernels (on the measurable space (X, 0)) which are absolutely con-

tinuous and in duality with respect to a σ-finite measure m, their initial

kernels V and W being proper.
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130 LUCIAN BEZNEA

At first we summarize generalities of standard ίf-cones. For more

details and proofs one should consult [1],

δr and δ^ stand as basic examples of standard J^-cones.

In order to simplify the exposition, let us suppose that v = W(ϊ) is

a function on X with strictly positive values. We write: v > 0.

DEFINITION, a) Let us fix u e <?*,, u > 0. An element teδ^ is called

u-continuous if for any ε > 0 and for any family F c | f increasing to t

there exists txeF such that t < tλ + ε u.

The convex cone of all w-continuous elements of δ^ is denoted by

b) An element ί e ^ is called universally continuous if it is w-

continuous for every u e <IV> u > 0.

We denote by (<£V)0 the convex cone of all universally continuous

elements of S^.

(2.1) There exists a countable subset D of ((O 0 which is increasingly

dense in ^ (i.e. for every teS^ there exists a sequence (tn)neN c Z) such

that ί n / *ί) ([1], Theorem 4.4.6).

(2.2) For any u e ^ , u > 0 and ί e (<£V)0, there exists aeR+ such

that ί < αw. ([1], Proposition 4.1.2. b))

DEFINITION. The energy form is the map (s, t) »-> <s, ί> from ^^ X ^#-

into R+ defined by:

<β, ί> - sup [[/W(ί)dm//, ^ e ̂ , V(f) < s

where 2F is the set of all ^-measurable positive numerical functions on

X.
(2.3) For any fe !F such that V(f) e £r and for any t e £*>, we have:

([1], Theorem 1.2.2 a))

DEFINITION. An H-integral on i^ is a map /̂  from δ^ into ^ + with

the following properties:

μ is additive;

μ is increasing;

μ is continuous in order from below (i.e. if (tn)nGlf c ^ increases

to tei^ , then (μ(tn))neN increases to μ(t))\
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RESOLVENT OF KERNELS 1 3 1

there exists u e δ^9 u > 0 such that μ(ύ) < oo (or equivalent: μ(t) <^oo

for every £e(dV)0).

DEFINITION. If s e£r, the map s from δ^ into R+ is defined by:

s(t) = <s, ί>, for any teδ^.

For every s e ($V, s is an iϊ-integral on δ^ ([1], Theorem 1.2.2).

For every if-integral μ on <f ̂  there exists an uniquely defined s e ^ f

such that μ = s. ([1], Proposition 1.2.3).

(2.4) Hence, by means of the energy form we may identify δ^ (resp.

δj) with the set of all ίf-integrals on δ^ (resp. on δr).

(2.5) An additive and increasing map μ: (δΨ)Q->R+ is the restriction

to ( O o of an jff-integral on δ^. ([1], Theorem 4.2.11)

The resolvents Ψ* = (Vα)α>0 and iΓ = (Wβ)β being in duality, from

Hunt's approximation theorem and (2.3) it follows:

(2.6) <Vβ(β), ί> = <s, Wa(t)},

for every a > 0, se<^ f and £ e<£V

DEFINITION. The natural topology on $r is the coarsest topology

which makes continuous the maps s ι-> <s, ί>, ί e (<£V)0.

(2.7) The vector spaces [ir] and [(<f̂ )0] are in duality (by means of

the energy form) and the natural topology on δr is the restriction to

Sr of the weak topology σ([δr], [(Ool). ([1], page 106)
The natural topology on δr is metrisable. ([1], Proposition 4.2.8)

DEFINITION. For any u e δ^9 u > 0 w e put:

If u e δψ , u> 0, then Ku is a compact convex subset of δr.

(2.8) The coarsest topology on δr which makes continuous all the

functions s H-* <(S, £>, t e (δ^)0(ύ) coincide with the natural topology on Ku.

(See the proof of Proposition 4.2.4 in [1]). In addition

(2.9) δr = U Ku

([1], Proposition 4,2.3 a))

(2.10) A subset M of δr is relatively compact in the natural topology

iff there exists ueδr, u>0 such that M c Ku ([1], Proposition 4.2.7).

Let us now discuss some "regularity" properties of the resolvents.
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132 LUCIAN BEZNEA

DEFINITION, a) Let w e ^ r , w > 0 b e fixed. We say that the resolvent

Ψ* = (Vα)α>0 satisfies condition (&u) if:

Va: Ku->£r is continuous (in the natural topology), for any a > 0 .

b) The resolvent Ψ* = (Va)a>0 satisfies condition (0£) if:

Va: Sr->$r is continuous, for every α > 0 .

The dual properties are the following:

DEFINITION, a) If u e<£V, u > 0, the resolvent #" = (Wβ)β>0 satisfies

condition (dί*) if:

, for any α > 0.

b) The resolvent IT = (Wβ)β>0 satisfies condition (01*) if:

o, for any a > 0.

In [1], page 150, the maps Wa, a > 0 are called regular if condition

(^*) is satisfied.

From (2.10) we have: Ψ" satisfies condition {β) (resp. #" satisfies

condition (01*)) iff TΓ satisfies (^tt) (resp. iT satisfies (&*)) for every

u e Sir, w > 0.

By (2.6) and (2.7) it is easy to see that:

If u e <$V, u > 0, using also (2.8), it follows:

LEMMA 2.1. Suppose that there exists an increasingly dense subset

D c ^ such that for every a > 0 we have: Wa(D) c= (S^\ (resp. Wa(D) c

(£r)o(u), for a fixed element i ί e l r , w > 0). Then iΓ = (WJα>0 satisfies

(#*) (resp. (β*)).

Proof. Let us take ueS^ u>0, te (<?„.)„ and (OneΛ- £ -° w i t h ίW//ί.

Then for any integer k > 1, there exists nkeN such that £ < £njfc + —w.

Hence | Wβ(ί) - Wβ(ίni)| < —u9 for any integer k > 1. Proposition 4.1.2

d) in [1] implies that Wa(t) is w-continuous and the proof is finished. Q

Remark 2.2. Let veS^ v > 0 be such that W(ι>) is a nearly con-
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tinuous element of $„ (i.e. W(v) e i^ and there exists a sequence (tn)neN

c: ( ^ ) 0 with W(v) = 2] w e i V O- Then there exists ue^^ , u > 0 such that

Hr = (Wβ)Λ>0 satisfies condition (^*).

Proof. From Proposition 5.6.1 in [1] there exists u e $*.> u > 0 such

that W(υ) is ^-continuous. Using (2.2), we obtain W(t) e (<£V)0(w), for every

t e (<̂V)o Condition (^*) now follows from the resolvent equation. Π

Remark 2.3. Let us suppose that X is a locally compact space with

countable base (with the associated Borel σ-field), lei^ and Wa(f) is

continuous and tends to zero at infinity, for any a > 0 and any bounded

positive measurable function / with compact support. Then #" = (Wa)a>0

satisfies condition (̂ 2*).

Proof. Let us first remark that every t e S^ is lower semi-continuous.

We denote by sf the set of all positive bounded Borel measurable

functions with compact support. If f es/, using the complete maximum

principle, it is easy to see that W(f) e (<£V)0 The set W(sέ) being increas-

ingly dense in S^ we obtain that the #~-excessive functions which are

continuous and tend to zero at infinity are exactly the 1-continuous elements

of $ir. We may now apply Lemma 2.1, taking D = W(s/). •

§ 3. Integral representation of the ultrapotentials

We maintain the context of the previous section.

For a convex subset K of i r , let us denote by ex(K) the set of all

extreme points of K.

PROPOSITION 3.1. If a>0 and u e <̂V, u > 0, then

(3.1) e x ( C ( V ) n i Q c = U E(V,λ).

Proof If s e ex(#α(V) Π Ku)\{0}, then <s, u) = 1.

Let β > 0 be fixed. We put

aβ = β(Va+β(s), M>.

Thus 0 < α̂  < 1. If α, = 0, then Va+β(s) = 0, s = 0. If aβ = 1, then

<s — βVa+β(s), u) = 0, βVa+β(s) = s, s eE(V, co). Hence we may suppose

that 0 < fy < 1.

If we put Sj = —βVa+β(s) and 52 = φ%s), then it follows sl9

a* 1 — aΆ
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134 LUCIAN BEZNEA

s2 e €a( V) Π Ku. The equality s = α ^ + (1 — aβ)s2 and the extremality of

s imply that s eEa+β( V, ^Lj. (3.1) is now a consequence of (1.8). •
\ β /

Remark 3.2. a) Let ί / e ^ , w > 0 be such that y = (Vα)«>o satisfies

condition (&u), a > 0 and β, λ > 0. Then the restrictions of V̂  and 0£

to Ku are continuous. In addition, Ea(V, λ) Π ifM, $a(V) Γl ifw are compact

convex subsets of £r.

b) If condition (&) is satisfied, then Ea(V, X), and #a(V") are closed

convex subcones of $r, for any a > 0 and A > 0.

Proo/. Assertion a) is a direct consequence of condition (β^ and

(1.6). Assertion b) follows from a) and (2.10). •

Let us point out that, even if condition {β) is satisfied, the convex

cone %(V) of all V-ultrapotentials is not necessarily a closed subset of

Sr (see Remark 4.1).

If M is a subset of £r, we denote by cl. con(M) the closed convex

hull of M.

COROLLARY 3.3. a) Let ueS^, u > 0 be such that condition (&u) is

satisfied. Then:

(3.2) $(V) f]Ku = %a{V) Π KU9 for any a>0;

and

(3.3) W(V) Π Ku = cl. con( (J E(V, λ) Π Ku).
0<l<0<>l<o

b) If condition (β) is satisfied, then

%(V) = Φa(V), for any a>0.

Proof Let a > 0 be fixed. Then, by (1.3): <%(V) (Ί Ku c 4?β(V) Π if..

From (3.1) and (1.7) it follows:

and the equality (3.2), of compact convex sets (see Remark 3.2 a)), is now

clear.

We have cl. con(Uo<,<~#(^, X) Π Ku) c %{V) f] Ku and from (3.1)

results (3.3),

Assertion b) follows from (3.2) and (2.9). •
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RESOLVENT OF KERNELS 135

DEFINITION. If he\κJ0<χ<ooE(V9λ)\{0}9 we define by Λ(h) the uniquely

defined positive real number such that

V(h) = Λ(h) h

and we put Λ(h) = oo if h eE(V, oo).

Remark 3.4. If u e <$V, u > 0 is such that condition (<%u) is satisfied,

then the above defined map A: [Jo<χ<-E(V, X) Π Ku\\{0}->]0, oo] is con-

tinuous.

THEOREM 3.5. Let Ψ* = (Va)a>0 and if = (Wa)a>0 be two submarkovίan

resolvents of kernels (with the initial kernels V and W proper) which are

absolutely continuous and in duality with respect to a σ-finite measure.

Suppose that u e ^ , u > 0 such that rΓ = (Vβ)β>0 satisfies condition (£%u).

If s e<£V and <s, u) < oo, the following assertions are equivalent:

a) s e Wr(V) (resp. s e Φ(V)).

b) There exist a finite positive Borel measure σ on ]0, oo[ (resp. on ]0, oo])

and a family (sλ)0<λ<oo (resp. (Si)0<^oo), sλeE(V, λ) such that for every te&r

the map λ π-> <ŝ , t} defined on ]0, oo[ (resp. on ]0, oo]) is σ-measurable and:

(i.e. <s, t) = (sλ, t)dσ(λ), for every t e iΛ .

Proof. We may suppose that s eKu.

"b) => a)" Let a > 0 and n e N be fixed. If t e £Ψ, from (*) it follows:

h), t)dσ(λ),

where x ^ α Λ = α if λ = oo. Thus

If we define on ef̂  the map μn

a by:

= J (1

then the above inequality implies that μn

a is an ίί-integral on i^. More-

over, with the identification given by (2.4), we have:
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136 LUCIAN BEZNEA

J (±
for any xeX, where εx is the //-integral on Sr given by the Dirac

measure at xeX. Hence the function sj: X->R+ defined by

is an element of Sr and sn

a = /#.

For every ί e «„ we have < V M , ί> = <sj, TO)> = μ«(TO)) = <β, ί>

It follows successively: V*j$) = 5, V;(s;) = s , s e C ( V) Π Iζ, = # ( V) Π iftt.

Let us remark that s is purely excessive if the measure σ is supported

by ]0, oo[ in the representation (*).

Indeed, (aVa(s), t) = f—°^— (sh t)dσ(λ) < oo, for any t e(<?A Let-
»/ 1 + ^

ting a\0 we obtain that

inf (aVa(s), t) = 0, for every t e ( O o >
α>0

hence 5 is purely excessive.

From Proposition 1.4 c) it now results that the proof of "b) ^> a)" is

complete.

"a) =^ b)". If s e %{V\ then s is an element of <%(V) Π Ku, a metrisable

compact convex subset of Sr (see Remark 3.2 a)). From the Choquet

representation theorem there exists a finite measure φ on ex(4r(V)C)Ku)\{0}

with barycenter s. Then

s = hdψQi)

(i.e. <s, ί> = </ι, t}dφ(h), for any £ e <?*•).

If te(δJto we define the measure φt on ex(#(F)niT t t)\{0} by:

?>ί = t φ ,

where t is the if-integral on Sr defined by t

The measure φt is finite and φt < 9 (i.e. ^ t is absolutely continuous

with respect to ^).

From (3.1) and Remark 3.4 it follows that we have a Borel measurable

function A: ex($(V) Π Ku)\{0}->]0, 00].

Let us denote by σ and σt the images of 9 and φt under A. Hence
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σ and σt are finite Borel measures on ]0, oo] and σt < σ. More precisely

(3.4) J g(λ)dσt(λ) = J g(A(h)KK t}dφ(h), ge@+,

where &+ denotes the set of all positive Borel measurable functions on

]0, oo].

In addition σtl+t2 = σtl + σt2 if tu t% e (Oo It t e (Oo, by (2.2), there

exists a positive real number at such that t<at-u, hence t < at on Ku

and § g(λ)dσt(λ) < at ^ g(λ)dσ(λ), for any ge^+.

Let us denote by ft the Radon-Nikodim density of σt with respect to

σ. Then ft < at σ-a.e. It follows /, e ^°°(σ), ftl + ft2 = ftl+t2 σ-a.e., for any

t, tu t2 e (<θir)o and ftχ < fH σ-a.e. if tt < t2. Using the lifting theorem of

C. Ionescu-Tulcea, for every t e (<£V)0 we may choose ft e ^°°(σ) such that

fπ + ft2 = Λ1+ί, on ]0, oo] (with tu t2 e (Oo) and /ίχ < /ί2 on ]0, oo] if t, < ί2.

For any λ e ]0, oo] we have obtained an additive and increasing map

t*-+ft(λ) from ( O o into R+. Hence, by (2.5), there exists s[e£r such

that <s', f) = /ί(A), and the map A »-* <5̂ , ί> is <τ-measurable for any t e S^.

If te^r and ge&+, from (3.4) results:

= jg(A(h)Kh, t}dφ(h).

Thus, for every a > 0:

+ cίA\h) J 1 + aλ

It follows <ya(s0, t) = <sl, ί> σ-a.e. From (2.1) it derives that there
1 + ccλ

exists a Borel measurable set B of ]0, oo] such that σ(B) = 0 and s'λ e

E(V, λ) for every λ $ B. Let us put:

{5/ if λ & B

0, if λeB.

Hence sλ eE(V, λ), for every λ e]0, oo], the map λ *-+ (sλ, t) is σ-measurable

for any tei^ and <s, ί> = (h, t)dφ(h) = (sλ, t}dσ(λ). •
J J

COROLLARY 3.6. //, in Theorem 3.5, condition (β) is satisfied, then

we have a) £Φ b) for every s e $r.
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Remark 3.7. If s e f ( V ) has the representation (*) from the above

theorem, then:

(3.5) s(x) = J sλ(x)dσ(λ), for any xeX.

In addition:

(3.6) the invariant part of s is <J({OO}) SOO and s2dσ(λ) is the purely
J]0,oo[

excessive component of s.

Proof. (3.5) is a consequence of (*) since εx is an iϊ-integral on Sr,

for every xeX. Assertion (3.6) is clear (see the final remark in the

proof of "b) => a)") D

We have the following unicity result:

PROPOSITION 3.8. With the same assumptions as in Theorem 3.5, let

s e f ( F ) be such that <s, u) = 1. Then there exist a positive Borel measure

a on ]0, oo] and a family (Sj,)0<̂ oo, sλ e E( V, λ) such that for any tei^ the

map λ ι-» (sλ, f) is σ-measurable, ζsλ9 u) = 1 σ-a.e. and s has the representa-

tion (*). ί In particular \dσ = 1. j Moreover, σ and fe)0<^<co are uniquely

determined. {Two σ-measurable maps λ^-sλ and λ t~> s'λ are equal if sλ = s'λ
σ-a.e.)

Proof. By Theorem 3.5 there exists a finite Borel measure σf on

]0, oo] and a family (s00<â oo, s'ΛeE(V,λ) such that the map λ f-> (s'x, t} is

σ ̂ measurable for any t ei^ and s = s[dσf(X). Since (s'λ, u}dσ'(λ) < oo,

we may suppose that <s', u) < oo for every ^ e ]0, oo]. Let us put

r - V if βί # 0

0, if sj = 0 .
and

dσ{λ) = <sί, u}dσ'(X).

Then σ and (syl)0<̂ <c<> satisfy the required conditions.

In order to discuss the unicity, let us point out the following simple

consequence of Stone-Weierstrass theorem:

(3.7) If σ, σ" are positive finite Borel measures on ]0, oo[ such that

then σ = σ".
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Let σ", (s^/)0<^<00 be another system which satisfies the required con-

ditions. From (3.6) we may suppose that a and σ" are carried by ]0, oo[.

Then 1 = (s, u) = \ dσ = dσ" and for any integer n > 1 we have V?(s)

= J V?(sddσ(X) = J (-A—y-sAσiλ). Hence

(3 8) I ( ϊ τ τ ) ' < β Λ tydσ(X) = I ( τ τ τ ) " < β ί /
τ

for any t e S^ and zz > 0.

Applying (3.8) for t = u, from (3.7) we obtain: σ — σ".

If Z e (<£V)0, l
e t ^ί be α positive real number such that t < αfu, hence

<s>ι, 0 < o<t for any ^ > 0. Thus (sλ, t) dσ (̂ ) and <s", ί> dσ(^) are finite

measures on ]0, oo[. Again (3.8) and (3.7) imply that (sk, t}-dσ(λ) =

(s'λ\ t)'dσ(λ). Hence, for any te(£r\> (sλ,t} = (s//,t) σ-a.e., and from
(2.1) it follows: sλ = s'/ σ-a.e. Π

We finish this section underlining some additional connections with

the duality for standard ίf-cones. As a consequence, our hypothesis

should be slightly modified.

The dual of the standard ίf-cone Sr is by definition the set of all

iί-integrals on Sr and will be denoted by $%.

We have already observed, see (2.4), that £% = S^*

The equality (2.6) shows that, considered as a map on <?J, Wa is

exactly the dual of the iJ-morphism Va, for any a > 0. (With the nota-

tions of [1]: VβeHom(<£V, ir) and Wa = Vf.)

The strictly positive ^-excessive functions u e S^ u > 0 are precisely

the weak units of the standard ίf-cone g%.

Summarizing, we have the following:

Remark 3.9. The results of this section are valid for the following

set up:

"Γ is a submarkovian resolvent of kernels (with the initial kernel

proper) which is absolutely continuous with respect to a σ-finite measure,

and it is such that Sr coincides with its bidual.

§ 4. Examples

EXAMPLE 1 (The Bernstein theorem). Let (X, 0) be the measurable

space ]0, oo[ (endowed with the σ-algebra of Borel sets), and let the sub-
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markovian resolvents of kernels Ψ* = (VΛ)β>0 and #~ = (Wa)a>Q on X be

defined by:

Wa(f)(x) = e-ax Γ e°*f(u)du, for any fe& and xeX.
J oo

Thus "Γ and #" are absolutely continuous and in duality with respect
to the Lebesgue measure. We may verify that s e ^ r is universally con-
tinuous iff it is continuous, bounded and there exists xQ > 0 such that
s(χ0) = 0. As a consequence, condition ($?*) is satisfied. Also, it is easy
to see that:

a) The positive constant functions are the only invariant excessive
functions. If 0 < λ < oo then E(V, λ) = {x H-> c e-(1")a7c e R+}.

b) A real function s is a V-ultrapotential iff s is complete monotone
(i.e. s is infinitly differentiate and (—l)nDns > 0, for any integer n >, 0,
where Dns is the 7z-th derivative of the function s) and lim^^ s(x) = 0.

c) ${V) coincides with the convex cone of all complete monotone
functions.

Let us point out that the intermediate characterization for the com-
plete monotone functions established in the Choquet's proof of Bernstein
theorem (see [4] or T. 40 in [8]) may be considered as the analogous,
with the associated semigroup of kernels language, of that given by the
above assertion c) in the resolvent terms.

From Corollary 3.6 we obtain the Bernstein theorem.

Remark 4.1. The convex cone %{V) is not closed.

Proof. The constant function 1 (which is not a F-ultrapotential) is
the limit of the following sequence (sn)neN czfy(V): sn(x) = e~{l/n)x, xeX.

D

EXAMPLE 2 (The elliptic case). With the notations of Section 2, if
δ is a convex subcone of $r and u e £„ ^ > 0, then the convex cone
£u is defined by:

δu = {se<T/<s, u) < oo}.

PROPOSITION 4.2. Let V be such that it induces a bounded linear
operator on L^m). Suppose that 1 e <̂V, condition (βϊ) and also the follow-
ing assumptions are satisfied:
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(C) Some power of V is compact;
(E) V(f) is strictly positive if fe& and V(f) Φ 0.

Then, the convex cone ̂ (V\ is one dimensional (i.e. there exists seW(V)u

s Φ 0, and any other element of ΰ^(V)ι is proportional with s).

Proof. Condition (E) implies that V is an irreducible kernel operator
on Z/(τn) in the sense of H.H. Schaefer, and from Theorem 6.6, ch. V in
[10] it follows that there exists exactly one eigenvalue r > 0 for V which
has positive eigenvectors and the corresponding eigenspace is one dimen-
sional. Remarking that every element of E(V, λ\ is m-integrable for
0 < λ < oo, we conclude that E(V, r\ is one dimensional and E[(V, X) = {0}
if λ Φ r, λeR. Theorem 3.5 implies now that %(V\ = E(V, r\ and the
proof is finished.

Remark 4.3. a) If in the above proposition we know in addition
that every F-ultrapotential is m-integrable, then %(V) = <%(V)U hence
%(V) is one dimensional.

b) Condition (E) is equivalent with the following one:
any ^-excessive function is strictly positive.

Thus, in connection with the characterization of the elliptic harmonic
spaces (see [5]), condition (E) might be understood as an "ellipticity
property" of the kernel V.

COROLLARY 4.4. Let V be the Green kernel of a second order elliptic
differential operator (with indefinite differentiable coefficients) in a bounded
domain (with a sufficiently regulate boundary) of Rn. Then W(V) is one
dimensional.

Proof. In this case V and W are bounded kernels. Hence V is a
bounded linear operator on Z/(m). Also, condition (E) is fulfilled.

The structure of the associated Green function (see [2] page 275)
implies that there exists an integer k > 0 such that Vk maps Ώ(vcί) in
L°°(m). By Example 5, page 337 in [10], it results that condition (C) is
satisfied. From Remark 2.3 it is easy to see that condition (βf) is also
satisfied.

The desired assertion is obtained from the above proposition. (See
also Remark 4.3 a).) D

Let us point out that Corollary 4.4 shows that Proposition 4.2 is a
generalization of the results of this type obtained in [2] Theorem 12 and

https://doi.org/10.1017/S0027763000001173 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000001173


142 LUCIAN BEZNEA

[7] Corollary 83.
Indeed, we have already observed (see Remark 1.1) that the "ul-

trapotentials associated to a second order elliptic differential operator" in
[2] are from #(V).

By Proposition 81 and the equality (4.7) in [7] we obtain that in
this case the "completely L-superharmonic functions with zero conditions"
are also elements of W(V).
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