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1. Introduction. Let C1" denote the space o f n x n matrices with complex entries and
let J^n denote the set of n x n hermitian matrices. Given any matrix A e C"'", the Lyapunov
transformation corresponding to A is defined by ££?A{H) = AH+HA*, where //ejfn. Let
PSD(ri) be the set of all n x n hermitian positive semidefinite matrices. Taussky [8, 9] raised
the problems of determining

<eA{PSD(n))= {AH+HA*:HePSD(n)}
and

&A\PSD{n)) = {HeXn: AH+ HA* ePSD(n)}.

Both of these problems seem to be difficult.
It was shown in [4] that if A, B e CB>" and SeA is invertible then, &A{PSD(n)) = <£B(PSD(n))

if and only if
B = n(A + ktl) for some real a, n such that /i > 0 (1)

or
B = n[(A + ia.vI)~

1 + ix2l] for some real o ,̂ a2, (i such that /x > 0. (2)

This result answers the question to what extent does 2?A{PSD{n)) characterize A. The proof
in [4] is by induction on n, the order of A, and involves several tedious computations. In
Section 2 we give a simpler proof of this result based on a theorem by Schneider [7] which
characterizes all linear transformations on the real space #Cn that map PSD(n) on to itself.
It is not difficult to see that A and B satisfy (1) or (2) if and only if

B = (nI+ivAXcpA + iij/I)'1 for some real \x, v, <p, ip with fup + vil/ = 1; (3)

so we shall show that if SB\ is invertible then, yA(PSD(n)) = &B{PSD(n)) if and only if (3)
is satisfied.

In order to describe the results of Section 3 we need the following definition. Let
C"(R") denote the vector space of all complex (real) column «-tuples. If x, yeC, let (x, y)
denote the inner product of x and y.

DEFINITION, (i) A nonempty set S s C " (or W) is said to be a cone if S+S£ S and
aS £ S for every a ^ 0.

(ii) If S £ C is a cone then Sp, the polar of S, is defined by

Sp = {yeC: Re(x, y) ^ 0 for every xeS}.

The polar can be similarly defined for a cone in W.
In Section 3 a theorem of Ben-Israel [1] on the solvability of linear equations over cones
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is used to show that if SB A is invertible then &A\PSD(n)) = [&A.(PSD(n))Y. It is then proved
that SeA-\PSD(n)) = &BXPSD(n)) if and only if (3) is satisfied.

We assume throughout that A e €,"•" and ifx is invertible. This is equivalent (cf. [2,10])
to FT (A,+L) ?£ 0, where Xt, X2, ..., An are the eigenvalues of A. Let A, A', A* denote the

conjugate, transpose and conjugate transpose of A, respectively. The Kronecker product of
two matrices C and D is denoted by C®D.

2. Necessary and sufficient conditions for £eA(PSD(n)) = &B(PSD(ri)). The main result in
this section is Theorem 3, which characterizes the matrices B such that

<?A(PSD(n))=!?B(PSD(n)).

To establish its proof we need the following two theorems on matrix equations, which may be
of independent interest.

THEOREM 1. Let A, C, D e C 1 " and suppose that £PA is invertible. If

AX+ XA* = DXC* + CXD*

for every Xe C'", then there exist real numbers 9, n, v, q>, ty such that fi<p + wji = 1 and
C = e'%q>A + iil/I), D = P

Proof. We consider each matrix in C"1" as an n2 column vector. Thus, if X(i) denotes
the ith row of X, we consider X as the column vector (^(i), X(2), •••, X(n))'- The assumption
of the theorem then implies (cf. [5]) that

= D®€+C®D,
whence

atjl+ By! = d,jC + c,jD, i,j=\,...,n. (4)

We may replace A, C, D by UAU*, UCU*, UDU*, respectively, where U is any unitary
matrix. Given real numbers a and r such that r ^ 0, we may replace A by r{A + hi). Given
real numbers w and t such that t ^ 0, we may replace C and D by teiwC and t ~ ie'wD,
respectively. Hence we may assume that a u = 1 and c l t is nonnegative real. Since
c n ( ^ i i + ^ n ) = 2, it follows that c u # 0, so we may assume that c u = 1, whence dn = 1 +iy
for some real y.

It follows from (4), with / =j = 1, that D = I+A-(l -iy)C. Substituting back into (4),
we are led to

(aj ;+<50— (1 - iy)Cij)C+c^A +1- (1 + iy)C) = a,jI+SijA, i,j= 1 , . . . ,« ,

and thence to

(au+&ij- 2cij)C = (au - Cij)I+ (dij - Cij)A, i,j=l,...,n. (5)

There are now two cases.
Case I. Suppose that 2c,,- = 5y+^y, J,y = 1,..., «• Thence C = \{A+l), and it follows

from (5) that (a0- -5tJ)(I- A) = 0,i,j= \, ...,n. Hence ^ = /, C = I and D = (1 + iy)I, which
• completes the proof in this case.
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Case II. We may assume that there exist io,jo such that 5iojo + 5ioJo — 2ciojo ^ 0. Hence,
by (5), C = z1I+z2A for some zu z 2eC. Substituting back into (5), we get

= 0, i,j = 1, ..., n.

The matrix A is not a scalar matrix. If A were a scalar matrix then axx — \ would imply A = I.
Hence C would be scalar matrix, and cn = ] would imply C = I, contrary to the assumption
of Case II. Hence we conclude that

J /

and
(z2-2z2z2 + Z2)aij + ( z 2 - 2 z t z 2 - 1 + zi)5iy = 0, i,j=l, ..., n.

Since A is not a scalar matrix it follows that

zl — 2z1z2 — l + z 2 = 0, zy—iz^Zi+Zi = 0 and z2 — 2z2z2 + z2 = 0.

Hence zt = i( l +ew) and z2 = i( l - e ' e ) for some real 0. It follows that

C = zJ+z2A = ( s i n i ^ + i c o s i ^ e " * 8 - ^
and

D = / + A - (1 - iy)C = ((sin tf-y cos £0)7 + /(cos ±0+y sin ̂ M)el (*9" *">,

which completes the proof.
Let A have eigenvalues ku ...,!„ and define

AG4)= n Vt + Zj)-

Recall that £?A is invertible if and only if A(A) # 0.

THEOREM 2. Letn^l and let AeC>n such that £?A is invertible. There exist no matrices
C,DeC-n such that

(AX+XA*)' = DXC* + CXD* for every XeC"-n. (6)

Proof. We consider again each matrix in C 1 " as an n2 column vector. Let E,JBC'"

be the matrix with 1 in the /, j position and 0 elsewhere. Let Te C"2- "2 be the matrix consisting
of n2 blocks r,yeC">n such that TiJ = EJh i,j=\,...,n. It is easy to show that (6) is
equivalent to

= D®C+C®5. (7)

Hence it suffices to show that there exist no matrices C, DeV'n that satisfy (7).
Suppose that C and D satisfy (7). Then

duC+ctJD = X Eki(akJI + 8kjA) = EnA + £ akjEki, i,j = l,...,n. (8)
* = i

The matrices C and D are nonsingular. For suppose there exists xeC such that Dx = 0.
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Let X= xx*. Then DXC* + CXD* = 0, which implies that <£\{X) = 0. Hence X= 0 and
x = 0. Similarly one shows that C is nonsingular.

Given any real numbers a, r, t, w such that r + 0 and t # 0 we may replace A by r(A + ial)
and C, D by teiwC, t'1 eiwD, respectively. Hence we may assume that a u and c u are real
and nonnegative.

Let

a2l 0
"in
0

. aHl 0 . . . 0 .

It follows from (8), with i =j = 1, and (9) that

rfuC+c11D= W.
There are now two cases.

eC"' (9)

(10)

Case I. n ^ 3. Suppose that ctl=0. It follows from (9) and (10) that alt=0. Since A
is nonsingular, at least one of a12, ..., flin is nonzero, whence rfu # 0 . It follows that rank C
is at most 2, but C must be nonsingular, a contradiction. Hence ct t # 0 and we may assume
that c u = 1. It follows from (10) that D = JV-d^C. Substituting back into (8), we are led to

and hence to

(d,j-dilcij)C = EJi

"0 0 ... 0
0 0 ... 0

k=l

0
0

0 0
5,i 5,
0 0

0 0

0

0

aJ-iJ

Unj 0

0
0

a in

0

0

= ! , . . . ,«. (11)

Consider now a fixed pair (i,j) such that j ' ^2 and 7 ^ 2 . We want to show that
dij-ducti i= 0. Suppose that d^-d^c^ = 0. It follows from (11) that aik = 0 for k # 1, i;
aw = 0 for A; ^ 1,7; and au+ajj = 0. If also cy = 0 then atj = an = 0, whence au and an

are eigenvalues of /4. But au+ajj = 0, which implies that A(^) = 0. Since this is not the
case we conclude that ci} # 0. Now, if i #7 it follows from (11) that alk = 0, k — 1, ..., n,
this is a contradiction. If i =7, it follows from (11) that A(l) and A(J), the first and7th rows
of A, respectively, have the form

A(U = [0, 0, ..., alp 0, .... 0], Aw = [an, 0,..., ijj, 0, ..., 0],

where in each case the 7th entry of the row is the third displayed entry, j? is real and
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aj'J.
1alj = a}laji = CJJ. This implies that A(A) = 0, which is a contradiction. Hence

j

It follows from (11) that ckl = 0 if k ;> 2, k # j and / ;> 2, / ^ /. But since i and y were
arbitrary (i,j^2) it follows that cu - 0 for all 2 g A:, / g / i . Hence rank Cg2 . This
contradicts the fact that C must be nonsingular and completes the proof of this case.

Case II. n =2. Suppose that cM =0. Then, by (9) and (10), an = 0. Since >4 is
nonsingular, al2 and a21 are nonzero, whence dtl ¥=0. Hence, by (10),

_f l21

It follows from (8), with i=j = 2, that

"12! f° fli2

and, by an easy computation, that A(A) = 0, contrary to our assumption. Hence c,, ^ 0,
and we may assume that c u = 1. Thus, (11) holds also in this case, while (10) implies that

a2l-(aii-iy)c2l -(a11-*»c22

for some real y. It follows from (12) and (11), with / = 1,7 = 2 and i =j = 2, that

C12«12~|
_

a12 J
(a12-2flllCl2)C = ^ ^ + " ™ 2 a 2 i I " " " | , (13)

and

(14)
J

The assumption A(A) # 0 implies that ax t # 0 and c22 ?t 0, so we can assume ax 1 = 1. If we
solve (14) for C and substitute into (13) we conclude, after some elementary calculations, that
there exist real numbers p and q such that

2i

where al2a2l =p+iq. This implies that A(A) = 0, contrary to our assumption. This
completes the proof of the theorem.

Theorems 1 and 2 and a theorem of Schneider [7] which characterizes all linear
transformations on Jf „ that map PSD(n) on to itself are needed in the proof of the next
theorem.

THEOREM 3. Let A,BeC>n and suppose that JSP'A is invertible. Then the following are
equivalent:

(i) B = ({iI+ivA)((pA + i\l/I)~l for some real n, v, q>, \j) with fi(p + v\j/ = 1;
(ii) J
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Proof, (i) => (ii). If q> / 0 then

B = ( i v < j » 1

while if (p = 0 then i//'1 = v and 5 = v2A — ifxvI. Hence A(5) ^ 0 and ifB is invertible.
Let H be positive semidefinite and let K be the unique solution of the matrix equation

S£A{H) = &B(K). It is easily verified that K^cp^A + icp'^^HiA + icp-^I)* if <p ± 0, and
K = v~ 2 # if <p = 0. Hence # is positive semidefinite and &A(PSD(n)) £ £eB(PSD(n)), but we
also have .

4 (I
whence £CA(PSD(n)) 2 SCB(PSD(n)).

(ii) => (i). Since 3Vn = PSD(n)-PSD(n), the assumption ^A(PSD(n))=£eB(PSD(n))
implies that ifB is invertible and &B

1&A(PSD(n)) = PSD{n). Hence SeB
1&A is a linear

transformation on the real space ^ B which maps PSD(n) on to itself. It now follows by
Schneider [7, Theorem 2] that there exists a nonsingular matrix CeC'" such that either

= CHC* for all Hetfn, or &B
l&A{.H) = CH'C* for all #e.?fn. Hence, either

AH+HA* = BCHC* + CHC*B* for all HeJfn, (15)
or

AH+HA* = BCH'C* + CH'C*B* for all He #„. (16)

We may replace H in (15) and (16) by any matrix XeC'n, because any matrix X can be
written as Hi + iH2, where Hu H2e3^n. If (16) is satisfied then

(AX+XA*)' = BCXC* + CXC*B*

for all Ze C'". This is impossible for n §; 2, by Theorem 2, since JS?̂  is invertible (while for
n = 1 (15) and (16) are the same). Hence it remains to consider the case that

AX+XA* = BCXC* + CXC*B*

for all XeC'n, but then, by Theorem 1, there exist real numbers 0,p.,v,q>, ip such that
Hcp + vil/= 1 and BC = eie(jiI+ivA), C = eie((pA + i\l/I). This completes the proof of the
theorem.

3. Necessary and sufficient conditions for Se^iPSDiri)) =&g~l(PSD(ri)). In this section
we use the duality theory for cones to point out the relation between the image and inverse
image of PSD(n) under the Lyapunov transformation. We use the well-known fact (cf. [1],
[6, Theorem 14.1]) that for a closed cone S in C" or W (S1)1" = S.

Ben-Israel [1, Theorem 2.4] proved the following solvability theorem for linear equations
over cones. Let TeC'", beC. Further let S be a closed cone in C" and suppose that
Null(T) + S is closed, where Null(r) is the null space of T. Then the linear system Tx = b
has a solution xe S if and only if T*yeSp implies that Re (b, y) ^ 0. This result can also be
stated with the obvious modifications for cones in W and is applied in the proof of the next
theorem, which is essentially Theorem 4 of [3].

THEOREM 4. Let A eCn>" and suppose that &A is invertible. Then

J?A(PSD(n)) = [^.\PSD(n))Y and &A \PSD{n)) = [if APSD(n))Y'.
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Proof. It is known that the real linear space 3^n can be made into an inner product space
by defining the inner product <//, K} = trace(HK) for any H, Ke #f „. It is easily verified that
(<eA{H), Ky = <//, £CA.(K)} for any H, Ke3^n, whence S£ A. is the adjoint of & A with respect
to the given inner product in 3ffn.

The cone PSD(n) is closed and self-polar, i.e., PSD(n) = PSD(n)p, and since
N u l l ^ ) = {0}, we may apply Ben-Israel's solvability theorem. Thus, Ke £CA{pSD(ri)) if and
only if <//, K> ^ 0 for every He g^PSD^n)). Hence &A(PSD(n)) = [&A}(PSD(n))]p. We
may replace A by A*, since i?^ . is also invertible, so &A.(PSD(n)) = [Sf~A

1(PSD(n))]p. Since
£CA\PSD(n)) is a closed cone, it follows that

[2>A.(PSD(n))Y = [ ^ ( P S D W = <eA\PSD{n)\

which completes the proof.
Theorems 3 and 4 imply the following theorem.

THEOREM 5. Let A, BeC"'" and suppose that J?A is invertible. Then the following are
equivalent:

(i) B = (iiI+ivAXyA + iij/iy1 for some real n, v, q>, \j/ with iup + v\p = 1;
(ii) &A \PSD{n)) = <£I \PSD(n)\

Proof, (i) =*• (ii). Since B* = (jiI—ivA*)((pA* — i\l/I)~l, the desired result follows from
Theorems 3 and 4.

(ii) => (i). Suppose that SCB(H) = 0, where He tf „. Then Hand-H are in .S?^ ^PSDin)),
whence AH+HA*ePSD(ri) and ~(AH+HA*)ePSD(n). Hence 7/ = 0 and i? B is invertible.
Theorems 3 and 4 imply that (i) must hold, which completes the proof.
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